Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung"

Transkript

1 --- Meung der Ladung Wie kann man Ladungen meen? -/Kapiel.. Formeln auf S.: Elekriche Ladung Zur Ladungmeung können wir einen au der Mielufe bekannen Zuammenhang zwichen der Ladung Q und der Sromärke I verwenden. Die Felegung lauee: Ein Ampere enprich einem Flu von Coulomb pro Sekunde: Ampere = Coulomb pro Sekunde Die enprich einem Durchaz von 6, 8 (ewa 6 Trillionen) Elekronen pro Sekunde. Allgemein lä ich der Zuammenhang zwichen Ladung und Sromärke mi folgender Formel audrücken: Ein Durchaz der Ladung Die Sromärke Q in der Zei ergib die Sromärke Q I Umgekehr i nach der Zei die Ladung Q I gefloen. Wir meen die Ladung auf einem Kondenaor (Ladungpeicher) mi Hilfe der folgenden Schalung. ( V 9V, C, F und R )

2 Seh der Schaler auf, o wird der Kondenaor (Schalzeichen ) über die Sromquelle aufgeladen. Der Kondenaor beeh im einfachen Fall au Plaen, die ich wie im Schalymbol gegenüberehen. Gemäß Schalplan ha nach dem Aufladen die obere Plae die Ladung Q und die unere Plae die Ladung Q. Legen wir den Schaler auf die Poiion, o können die negaiven Ladungen (Elekronen) der uneren Plae über den Widerand und da Srommegerä zur poiiven Plae wandern. Der Kondenaor enläd ich. Wir wollen während de Enladevorgang die Sromärke meen und in einer Wereabelle fehalen: Zei in Sromärke I in A Die Mewere ragen wir nun in ein -I-Koordinaenyem: I in Mikroampere in In der folgenden Animaion oll verdeulich, werden, wie wir nun heraufinden können, welche Ladung ich auf dem Kondenaor befand: hp:// Die Schüler berechnen die Ladung auf dem Kondenaor unere Veruche.

3 In einem -I-Diagramm i die im Zeiinervall ; gefloene Ladung gleich dem Flächeninhal uner der -I-Kurve in den Grenzen von und. In der Mahemaik lernen wir für dieen Flächeninhal die Inegralchreibweie Q I( d (geleen Inegral der Funkion I ( in den Grenzen von und ). Beimmung der Ladung In einem -I-Graphen i die im Zeiinervall ; gefloene Ladung Q I( d Im S-I-Syem i nich die Ladung, ondern die Sromärke die phyikaliche Grundgröße. Sei 98 wird da Ampere wie folg definier: A i die Särke de zeilich konanen elekrichen Srome, der im Vakuum zwichen zwei parallelen, unendlich langen, geraden Leiern mi vernachläigbar kleinem, kreiförmigem Querchni und dem Aband von m zwichen dieen Leiern eine Kraf von Newon pro Meer Leierlänge hervorrufen würde. Da bedeue, da die Einhei der elekrichen Ladung al abgeleiee SI-Einhei A i. E i immer noch gebräuchlich für A die Einhei C (Coulomb) zu verwenden.

4 Der Lehrer führ enprechend der oberen Abbildung die Anziehung von zwei geraden Leiern vor. Die Schüler ehen einen Film zum franzöichen Mahemaiker und Phyiker André- Marie Ampère ( - 86): hp:// Während der Enladung eine Kondenaor wird die Sromärke gemeen und in einer Wereabelle fegehalen: Zei in Sromärke I in A,6,,,, Trage die -I-Kurve in da unere Koordinaenyem ein und berechne da Inegral Q I( d I in Mikroampere in

