Kapitel 1. Aussagenlogik

Größe: px
Ab Seite anzeigen:

Download "Kapitel 1. Aussagenlogik"

Transkript

1 Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17

2 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax der Aussagenlogik (1.2) Semantik der Aussagenlogik (1.3) Boolesche Funktionen, aussagenlogische Formeln und Normalformen (1.4) Exkurs: Entscheidbarkeit und Komplexität Teil II: Ein Kalkül der Aussagenlogik (1.5) Logische Kalküle: Beweise und Beweisbarkeit (1.6) Ein adäquater Kalkül für die Aussagenlogik: Der Shoenfield-Kalkül für die Aussagenlogik (1.7) Die Vollständigkeit des Shoenfield-Kalküls der Aussagenlogik Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 2/17

3 Übersicht (Fortsetzung) In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter Aussagen basierend auf den Wahrheitswerten der elementaren Teilaussagen. Wir beginnen damit, die hierzu verwendeten Verknüpfungen (Junktoren) einzuführen und deren Bedeutung durch Wahrheits- bzw. Boolesche Funktionen zu beschreiben (Kapitel 1.0). Dann wenden wir uns der Aussagenlogik selbst zu und führen zunächst deren Sprache ein, deren Grundzeichen Symbole für die elementaren Aussagen (Aussagenvariablen) und die verwendeten Verknüpfungen (Junktoren) sind und in der zusammengesetzte Aussagen mit Hilfe von speziellen endlichen Zeichenreihen, den aussagenlogischen (al.) Formeln, dargestellt werden (Syntax der Aussagenlogik; Kapitel 1.1). Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 3/17

4 Übersicht (Fortsetzung) Formeln können als Aussageformen interpretiert werden, wobei man die dargestellten Aussagen dadurch erhält man, dass man die Variablen durch konkrete Aussagen ersetzt (wobei natürlich eine mehrfach vorkommende Variable immer gleich ersetzt wird) und die Junktoren durch die von ihnen symbolisierte Verknüpfungen ersetzt. Da der Wahrheitswert von verknüpften Aussagen nicht von den vorkommenden atomaren Aussagen selbst sondern nur von deren Wahrheitswert abhängt, können wir durch Belegung der in einer Formel vorkommenden Aussagenvariablen mit Wahrheitswerten den Wahrheitswert der zusammengesetzten Aussage (in Abhängigkeit von der Belegung) bestimmen (Semantik der Aussagenlogik; Kapitel 1.2). Hierauf basierend werden wir dann die zentralen Begriffe der (Aussagen-) Logik wie Erfüllbarkeit und Allgemeingültigkeit (= al. Wahrheit) von al. Formeln sowie (aussagen)logischen Äquivalenz- und Folgerung einführen und diese Konzepte näher untersuchen. Weiter werden wir Normalformen (Disjunktive und Konjunktive Normalform) von Formeln einführen, sowie Entscheidbarkeits- und Komplexitätsfragen erörtern (Kapitel ). Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 4/17

5 Übersicht (Fortsetzung) Schließlich zeigen wir, dass man den (semantischen) Wahrheits- und Folgerungsbegriff mit Hilfe eines Kalküls (syntaktisch) beschreiben kann, in dem der semantische Folgerungsbegriff mit der Beweisbarkeit (= syntaktischer Folgerungsbegriff) zusammenfällt und in dem gerade die allgemeingültigen Formeln beweisbar sind (Kapitel ). Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 5/17

6 Kapitel 1.0 Junktoren und Wahrheitsfunktionen Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 6/17

7 Verknüpfung von Aussagen Zur Verknüpfung von Aussagen verwenden wir (Verknüpfungs-) Operationen (Junktoren), die wir aus der Umgangssprache kennen: nicht (Negation, Symbol: ) und (Konjunktion, Symbol: ) oder (Disjunktion, Symbol: ) wenn - dann (Implikation, Symbol: ) genau dann - wenn (Äquivalenz, Symbol: ) Dabei werden wir die Bedeutung dieser Verknüpfungen jedoch präzisieren, da diese in der Umgangssprache nicht immer eindeutig festgelegt sind. Hierzu ordnen wir jeder Verknüpfung eine Wahrheitsfunktion (= Boolesche Funktion) zu. Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 7/17

