Algorithmen & Programmierung. Logik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Algorithmen & Programmierung. Logik"

Transkript

1 Algorithmen & Programmierung Logik

2 Aussagenlogik Gegenstand der Untersuchung Es werden Verknüpfungen zwischen Aussagen untersucht. Aussagen Was eine Aussage ist, wird nicht betrachtet, aber jede Aussage besitzt genau einen Wahrheitswert. Wahrheitswerte Aussage ist wahr Wahrheitswert true Aussage ist falsch Wahrheitswert false 206

3 So sollte man es nicht machen! Aussage 1? Pinguine sind schwarz-weiß. Aussage 2 Alte Filme sind schwarz-weiß. Verknüpfung der beiden Aussagen Pinguine sind alte Filme. 207

4 Verknüpfung von Aussagen Gegeben seien zwei Aussagen A und B Konjunktion (logisches Und) Die Verknüpfung A B ist eine Aussage. Disjunktion (logisches Oder) Die Verknüpfung A B ist eine Aussage. Negation (logisches Nicht) A ist eine Aussage. Prinzip der Extensionalität Der Wahrheitswert einer Aussageverknüpfung hängt ausschließlich von den Wahrheitswerten ihrer Teilaussagen ab. 208

5 Negation Bedeutung Die Negation negiert eine Aussage: A ist genau dann wahr, wenn A nicht wahr (d.h. falsch) ist. Alternative Darstellung Ā Alternative Bezeichnungen Komplement NOT Wahrheitstabelle A A false true true false 209

6 Konjunktion Bedeutung A B ist nur dann wahr, wenn Aussage A und Aussage B wahr sind. Alternative Bezeichnungen Und AND Wahrheitstabelle A B A B false false false false true false true false false true true true 210

7 Disjunktion Bedeutung A B ist wahr, wenn mindestens eine der beiden Aussagen A oder B wahr ist. Alternative Bezeichnungen Oder OR Wahrheitstabelle A B A B false false false false true true true false true true true true 211

8 Verknüpfung von Aussagen Es gibt weitere Aussageverknüpfungen, die sich jedoch mit Negation und Konjunktion bzw. Negation und Disjunktion darstellen lassen: Antivalenz Wahrheitstabelle A A Äquivalenz false true Implikation true false Logische Vollständigkeit Alle logischen Verknüpfungsvarianten lassen sich ausschließlich mit Negation und wahlweise Konjunktion oder Disjunktion ausdrücken. Wahrheitstabelle A B A B false false false false true false true false false true true true Wahrheitstabelle A B A B false false false false true true true false true true true true 212

9 Antivalenz Bedeutung A B ist genau dann wahr, wenn ausschließlich Aussage A wahr ist oder ausschließlich Aussage B wahr ist. Anders ausgedrückt: A und B müssen entgegengesetzte Wahrheitswerte aufweisen. Alternative Bezeichnung Exklusives Oder XOR Wahrheitstabelle A B A B false false false false true true true false true true true false 213

10 Äquivalenz Bedeutung A B ist nur dann wahr, wenn Aussage A den selben Wahrheitswert wie Aussage B aufweist. Hierbei spielt es keine Rolle, welcher Wahrheitswert dies konkret ist. Wahrheitstabelle A B A B false false true false true false true false false true true true 214

11 Implikation Bedeutung A B (Sprechweise A impliziert B oder B folgt aus A) ist nur dann wahr, wenn entweder Aussage B wahr ist oder beide Aussagen falsch sind. Wahrheitstabelle A B A B false false true false true true true false false true true true 215

12 Logische Vollständigkeit Es gibt zwei weitere Verknüpfungsvarianten, die ebenfalls nur eine Kombination aus Negation und Konjunktion bzw. Negation und Disjunktion sind: NAND (NOT AND) Es gilt: A NAND B = (A B) NOR (NOT OR) Es gilt: A NOR B = (A B) Bedeutung Wahrheitstabelle NAND A B A NAND B false false true false true true true false true true true false Wahrheitstabelle NOR A B A NOR B false false true false true false true false false true true false Sowohl NAND als auch NOR sind logisch vollständig, d.h. dass man lediglich mit einer dieser beiden Verknüpfungsvarianten jede andere logische Verknüpfung ausdrücken kann. NAND-Gatter stellen die Basis digitaler Technik dar. 216