5 . Ein ungeladener Kondenaor wird mi der konanen Sromärke I A geladen. Berechne die Ladung auf dem Kondenaor nach.. Ein Kondenaor wird enladen. Der Abhängigkei der Kondenaorladung Q von der Zei A i durch die Gleichung Q A gegeben. Die Enladung beginn zum Zeipunk und ende zum Zeipunk. a. Welche Ladung befand ich auf dem Kondenaor? b. Zeichne für die Enladung ein Zei-Ladung-Diagramm (-Q-Diagramm). c. Wie groß i die milere Sromärke in der eren Sekunde der Enladung? d. Wie groß i der Enladerom zu einem beliebigen Zeipunk? e. Zeichne ein Zei-Enladerom-Diagramm (-I-Diagramm). f. Beimme au dem Zei-Enladerom-Diagramm die Ladung, die ich auf dem Kondenaor befand und vergleiche mi Aufgabeneil a.. Auf einem Akkumulaor befinde ich die Aufchrif,V/mAh a. Inerpreiere diee Angabe b. Wie lange könne man eine Glühlampe mi den Kenngrößen,V/,Adami bereiben?. I in Mikroampere in Da Inegral Q I( d i näherungweie gleich dem Inhal der Recheckflächen mi der Breie und der Höhe, die man im Diagramm ableen mu: Q I( d 6,A,A,9A,A,A,A C

6 . Q I A A. a. Zum Zeipunk = i Q() A () b. A c. I( ; ) A d. Q Q( ) Q() A Q I i die milere Sromärke im Zeiinervall. Zur Beimmung der momenanen Sromärke müen wir da Zeiinervall infinieimal klein machen. Au Q wird d und au dem Differenzenquoienen wird der Differzialquoien oder die Ableiung dq Q d A Wir leien alo die Funkion Q A zeilich ab und erhalen die dq A A Sromärke zu einem Zeipunk : I( Q A A d

7 e. f. Die geame Ladung, die vom Kondenaor abgefloen i, i gleich dem Inhal der Fläche zwichen dem -I-Graphen und der -Ache im Inervall ;. Diee Fläche i A ein Dreieck. Der Flächeninhal beräg. Die imm mi dem Ergebni au Aufgabeneil a. überein.. a. Der geladene Akku kann bei einer Spannung von,v ingeam eine Ladung Q mah A6 9A durch einen angechloenen Sromkrei chicken. b. Q I 9 A, A E ergib ich =6=h.

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Induktionsgesetz. a = 4,0cm. m = 50g

Induktionsgesetz. a = 4,0cm. m = 50g 1. Die neenehende Aildung (Blick von vorn) zeig eine Spule mi 5 Windungen von quadraichem uerchni mi Seienlänge a = 4,cm zum Zeipunk. DieSpuleeweg ich mider Gechwindigkei v vom Berag v = 2, cm nachrech.

Mehr

Gruppenarbeit: Anwendungen des Integrals Gruppe A: Weg und Geschwindigkeit

Gruppenarbeit: Anwendungen des Integrals Gruppe A: Weg und Geschwindigkeit Gruppenarbei: Anwendungen de Inegral Gruppe A: Weg und Gechwindigkei Die ere Ableiung der Zei-Or-Funkion x() der Bewegung eine Körper ergib bekannlich die Zei- Gechwindigkei-Funkion v(), deren ere Ableiung

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Physikalische Größe = Zahlenwert Einheit

Physikalische Größe = Zahlenwert Einheit Phyikaliche Grundlagen - KOMPAKT 1. Phyikaliche Größen, Einheien und Gleichungen 1.1 Phyikaliche Größen Um die Ar ( Qualiä) und da Aumaß ( Quaniä) phyikalicher Eigenchafen und Vorgänge bechreiben und mi

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

College International Vorbereitungsjahr 2016/17

College International Vorbereitungsjahr 2016/17 College Inernaional Vorbereiungjahr 6/7 Phyik Dr. Ferenc Tölgyei olgyei.ferenc@med.emmelwei.hu Vorleungkripe zum Herumerladen: hp//:nighowl.oe.hu/olgyei Themaik (bi zu Weihnachen) Daum Thema 3. und 5.

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2 NIVESITÄT LEIPZIG Iniu für Informaik Prüfungaufgaben Klauur zur Vorleung WS 2/2 und SS 2 b. Techniche Informaik Prof. Dr. do Kebchull Dr. Paul Herrmann Dr. Han-Joachim Lieke Daum:. Juli 2 hrzei: 8-3 Or:

Mehr

College International Vorbereitungsjahr 2017/18

College International Vorbereitungsjahr 2017/18 College Inernaional Vorbereiungjahr 07/8 Phyik Dr. Ferenc Tölgyei olgyei.ferenc@med.emmelwei.hu Vorleungkripe zum Herumerladen: hp//:nighowl.oe.hu/olgyei Themaik (bi zu Weihnachen) Daum Thema. und 4. Ok.