8 Wahrheitsfunktionen und Boolesche Funktionen Im Folgenden kürzen wir die Wahrheitswerte WAHR und FALSCH mit W und F ab und identifizieren diese mit den Bits 1 und 0: WAHR = W = 1 und FALSCH = F = 0 Eine n-stellige Wahrheitsfunktion f ist eine Abbildung f : {F, W } n {F, W }. Eine n-stellige Boolesche Funktion f ist eine Abbildung f : {0, 1} n {0, 1}. NB. Wegen der von uns vorgenommenen Identifizierung F = 0 und W = 1 sind Wahrheitsfunktionen gerade Boolesche Funktionen. Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 8/17

9 Verknüpfungen und Boolesche Funktionen Verknüpfen wir zwei (oder mehrere) Aussagen, so soll der Wahrheitswert der verknüpften Gesamtaussage nur von den Wahrheitswerten der Teilaussagen sowie der gewählten Verknüpfung abhängen. Die Bedeutung (Semantik) einer n-stelligen Verknüpfungsoperation op kann daher durch eine n-stellige Wahrheitsfunktion bzw. Boolesche Funktion f op festgelegt werden. Wir werden im Folgenden auf diese Weise die Bedeutung der von uns betrachteten Verknüpfungen festlegen. Man beachte dabei, dass die Negation 1-stellig ist, während die anderen Verknüpfungen 2-stellig sind. Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 9/17

10 Negation Durch die Negation wird eine Aussage A verneint, d.h. der Wahrheitswert gerade vertauscht: A wahr A falsch und A falsch A wahr Die Negation wird daher durch die 1-st. Boolesche Funktion f mit folgender Wertetabelle definiert: x 0 f (x 0 ) (Die Wertetabelle einer Booleschen Funktion bezeichnet man manchmal auch als Wahrheitstafel.) Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 10 / 17

11 Disjunktion Das ODER wird in der Umgangssprache sowohl inklusiv als auch exclusiv verwendet: Inklusiv: A oder B gilt, wenn A gilt oder B gilt oder wenn sowohl A als auch B gelten. Exklusiv: Hier gilt A oder B nur, wenn entweder A oder B gilt (aber nicht beide). Mit der Disjunktion ( ) bezeichnen wir das inklusive ODER: x 0 x 1 f (x 0, x 1 ) Es gilt also gerade: f (x 0, x 1 )=max(x 0, x 1 ). Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 11 / 17

12 Konjunktion Beim UND ist der Sprachgebrauch eindeutig: Die Aussage A und B ist wahr, wenn sowohl die Aussage A als auch die Aussage B wahr sind. Die Konjunktion ( ) wird also durch folgende Boolesche Funktion definiert: x 0 x 1 f (x 0, x 1 ) Es gilt also gerade: f (x 0, x 1 )=min(x 0, x 1 ). Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 12 / 17

13 Implikation Die Implikation (Folgerung) wird umgangssprachlich meist als sog. materielle Implikation aufgefasst, bei der ein kausaler Zusammenhang hergestellt wird: Wenn es regnet (A), dann wird die Straße nass (B). Die Wahrheit einer solchen materiellen Implikation A B hängt nicht nur von den Wahrheitswerten der Teilaussagen A und B sondern von den Aussagen A und B selbst ab. Hier betrachten wir daher die allgemeinere formale Implikation, bei der ein kausaler Zusammenhang nicht verlangt wird. So ist hier auch die Aussage Wenn es regnet (A), dann ist 3 eine Primzahl (B). wahr. Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 13 / 17