13 Logische Vollständigkeit Beispiel A A NAND A A B (A NAND B) NAND (A NAND B) A B (A NAND A) NAND (B NAND B) Wahrheitstabelle NAND A B A NAND B false false true false true true true false true true true false A B (A NAND (B NAND B)) NAND ((A NAND A) NAND B) A B (A NAND B) NAND ((A NAND A) NAND (B NAND B)) A B A NAND (B NAND B) A NOR B ((A NAND A) NAND (B NAND B)) NAND ((A NAND A) NAND (B NAND B)) 217

14 Boolesche Algebra Begriff Der Begriff geht auf George Boole ( ) zurück, dessen Logikkalkül von 1847 die Grundlage der heute verwendeten Form darstellt. Inhalt Beschrieben werden eine Menge von Axiomen auf der Menge der Wahrheitswerte 0 (false) und 1 (true) sowie der einstelligen Verknüpfung Negation und den zweistelligen Verknüpfungen Konjunktion und Disjunktion. 218

15 Boolesche Algebra De Morgansche Regeln Kommutativgesetze Idempotenz Assoziativgesetze Distributivgesetze Absorptionsregeln Konstantensubstitution 219

16 Logik in C Verknüpfungsoperationen C unterstützt die boolesche Algebra direkt durch die Bereitstellung der Verknüpfungsoperationen Konjunktion, Disjunktion und Negation. Wahrheitswerte Des Weiteren gelten für die Bereitstellung der Wahrheitswerte folgende Regeln: Der Integerwert 0 entspricht dem Wahrheitswert false Ein Integerwert ungleich 0 entspricht dem Wahrheitswert true Bessere Modellierung Ab dem C99 Standard gibt es einen vordefinierten Datentyp bool, der die ebenfalls vordefinierte Wertemenge true und false bereitstellt. Allerdings muss zu seiner Nutzung die Bibliothek <stdbool.h> vorher eingebunden werden. In C++ ist der Datentyp bool standardmäßig in das Sprachkonzept integriert. 220

17 Logik in C Wir haben bereits (unwissentlich) mit logischen Ausdrücken in C gearbeitet: Selektion Iteration if ( Bedingung ) else Anweisung1 while ( Bedingung ) Anweisung Anweisung2 Bedingung Eine Bedingung (Vergleichsoperation) ist eigentlich ein logischer Ausdruck, dessen Auswertung einen Wahrheitswert produziert (Bedingung erfüllt true, Bedingung nicht erfüllt false). 221

18 Verknüpfung Verknüpfungsoperationen Mit Hilfe dieser Operatoren können logische Ausdrücke gemäß der booleschen Algebra miteinander verknüpft werden: logisches Und && (Konjunktion) logisches Oder (Disjunktion) Komplement! (Negation) Ergebnis der Verknüpfung Ist ein logischer Ausdruck, dessen Wahrheitswert aus der Wahrheitstabelle der gewünschten Verknüpfungsoperation und den Wahrheitswerten der zu verknüpfenden Teilausdrücke resultiert. Anwendung Kompakte Darstellung komplexer Bedingungen. 222

19 Verknüpfung - Beispiel Die Vorbedingung des Euklidischen Algorithmus lautete, dass der größte gemeinsame Teiler nur von natürlichen Zahlen gebildet werden kann. Mit Hilfe der logischen Verknüpfungsoperatoren können wir diese Forderung jetzt bequem formulieren: int ggt(int a, int b) { if (a > 0 && b > 0) { while (a!= b) { if (a > b) a = a - b; else b = b - a; } } else // 0 als Fehlercode, da a = 0; // kein Teiler 0 möglich } return a; } 223