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auzug au dem Lernmaerial Forildunglehrgang Saalich geprüfe Techniker Auzug au dem Lernmaerial Naurwienchaf DAA-Technikum Een / www.daa-echnikum.de, Infoline: 00 83 6 50 Definiion: Die Gechwindigkei eine

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe 10.7.08 PHYSKALSCHES PAKTKUM FÜ AFÄGE LGyGe Veruch: M 12 - Kreiel n dieem Veruch werden die Präzeionbewegung und die uaionbewegung eine Kreiel uneruch. Der Aufbau de Kreiel kann au der Abbildung de Veruch

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Aufgabenblatt 10: Investitionstheoretische Kostenrechnung I

Aufgabenblatt 10: Investitionstheoretische Kostenrechnung I Prof. Dr. Gunher Friedl Aufgabenbla 10: Inveiionheoreiche oenrechnung I Aufgabe 10.1: Inveiionheoreiche oenrechnung, Abchreibung (Aufg. 6.2.2 im Übungbuch) Die Gechäfleiung der Brauerei Benedikiner erwäg

Mehr

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren Nuzung der inhärenen enorichen Eigenchafen von piezoelekrichen Akoren K. Kuhnen; H. Janocha Lehruhl für Prozeßauomaiierung (LPA), Univeriä de Saarlande Im Sadwald, Gebäude 13, 6641 Saarbrücken Tel: 681

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Phyik für Mediziner und Zahnmediziner Vorleung 05 Prof. F. Wörgöer (nach M. Seib) -- Phyik für Mediziner und Zahnmediziner 1 Zuammenhang von Kraf und Bechleunigung Experimen M Fmg m Deuung: Kraf Mae Bechleunigung

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Abbildungsmaßstab und Winkelvergrößerung

Abbildungsmaßstab und Winkelvergrößerung Abbildungmaßab und Winkelvergrößerung Abbildungmaßab Uner dem Abbildungmaßab vereh man da Verhälni /, wobei der Audruck ein negaive Vorzeichen erhäl, wenn da ild verkehr wird. Alo Abbildungmaßab V: Winkelvergrößerung

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

Bestimmung der Gasdichte mit dem Effusiometer

Bestimmung der Gasdichte mit dem Effusiometer mi dem Effuiomeer Sichwore: Bernoulliche Gleichung, aiiche Auwereverfahren, Reynoldche Zahl, laminare und urbulene Srömung, Koninuiägleichung Einführung und Themenellung Die Aurömgechwindigkei eine Gae

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

W. Stark; Berufliche Oberschule Freising

W. Stark; Berufliche Oberschule Freising 9.6 Aufellen der Bewegunggleichungen der haronichen Schwingung bei unerchiedlichen Anfangbedingungen i Hilfe eine Zeiger- und Liniendiagra 9.6. Der chwingende Körper durchläuf zu Zeinullpunk eine uhelage

Mehr

(3) Weg-Zeit-Verhalten

(3) Weg-Zeit-Verhalten (3) Weg-Zei-Verhalen Vorleung Animaion und Simulaion S. Müller KOBLENZ LANDAU Wdh: Bogenlängenabelle Pfad felegen (P 0, P, P and P 3 ) 3 3 r u u P0 3 u u P 3 u u P u P Berechne Poiion für Zeipunk, i.e.

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2005 Aufgabe V Kapazitätsmessung, Ölfleckversuch, Rasterelektronenmikroskop

Leistungskurs Physik (Bayern): Abiturprüfung 2005 Aufgabe V Kapazitätsmessung, Ölfleckversuch, Rasterelektronenmikroskop Leiunkur Phyik (Bayern): Abiurprüfun 25 Aufabe V Kapaziämeun, Ölfleckveruch, Raerelekronenmikrokop 1. Kapaziämeun Ein Kondenaor der Kapaziä C wird über einen Widerand R enladen. Für den zeilichen Verlauf