14 Implikation (Fortsetzung) Der Wahrheitswert einer formalen Implikation A B ergibt sich wie folgt: Ist die Hypothese A falsch, so ist die Implikation A B unabhängig vom Wahrheitswert von B wahr ( ex falso quodlibet ). Ist die Hypothese A wahr, so muss auch die Konklusion B wahr sein, damit die Implikation A B wahr wird. Die Implikation ( ) wird also durch folgende Boolesche Funktion definiert: x 0 x 1 f (x 0, x 1 ) Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 14 / 17

15 Äquivalenz Zwei Aussagen A und B sind äquivalent, wenn sowohl ABimpliziert als auch BAimpliziert. Die Aussage A B ist also genau dann wahr, wenn die Aussagen A B und B A wahr sind (oder die Aussage (A B) (B A) wahrist). Das lässt sich auch einfacher ausdrücken: A B ist genau dann wahr, wenn A und B entweder beide wahr oder beide falsch sind: x 0 x 1 f (x 0, x 1 ) Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 15 / 17

16 Aussagenlogische Verknüpfungen vs. Boolesche Funktion Wir haben gesehen, dass sich die von uns betrachteten (aussagenlogischen) Verknüpfungen mit Hilfe von Booleschen Funktionen darstellen lassen. Umgekehrt stellt jede n-stellige Boolesche Funktion eine n-stellige Verknüpfung dar. Da es 2 2n verschiedene n-stellige Boolesche Funktionen gibt (warum?), also insbesondere 2 22 = 16 2-st. Boolesche Funktionen, erfassen wir mit den von uns betrachteten Verknüpfungen nur einen Teil der möglichen Verknüpfungen. Wir werden jedoch später zeigen, dass sich jede mögliche Verknüpfung (beliebiger Stelligkeit) als Kombination der von uns betrachteten Verknüpfungen darstellen lässt. In der Tat genügen hierzu die Verknüpfungen und (oder alternativ und ). Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 16 / 17

17 Aussagenlogische Verknüpfungen vs. Boolesche Funktion BEISPIEL. Die 3-stellige Schwellenfunktion s 3 2 : {0, 1}3 {0, 1} nimmt genau dann den Wert 1 an, wenn mindestens zwei Eingaben den Wert 1 haben, ist also durch folgende Wertetabelle bestimmt: x 0 x 1 x 2 s2 3 (x 0, x 1, x 2 ) Man erhält s 3 2 durch die folgende Kombination der Funktionen f und f f (f (f (x 0, x 1 ), f (x 0, x 2 )), f (x 1, x 2 )) und erhält damit eine Darstellung von s 3 2 durch folgenden Ausdruck ((A 0 A 1 ) (A 0 A 2 )) (A 1 A 2 ). Um zusammengesetzte Aussagen und die hierdurch dargestellten Booleschen Funktionen näher zu untersuchen, führen wir nun die Sprache der Aussagenlogik ein, in der Aussagen durch formal definierte Ausdrücke - den Formeln - wie oben repräsentiert werden. Mathematische Logik (WS 2012/13) Kap.1.0: Junktoren und Wahrheitsfunktionen 17 / 17

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Semantic Web Technologies I!

Semantic Web Technologies I! www.semantic-web-grundlagen.de Semantic Web Technologies I! Lehrveranstaltung im WS11/12! Dr. Elena Simperl! DP Dr. Sebastian Rudolph! M.Sc. Anees ul Mehdi! www.semantic-web-grundlagen.de Logik Grundlagen!

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Wissensbasierte Systeme/ Expertensysteme. Teil 2

Wissensbasierte Systeme/ Expertensysteme. Teil 2 Wissensbasierte Systeme/ Expertensysteme Teil 2 BiTS, Sommersemester 2004 Dr. Stefan Kooths KOOTHS BiTS: Wissensbasierte Systeme/Expertensysteme Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Entscheidungsunterstützung(ssysteme)

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Leseprobe. Uwe Lämmel, Jürgen Cleve. Künstliche Intelligenz ISBN: 978-3-446-42758-7. Weitere Informationen oder Bestellungen unter

Leseprobe. Uwe Lämmel, Jürgen Cleve. Künstliche Intelligenz ISBN: 978-3-446-42758-7. Weitere Informationen oder Bestellungen unter Leseprobe Uwe Lämmel, Jürgen Cleve Künstliche Intelligenz ISBN: 978-3-446-42758-7 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42758-7 sowie im Buchhandel. Carl Hanser Verlag,

Mehr

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will?