20 Verknüpfung - Beispiel Gregorianischer Kalender Der in der westlichen Welt seit 1582 gültige Gregorianische Kalender definiert eine Jahreslänge von 365,2425 Tagen. Weil die nächste ganzzahlige Jahreslänge von 365 Tagen zu kurz ist, wird aller vier Jahre ein zusätzlicher Tag - der Schalttag 29. Februar - eingeführt. Um weiteren Rechenungenauigkeiten (wie bei dem im römischen Reich gebräuchlichen Julianischen Kalender) vorzubeugen, gilt ergänzend noch folgende Regel: Durch 100 teilbare Jahre stellen nur dann Schaltjahre dar, wenn sie auch durch 400 teilbar sind. Aufgabe Wir wollen herausfinden, ob ein beliebiges Jahr ein Schaltjahr ist. Bedingungen für Schaltjahre 1. Wenn ein Jahr durch 400 teilbar ist, dann ist es ein Schaltjahr 2. Wenn ein Jahr durch 100 teilbar ist, dann ist es kein Schaltjahr (außer wenn 1. gilt) 3. Wenn ein Jahr durch vier teilbar ist, dann ist es ein Schaltjahr (außer wenn 2. gilt) 224

21 Komplementäre Ausdrücke Selektionen der Form if ( logischer Ausdruck ) Anweisung1 else Anweisung2 // Wenn logischer Ausdruck nach true ausgewertet werden kann // wird Anweisung1 ausgeführt // sonst // wird Anweisung2 ausgeführt können wir durch Negation des Selektionskriteriums umformen in if (! logischer Ausdruck ) Anweisung2 else Anweisung1 // Wenn logischer Ausdruck nach false ausgewertet werden kann // wird Anweisung2 ausgeführt // sonst // wird Anweisung1 ausgeführt Anwendung Unter Umständen bessere Modellierung bzw. Verständnis einer zu formulierenden Bedingung. 225

22 Äquivalenz von Vergleichen Der Vergleich zweier Werte lässt sich auf verschiedene Art und Weise beschreiben. Nutzen äquivalente Umformungen können verständlicher sein Weniger Rechenoperationen durch Wegfall der Negation Äquivalente Vergleichsoperationen x < y!(x >= y) y > x!(y <= x) x <= y!(x > y) y >= x!(y < x) x == y!(x!= y) y == x!(y!= x) x >= y!(x < y) y >= x!(y < x) x > y!(x <= y) y < x!(y >= x) x!= y!(x == y) y!= x!(y == x) 226

23 Ende der Vorlesung

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1 5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen

Mehr

Einführung in die Boolesche Algebra

Einführung in die Boolesche Algebra Einführung in die Boolesche Algebra Einführung in Boole' sche Algebra 1 Binäre Größe Eine Größe (eine Variable), die genau 2 Werte annehmen kann mathematisch: falsche Aussage wahre Aussage technisch: ausgeschaltet

Mehr

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik 1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen, Darstellung von

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Anwendung Informatik Daten verwalten (2) Ursprüngliche Information Logische Verknüpfungen als Grundlage für die Informationsgewinnung

Anwendung Informatik Daten verwalten (2) Ursprüngliche Information Logische Verknüpfungen als Grundlage für die Informationsgewinnung Agenda für heute, 20. November 2009 Daten verwalten (2): Drei Stufen der Datenverwaltung Logische Verknüpfungen als Grundlage für die Informationsgewinnung Werte von Aussagen: Wahrheitstabellen Anwendung

Mehr

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Boolesche Algebra (1)

Boolesche Algebra (1) Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw.