Mehr

Musterlösung zur Einsendearbeit zur Erlangung der Teilnahmeberechtigung

Musterlösung zur Einsendearbeit zur Erlangung der Teilnahmeberechtigung Muerlöung zur Einenearbei Moul 3511 Seuern un ökonomiche Anreize, Kur 00694 Seuerwirkunglehre I, KE 3 Verbraucheuern, Wineremeer 011/1 1 Muerlöung zur Einenearbei zur Erlangung er Teilnahmeberechigung

Mehr

7 Flussmessungen. 7.1 Der Massenflussregler. 7.2 Der Propenflussregler Flussmessungen

7 Flussmessungen. 7.1 Der Massenflussregler. 7.2 Der Propenflussregler Flussmessungen 9 7 lumeungen 7 lumeungen Um da Enladungrohr mi dem lamaga rgon, dem Makeupga Saueroff und dem exernen Sandard ropen zu verorgen ind mehrere luregler owie die offene Kopplung zur Einleiung der Gae in den

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

3 GERADL. GLEICHM. BESCHL. BEWEGUNG

3 GERADL. GLEICHM. BESCHL. BEWEGUNG PS KINEMATIK P. Rendulić 0 GERADL. GLEICHM. BESCHL. BEWEGUNG 7 3 GERADL. GLEICHM. BESCHL. BEWEGUNG 3. Experimenelle Herleiung de WegZeiGeeze 3.. Veruchbechreibung Wirk läng der Bahn eine konane Kraf in

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Zusammenfassung: Induktion

Zusammenfassung: Induktion LGÖ K Ph 1 4-ündig 3511 Zuammenfaung: Indukion Indukion durch ewegung eine Leier in einem Magnefeld Erer Grundveruch zur Indukion: Ein Sab beweg ich auf zwei parallelen Schienen, die den Aband d haben,

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Transport. Explizite und implizite Verfahren

Transport. Explizite und implizite Verfahren p. 1/9 Tranpor Explizie und implizie Verfahren home/lehre/vl-mhs-1/inhalt/folien/vorlesung/10_transport_verf/decbla.ex Seie 1 von 9 p. /9 Inhalverzeichni 1. Explizie Verfahren Inabile Verfahren Lax Verfahren

Mehr

Versuchsprotokoll. Datum:

Versuchsprotokoll. Datum: Laborveruch Elekroechnik I eruch 2: Ozillokop und Funkiong. Hochchule Bremerhaven Prof. Dr. Oliver Zielinki / Han Sro eruchprookoll Teilnehmer: Name: 1. 2. 3. 4. Tea Daum: Marikelnummer: 2. Ozillokop und

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoreiche Grundlagen Phik Leiungkur Größen Größen Größen 5 m Grundgrößen abgeleiee Größen Zahl Einhei Länge, Mae, Zei, Sromärke, Temperaur, Soffmenge, Lichärke Gechwindigkei, Kraf, Ladung Änderunggrößen:

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

1. Für die Bewegung eines Fahrzeuges wurde das t-s-diagramm aufgenommen. Skizziere für diese Bewegung das t-v- Diagramm.

1. Für die Bewegung eines Fahrzeuges wurde das t-s-diagramm aufgenommen. Skizziere für diese Bewegung das t-v- Diagramm. Aufgaben zur gleichförigen Bewegung 1. Für die Bewegung eine Fahrzeuge wurde da --Diagra aufgenoen. Skizziere für diee Bewegung da -- Diagra. 2. Eine Radfahrerin und ein Spaziergänger i eine Hund bewegen

Mehr

i(t) t 0 t 1 2t 1 3t 1

i(t) t 0 t 1 2t 1 3t 1 Aufgabe 1: i 0 0 1 2 1 3 1 1. Eine Kapaziä werde mi einem recheckförmigen Srom gespeis (s.o.). Berechnen Sie den Verlauf der Spannung für den Anfangswer u( 0 )=0V mi 0 = 0s. 2. Skizzieren Sie den eisungsverlauf

Mehr

Eylert, Numerische Mathematik Kapitel 7

Eylert, Numerische Mathematik Kapitel 7 Eyler, Numeriche Mahemaik Kapiel 7 7 aplace-tranformaion Moivaion Da öen linearer Differenialgleichungen i nich immer eine einfache Aufgabe. E gib viele öunganäze, die vor allem auch in der numerichen