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will? Mengenlehre und Logik: iederholung Repetitorium: Grundlagen von Mengenlehre und Logik 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 arum??? arum um alles in der elt muss man sich mit herumschlagen,......

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

4. Exkurs: Einführung in die Logik

4. Exkurs: Einführung in die Logik 4. Exkurs: Einführung in die Logik 4. Einführung in die Logik 4.. Die Operatoren der Aussagenlogik 4..2 Formeln der Aussagenlogik 4..3 Arithmetische Vergleichsoperatoren 4..4 Anwendungen der Logik in der

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

5. Vorlesung: Normalformen

5. Vorlesung: Normalformen 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1

Mehr

Logik Grundlagen. Organisatorisches: Inhalt. Semantic Web Grundlagen

Logik Grundlagen. Organisatorisches: Inhalt. Semantic Web Grundlagen Birte Glimm nstitut für Künstliche ntelligenz 31. Okt 2011 Semantic Web Grundlagen Logik Grundlagen 3/36 Birte Glimm Semantic Web Grundlagen 31. Okt 2011 4/36 Birte Glimm Semantic Web Grundlagen 31. Okt

Mehr

Aufgaben zu Kapitel 2

Aufgaben zu Kapitel 2 Aufgaben zu Kapitel 2 1 Aufgaben zu Kapitel 2 Verständnisfragen Aufgabe 2.1 Welche der folgenden Aussagen sind richtig? Für alle x R gilt: 1. x >1 ist hinreichend für x 2 > 1. 2. x >1 ist notwendig für

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik roseminar Maschinelles Beweisen SS 2000 Einführung in die mathematische Logik Ein Crashkurs über die Grundlagen wichtiger Logiken und Beweiskalküle Uwe Bubeck 13. Juli 2000 Logik-1 Einführung in die mathematische

Mehr

Logik. A.3 Logik und Mengenlehre A.32 A.32. Logik und Mengenlehre. Logik. 2001 Prof. Dr. Rainer Manthey Informatik I 21

Logik. A.3 Logik und Mengenlehre A.32 A.32. Logik und Mengenlehre. Logik. 2001 Prof. Dr. Rainer Manthey Informatik I 21 Logik und Mengenlehre.3 Logik und Mengenlehre 2001 Prof. Dr. Rainer Manthey Informatik I 21 Logik Logik 2001 Prof. Dr. Rainer Manthey Informatik I 22 Logik: egriff, edeutung und Entwicklung Logik ist die

Mehr

Logische Grundlagen. Junktoren. Dörthe Brachwitz

Logische Grundlagen. Junktoren. Dörthe Brachwitz Logische Grundlagen Junktoren Dörthe Brachitz Was erartet Euch heute? Fachliches Wissen Deinitionen der Begrie Aussage, Aussageormen, Junktoren (Negation, Konjunktion, Disjunktion, Alternative, Subjunktion

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Mathematik-Vorkurs für Informatiker 2011

Mathematik-Vorkurs für Informatiker 2011 Mathematik-Vorkurs für Informatiker 2011 Christian Eisentraut Universität des Saarlandes 26. September 2011 Vorwort Endlich ist es soweit: Sie studieren Informatik! Endlich werden sie alles erfahren, was

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Mathematik. Analysis Jahrgangsstufe 11/12

Mathematik. Analysis Jahrgangsstufe 11/12 FOS Mathematik Analysis - 0 - Mathematik für Berufskollegs Fachrichtung Technik Handreichungen zum Kursverlauf Analysis Jahrgangsstufe 11/12 FOS Mathematik Analysis - 1-1. Aussagen, Mengen und Gleichungen

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe

Mehr

Grundlagen von Mengenlehre und Logik

Grundlagen von Mengenlehre und Logik Mengenlehre und Logik: Wiederholung Repetitorium: Grundlagen von Mengenlehre und Logik 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 Warum??? Warum um um alles alles in in der der Welt Welt muss

Mehr

Im folgenden sollen a, b, c,... Aussagen bedeuten, denen man die Eigenschaft wahr (Wahrheitswert 1) oder falsch (Wahrheitswert 0) zuordnen kann.

Im folgenden sollen a, b, c,... Aussagen bedeuten, denen man die Eigenschaft wahr (Wahrheitswert 1) oder falsch (Wahrheitswert 0) zuordnen kann. ÜBER ALGEBRAISCHE STRUKTUREN (Arbeitsblatt) A Aussagenlogik 1. Definitionen und Beispiele Im folgenden sollen a, b, c,... Aussagen bedeuten, denen man die Eigenschaft wahr (Wahrheitswert 1) oder falsch

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil III Boolesche Algebra, Signalarten, Elektronische Bauteile Seite 1 Boolesche Algebra George Boole => englischer Mathematiker Mitte 19. Jahrhundert Formale Sicht digitaler

Mehr

y(p F x) gebunden und in den Formeln F xy

y(p F x) gebunden und in den Formeln F xy Wirkungsbereich (Skopus) eines Quantors i bzw. i nennen wir die unmittelbar auf i bzw. i folgende Formel. Wir sagen, eine IV i kommt in einer Formel A gebunden vor, wenn sie unmittelbar auf oder folgt

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Barbara König Logik 1 Motivation: Wir beschäftigen uns nun im folgenden mit der, die gegenüber

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Signalverarbeitung 1

Signalverarbeitung 1 TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 11 Digitalschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 25.06.1997 Protokoll

Mehr

Modallogik (aussagenlogisch)

Modallogik (aussagenlogisch) Kapitel 2 Modallogik (aussagenlogisch) In diesem Abschnitt wird eine Erweiterung der Aussagenlogik um sogenannte Modalitäten behandelt. Damit erlangt man eine größere Aussagekraft der Sprache, allerdings

Mehr

PROLOG. Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel)

PROLOG. Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel) PROLOG Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel) Stand: April 2010 Verfasser: Dipl.-Ing. (FH) Andreas W. Lockermann Vorwort Der Name PROLOG leitet sich aus den

Mehr

DV1_Kapitel_4.doc Seite 4-1 von 28 Rüdiger Siol 12.09.2009 16:29

DV1_Kapitel_4.doc Seite 4-1 von 28 Rüdiger Siol 12.09.2009 16:29 Inhaltsverzeichnis 4 Boolesche lgebra... 4-2 4. lgebra der Logik, algebraische Logik... 4-2 4.. Schaltalgebra und logische Schaltungen... 4-3 4... Zustand eines digitalen Systems... 4-5 4...2 Schaltfunktion...

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Kapitel 11 Aussageformen Mathematischer Vorkurs TU Dortmund Seite 103 / 170 11.1 Denition: Aussageformen Eine Aussageform

Mehr

Kapitel 3: Boolesche Algebra

Kapitel 3: Boolesche Algebra Inhalt: 3.1 Grundlegende Operationen und Gesetze 3.2 Boolesche Funktionen u. u. ihre Normalformen 3.3 Vereinfachen von booleschen Ausdrücken 3.4 Logische Schaltungen 3.1 Grundlegende Operationen und Gesetze

Mehr

Formale Methoden III - Tutorium

Formale Methoden III - Tutorium Formale Methoden III - Tutorium Daniel Jettka 19.06.06 Inhaltsverzeichnis 1. Logische Eigenschaften von Merkmalsstrukturen 1. Logische Eigenschaften von MS Ausgangspunkt: Unterscheidung von: Linguistische