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Einführung MiniMEXLE Hardware. Dr.-Ing. Thomas Pospiech Raum D137, Tel. -415

Einführung MiniMEXLE Hardware. Dr.-Ing. Thomas Pospiech Raum D137, Tel. -415 Einführung MiniMEXLE Hardware Dr.-Ing. Thoma Popiech Raum D37, Tel. -45 Überich / Funkionaliä 9.03.200 Seie 2 Schalplan MiniMEXLE V3.0 9.03.200 Seie 3 Schalplan MiniMEXLE V3.0 Der Schalplan bzw. die die

Mehr

10. Wechselspannung Einleitung

10. Wechselspannung Einleitung 10.1 Einleiung In Sromnezen benuz man sa Gleichspannung eine sinusförmige Wechselspannung, uner anderem weil diese wesenlich leicher zu erzeugen is. Wie der Name es sag wechsel bei einer Wechselspannung

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

2. Torsion geschlossener Profile

2. Torsion geschlossener Profile Berache werden Balken mi einem konanen einzelligen gechloenen dünnwandigen Hohlquerchni, die durch ein konane Torionmomen M x belae werden. A B () D C M x x y Prof. Dr. Wandinger 5. Dünnwandige Profile

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Freier Fall. Quelle: Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m

Freier Fall. Quelle:  Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m Freier Fall 1. Der franzöiche Fallchirpringer Michel Fournier (geb. 14.5.1944) verfolg ei ehr al 1 Jahren da Ziel in ca. 4 Höhe i eine Sraophärenballon aufzueigen und von dor abzupringen. Dabei will er

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur?

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur? Aufaben zu freien Fall 0. Von der Spize eine Ture lä an einen Sein fallen. Nach 4 Sekunden ieh an ihn auf de Boden aufchlaen. a) Wie hoch i der Tur? b) Mi welcher Gechwindikei riff der Sein auf den Erdboden

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

Gleichförmige Bewegung

Gleichförmige Bewegung Gleichförmige Bewegung 1. Grundwien (a) Ein PKW fähr mi der konanen Gechwindigkei v = 16 km auf der Auobahn. Wie lange brauch da Auo für eine 00m lange h Srecke? (b) Wird ein geeiche 50 g-sück an eine

Mehr

Übersicht. Datenstrukturen und Algorithmen. Graphenproblem: maximale Flüsse. Graphenproblem: maximale Flüsse. Vorlesung 18: Maximaler Fluss (K26)

Übersicht. Datenstrukturen und Algorithmen. Graphenproblem: maximale Flüsse. Graphenproblem: maximale Flüsse. Vorlesung 18: Maximaler Fluss (K26) Überich aenrukuren und lgorihmen Vorleung 18: (K26) Joo-Pieer Kaoen Lehruhl für Informaik 2 Sofware Modeling and Verificaion Group hp://move.rwh-aachen.de/eaching/-15/dal/ 25. Juni 2015 1 Flunezwerke 2

Mehr

1. Kontrolle Physik Grundkurs Klasse 11

1. Kontrolle Physik Grundkurs Klasse 11 1. Konrolle Phyik Grundkur Klae 11 1. Ein Luch lauer eine Haen auf und lä e da ahnungloe und chackhafe Tier bi auf 30,0 herankoen. Dann prine er i 68 k/h auf ein Opfer lo, da ofor davon renn. Nach 5,0

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

reibungsgedämpfte Schwingung

reibungsgedämpfte Schwingung HTL-LiTec reibunggedäpfe Schwingung Seie 1 von 7 Dipl.-Ing. Paul MOHR E-Brief: p.ohr@eduhi.a reibunggedäpfe Schwingung Maheaiche / Fachliche Inhale in Sichworen: reibunggedäpfe Schwingung; nueriche Löung

Mehr

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen 5.5. Absrake Abiuraufgaben zu Eponenialfunkionen Aufgabe : Kurvenunersuchung, Inegraion, Opimierungsaufgabe Gegeben is die Funkion f() ( ) e,5. a) Unersuchen Sie das Schaubild von f auf Achsenschnipunke,