Mehr

Mathematische Grundlagen Kurseinheit 1: Grundlagen

Mathematische Grundlagen Kurseinheit 1: Grundlagen Mathematische Grundlagen Kurseinheit 1: Grundlagen Autorin: Luise Unger In L A TEX gesetzt von Luise Unger c 2007 Fernuniversität in Hagen Fachbereich Mathematik (10/05) Alle Rechte vorbehalten 01141-4-01-S

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER WOZU PRÄDIKATENLOGIK (PL)? Aussagenlogik (AL) betrachtet Sätze / Argumente immer nur von ihrer aussagenlogischen Struktur her Ein Satz wie Jaime mag Cersai

Mehr

Grundlagen der Informatik I Informationsdarstellung

Grundlagen der Informatik I Informationsdarstellung Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung

Mehr

Mathematikkurs für Ingenieure Vertiefung deutsch Aussagenlogik

Mathematikkurs für Ingenieure Vertiefung deutsch Aussagenlogik Mathematikkurs für Ingenieure Vertiefung deutsch Aussagenlogik von Rolf Wirz Scripta bilingua V.2.03 18. September 2007 WIR/93/99/2005/2007 logik.tex ii Teil eines Repetitoriums und Textbuchs zur Begleitung

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Schaltalgebra - logische Schaltungen

Schaltalgebra - logische Schaltungen Schaltalgebra - logische Schaltungen Bakkalaureatsarbeit im Rahmen des Mathematischen Seminars unter Leitung von Wolfgang Schmid eingereicht von Verena Horak Salzburg, Sommersemester 2003 Inhaltsverzeichnis

Mehr

Skriptum zur Vorlesung Mathematische Logik

Skriptum zur Vorlesung Mathematische Logik Skriptum zur Vorlesung Mathematische Logik Klaus Gloede Mathematisches Institut der Universität Heidelberg Wintersemester 2006/07 INHALTSVERZEICHNIS i Inhaltsverzeichnis I Collegium Logicum 1 1 Die Aussagenlogik

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Technische Universität Ilmenau

Technische Universität Ilmenau Technische Universität Ilmenau Hier finden Sie uns: Informatikgebäude, 2. Etage, Sekretariat Zi. 215 Lehre und Forschung im Fachgebiet Integrierte Hard- und Softwaresysteme Prof. Dr.-Ing. habil. Andreas

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

1 Logik und Mengenlehre

1 Logik und Mengenlehre 1 LOGIK UND MENGENLEHRE 1 1 Logik und Mengenlehre Definition. (Cantor, 1895) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Logik für Informatiker

Logik für Informatiker Skript zur Vorlesung Logik für Informatiker SS 2008 Martin Hofmann Lehr- und Forschungseinheit Theoretische Informatik Institut für Informatik Ludwig-Maximilians-Universität München Inhaltsverzeichnis

Mehr

Stichwortverzeichnis. A-Aussage. logisches Quadrat 42

Stichwortverzeichnis. A-Aussage. logisches Quadrat 42 A A-Aussage logisches Quadrat 43 Addition boolesche Algebra 46 Algebra boolesche 46 Algorithmus 306 Alle-Aussage alternative Schreibweise 253 f., 265 erkennen 256 Übersetzung 250 f. Allquantor 242 Definition

Mehr

5 Logische Programmierung

5 Logische Programmierung 5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Einführung in die Fuzzy Logic

Einführung in die Fuzzy Logic Einführung in die Fuzzy Logic Entwickelt von L. Zadeh in den 60er Jahren Benutzt unscharfe (fuzzy) Begriffe und linguistische Variablen Im Gegensatz zur Booleschen Logik {0,} wird das ganze Intervall [0,]

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Luise Unger In LATEX gesetzt von Luise Unger Mathematische Grundlagen Kurseinheit 1: Grundlagen 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 777 7 77 7777777 77777 7 77 7 7 7 7 7 7 77777777777

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Logik und Missbrauch der Logik in der Alltagssprache

Logik und Missbrauch der Logik in der Alltagssprache Logik und Missbrauch der Logik in der Alltagssprache Wie gewinnt man in Diskussionen? Carmen Kölbl Universität Koblenz Fachbereich Informatik Seminar: Logik auf Abwegen: Irrglaube, Lüge, Täuschung Seminarleiter:

Mehr

Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass.

Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass. Implikation Implikation Warum ist die Tabelle schwer zu schlucken? In der Umgangssprache benutzt man daraus folgt, also, impliziert, wenn dann, nur für kausale Zusammenhänge Eine Implikation der Form:

Mehr

Überblick über die Aussagenlogik, Teil 2. Nicole Stender

Überblick über die Aussagenlogik, Teil 2. Nicole Stender Überblick über die Aussagenlogik, Teil 2 Nicole Stender Goethe Universität Frankfurt am Main Seminar: Aktuelle Themen aus der Wissensverarbeitung Dozent: Prof. Dr. Manfred Schmidt-Schauß Abgabedatum: 17.05.2012

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Mathematische Grundlagen der Informatik

Mathematische Grundlagen der Informatik Skriptum zur Vorlesung Mathematische Grundlagen der Informatik gehalten in WS 2015/16 von Sven Kosub 4. Februar 2016 Version v4.20 Inhaltsverzeichnis Prolog 1 1 Logik 5 1.1 Aussagen.....................................

Mehr

DIPLOMARBEIT. Ein interaktives E-Learning System für die Grundlagen der mathematischen Logik. Ausgeführt am

DIPLOMARBEIT. Ein interaktives E-Learning System für die Grundlagen der mathematischen Logik. Ausgeführt am DIPLOMARBEIT Ein interaktives E-Learning System für die Grundlagen der mathematischen Logik Ausgeführt am Institut für Informationssysteme Arbeitsbereich Wissensbasierte Systeme der Technischen Universität

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Informatik A ( Frank Hoffmann)

Informatik A ( Frank Hoffmann) Teillösungen zum 1. Aufgabenblatt zur Vorlesung Informatik A ( Frank Hoffmann) 1. Improvisieren Stellen Sie die Zahl 6 dar durch einen Ausdruck, der genau dreimal die Ziffer i enthält und ansonsten neben

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Bitte schreiben Sie sich in die Mailingliste der Vorlesung ein! Den Link finden Sie auf der Vorlesungshomepage.

Bitte schreiben Sie sich in die Mailingliste der Vorlesung ein! Den Link finden Sie auf der Vorlesungshomepage. Mailingliste Bitte schreiben Sie sich in die Mailingliste der Vorlesung ein! Den Link finden Sie auf der Vorlesungshomepage. ZUR ERINNERUNG Regulärer Stundenplan Freitag, 14-16 Uhr: Vorlesung, ExWi A6

Mehr

Kapitel DB:V (Fortsetzung)

Kapitel DB:V (Fortsetzung) Kapitel DB:V (Fortsetzung) V. Grundlagen relationaler Anfragesprachen Anfragen und Änderungen Relationale Algebra Anfragekalküle Relationaler Tupelkalkül Relationaler Domänenkalkül DB:V-67 Relational Algebra

Mehr

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben.

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben. Aufgabe 1.30 : Schreibe ein Programm DM_in_Euro.java zur Umrechnung eines DM-Betrags in Euro unter Verwendung einer Konstanten für den Umrechnungsfaktor. Das Programm soll den DM-Betrag als Parameter verarbeiten.

Mehr

Fragen für die Klausuren

Fragen für die Klausuren Fragen für die Klausuren Vom Quellcode zum ausführbaren Programm Was ist ein Quellcode? Ist der Quellcode von einem Programm auf unterschiedlichen Rechner gleich? Nennen Sie drei Programmiersprachen. Was

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik schulz@eprover.org Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen

Mehr

Projektkurs Mathematik

Projektkurs Mathematik Projektkurs Mathematik zur besseren Vorbereitung auf die Mathematikanforderungen in MINT - Studiengängen Projektziele, Teilziele und Kompetenzen Allgemeine Ziele: Vermittlung von (mathematischem) Wissen

Mehr