Mehr

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung :

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung : Mechaniche chwingungen F r Rück Gleichgewichlage r F Rück F r Rück F r Rück Gleichgewichlage Größen zur quaniaiven Bechreibung : chwingungdauer oder Periode T, Einhei: Frequenz υ /T, Einhei: / oder Hz

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funkionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 7 Sand 3. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

KAPITEL 2 KÜRZESTE WEGE

KAPITEL 2 KÜRZESTE WEGE KAPITEL 2 KÜRZESTE WEGE F. VALLENTIN, A. GUNDERT Da Ziel diee Kapiel i e kürzee Wege in einem gegebenen Nezwerk zu verehen und zu berechnen. Ein einführe Beipiel für ein Nezwerk zwichen den vier Säden

Mehr

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2.

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2. Miniserium für Schule und Berufsbildung 05 Bei der Bearbeiung der Aufgabe dürfen alle Funkionen des Taschenrechners genuz werden. Aufgabe : Analysis Gegeben is eine Funkionenschar durch f () = e mi R;

Mehr

Energiespeicherelemente der Elektrotechnik Kapazität und Kondensator

Energiespeicherelemente der Elektrotechnik Kapazität und Kondensator 1.7 Energiespeicherelemene der Elekroechnik 1.7.1 Kapaziä und Kondensaor Influenz Eine Ladung befinde sich in einer Kugelschale. Auf der Oberfläche des Leiers werden Ladungen influenzier (Influenz). Das

Mehr

Positioniersteuerung (5.12) Beschleunigen - Phase 2 (5.13) Beschleunigen - Phase 3 (5.14) Phase 4: Konstante Geschwindigkeit (5.15) Bremsen Phase 5

Positioniersteuerung (5.12) Beschleunigen - Phase 2 (5.13) Beschleunigen - Phase 3 (5.14) Phase 4: Konstante Geschwindigkeit (5.15) Bremsen Phase 5 Poiioniereuerung ( 0 a ( 0 0 v ( ˆ ( ˆ 0 0 0 0 (5. echleunigen Phae ( 0 a ( v ˆ ( ç ( + çè (( ( ˆ + ( + ç çè (5. echleunigen Phae ( ( a ( v( ( ( ( ( ( 7 + + + 9 ( ( (5.4 Phae 4: Konane Gechwindigkei a

Mehr

Aufgabensammlung BM Berufs- und Weiterbildungszentrum bzb, Hanflandstr. 17, Postfach, 9471 Buchs,

Aufgabensammlung BM Berufs- und Weiterbildungszentrum bzb, Hanflandstr. 17, Postfach, 9471 Buchs, Löung Aufgabenalung BM Beruf- und Weierbildungzenru bzb, Hanflandr. 17, Pofach, 9471 Buch, www.bzbuch.ch 1) Während Sie in eine Lif ehen, ehen Sie eine Schraube von der hohen Decke der Lifkabine herabfäll.

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

"Alle Körper verharren im Zustand der Ruhe oder der gleichförmigen, geradlinigen Bewegung, wenn keine äußeren Einflüsse vorhanden sind"

Alle Körper verharren im Zustand der Ruhe oder der gleichförmigen, geradlinigen Bewegung, wenn keine äußeren Einflüsse vorhanden sind 3. Dynamik eine einzelnen Maenpunke Im lezen Abchni haben Sie einie Beriffe wie Vekoren, Koordinaenyeme, Or, Gechwindikei oder Bechleuniun kennenelern, die anz allemein bei der Bechreibun der Beweun von

Mehr

I-Strecken (Strecken ohne Ausgleich)

I-Strecken (Strecken ohne Ausgleich) FELJC 7_I-Srecken.o 1 I-Srecken (Srecken ohne Ausgleich) Woher der Name? Srecken ohne Ausgleich: Bei einem Sprung der Eingangsgrösse (Sellgrösse) nimm die Ausgangsgrösse seig zu, ohne einem fesen Endwer

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

25. Flüsse in Netzen. Motivation. Fluss. Flussnetzwerk

25. Flüsse in Netzen. Motivation. Fluss. Flussnetzwerk Moivaion 25. Flüe in Nezen Flunezwerk, Maximaler Flu, Schni, Renezwerk, Max-flow Min-cu, Ford-Fulkeron Mehode, Edmond-Karp Algorihmu, Maximale Biparie Maching [Oman/Widmayer, Kap. 9.7, 9.8.1], [Cormen

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik Phyik I im Sudiengang lekroechnik - Kinemaik - Prof. Dr. Ulrich Hahn WS 2015/2016 Bewegung in Körper/Objek änder eine Poiion (Or) Dafür wird Zei benöig Kinemaik 2 Bewegung Kinemaik 3 Roaion Unerchiedliche

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor-Lösung. Schaltung mit MOS-Transistor-Lösung

Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor-Lösung. Schaltung mit MOS-Transistor-Lösung Schaung mi MOSranior In id 8 i eine Verärkerchaung mi dem MOSranior dargee. er ranior o im akiven ereich mi einem Srom I = m berieben werden. ranior Parameer ind bekann: GS = = V, n cox und W. V L Weiere

Mehr

Systemtheorie. System. Prof. Dr. August Reiner. Dipl. Ing. Manfred Schneider

Systemtheorie. System. Prof. Dr. August Reiner. Dipl. Ing. Manfred Schneider Syemheorie Eingang Syem Augang Prof. Dr. Augu Reiner Dipl. Ing. Manfred Schneider Einleiung Einleiung Die Syemheorie, wie ie in den Ingenieurwienchafen verwende wird, wurde um 9 konzipier. Einen encheidenden

Mehr

Bestimmung der Erdbeschleunigung g

Bestimmung der Erdbeschleunigung g Beiun der Erdbechleuniun Mai G 68 uorin: Cornelia Sin eilneher: Daniel Guyo Diana Bednarczyk Fabian Fleicher Heinrich Südeyer Inkje Dörin Rain orabi René Könnecke Galileo Galilei G 68: rookoll zur Beiun

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

2. Gleich schwere Pakete werden vom

2. Gleich schwere Pakete werden vom . Klauur Phyik Leiungkur Klae 11 14.1.014 Dauer. 90 in Teil 1 Hilfiel: alle verboen 1. a) Schreiben Sie den Energieerhalungaz für ein abgechloene Sye auf. () b) Ein Auo wird ohne angezogene Handbree und

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Aufgaben zum t-test. 1. Grubbs-Test

Aufgaben zum t-test. 1. Grubbs-Test ufgaben zum -Te 1. Grubb-Te 2. -Te zum Vergleich von Mielweren von Sichproben mi Sollweren (Rechenhilfen am Ene e rbeiblae 2.1. Eine Gereieore wir auf 51 Veruchfelern angebau un er geernee Errag beimm.

Mehr

Experiments. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1

Experiments. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Experimen Prof. F. Wörgöer (nach M. Seib) -- Phyik für Mediziner und Zahnmediziner Phyik für Mediziner und Zahnmediziner Vorleung 04 Prof. F. Wörgöer (nach M. Seib) -- Phyik für Mediziner und Zahnmediziner

Mehr

1 Ergänze die fehlenden Begriffe und gib jeweils ein Beispiel zu jeder Bewegungsform und -art an!

1 Ergänze die fehlenden Begriffe und gib jeweils ein Beispiel zu jeder Bewegungsform und -art an! Begriffe rund um die Bewegung 1 Ergänze die fehlenden Begriffe und gib jeweil ein Beipiel zu jeder Bewegungform und -ar an! Bewegungformen Bewegungaren 2 Eine Kugel roll eine geneige Ebene herab. Anchließend

Mehr

Ermittlung von Leistungsgrenzen verschiedener Lagerstrategien unter Berücksichtigung zentraler Einflussgrößen

Ermittlung von Leistungsgrenzen verschiedener Lagerstrategien unter Berücksichtigung zentraler Einflussgrößen Ermilung von Leiunggrenzen verchiedener Lagerraegien uner Berücichigung zenraler Einflugrößen Dipl.-Wir.-Ing. (FH) Anne Piepenburg, Prof. Dr.-Ing. Rainer Brun Helmu-Schmid-Univeriä, Hamburg Lehruhl für

Mehr