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw. 1.1 Aussagenlogik Grundlagen der Mathematik 1 1.1 Aussagenlogik Definition: Aussage Eine Aussage im Sinne der Logik ist ein formulierter Tatbestand, der sich bei objektiver Prüfung immer eindeutig als

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Algorithmen & Programmierung. Ausdrücke & Operatoren (1)

Algorithmen & Programmierung. Ausdrücke & Operatoren (1) Algorithmen & Programmierung Ausdrücke & Operatoren (1) Ausdrücke Was ist ein Ausdruck? Literal Variable Funktionsaufruf Ausdruck, der durch Anwendung eines einstelligen (unären) Operators auf einen Ausdruck

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Formale Grundlagen (Nachträge)

Formale Grundlagen (Nachträge) Inhaltsverzeichnis 1 Aussagenlogik: Funktionale Vollständigkeit................... 1 Bit-Arithmetik mit logischen Operationen.................... 3 Prädikatenlogik: Eine ganz kurze Einführung..................

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

1. Algebraische Strukturen: Boole sche Algebra

1. Algebraische Strukturen: Boole sche Algebra 1. Algebraische Strukturen: Boole sche Algebra Der Begriff Algebra wird im allgemeinen Verständnis mit Lehre von den Zahlen gleich gesetzt. Das ergibt sich aus unserer Schulausbildung, die sich mit den

Mehr

2. Tutorium Digitaltechnik und Entwurfsverfahren

2. Tutorium Digitaltechnik und Entwurfsverfahren 2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

2. Funktionen und Entwurf digitaler Grundschaltungen

2. Funktionen und Entwurf digitaler Grundschaltungen 2. Funktionen und Entwurf digitaler Grundschaltungen 2.1 Kominatorische Schaltungen Kombinatorische Schaltungen - Grundlagen 1 Grundgesetze der Schaltalgebra UND-Verknüpfung ODER-Verknüpfung NICHT-Verknüpfung

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Information und ihre Darstellung

Information und ihre Darstellung . Information und ihre Darstellung Wintersemester 207/208. Informationsdarstellung Äquivalente Information in verschiedenen Darstellungen: Schrift: Die Katze sitzt am Fenster Bild Sprache Zeichensprache.

Mehr

1. Informationsdarstellung. Darstellung und Bedeutung. Darstellung und Bedeutung. Interpretation ??? 1. Kapitel

1. Informationsdarstellung. Darstellung und Bedeutung. Darstellung und Bedeutung. Interpretation ??? 1. Kapitel Wintersemester 207/208. Informationsdarstellung Äquivalente Information in verschiedenen Darstellungen: Schrift: Die Katze sitzt am Fenster Bild Sprache Zeichensprache. Kapitel Prof. Matthias Werner Professur

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

3 Boole'sche Algebra und Aussagenlogik

3 Boole'sche Algebra und Aussagenlogik 3 Boole'sche Algebra und Aussagenlogik 3- Boole'sche Algebra Formale Grundlagen der Informatik I Herbstsemester 22 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Aussagenlogik

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Grundlagen der diskreten Mathematik

Grundlagen der diskreten Mathematik Grundlagen der diskreten Mathematik Prof. Dr. Romana Piat WS 25/6 Allgemeine Informationen Vorlesungen:./C Zug D (Mi., 3. Block + Do., 4. Block, y-raster) Zug E (Di., 5. Block + Do.,. Block, y-raster)

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Digitalelektronik - Inhalt

Digitalelektronik - Inhalt Digitalelektronik - Inhalt Grundlagen Signale und Werte Rechenregeln, Verknüpfungsregeln Boolesche Algebra, Funktionsdarstellungen Codes Schaltungsentwurf Kombinatorik Sequentielle Schaltungen Entwurfswerkzeuge

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 3 Aussagenlogik

Mehr

Aussagenlogik: Lexikon, Syntax und Semantik

Aussagenlogik: Lexikon, Syntax und Semantik Einführung in die Logik - 2 Aussagenlogik: Lexikon, Syntax und Semantik Wiederholung: Was ist Logik? Logik : Die Lehre» vom formal korrekten Schließen» von den Wahrheitsbedingungen von Sätzen Unter welchen

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

Logische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016

Logische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016 Einführung in die Zentralavionik-Hardware Logische Grundschaltungen Frank Flederer Informatik VIII: Informationstechnik für Luft- und Raumfahrt Wintersemester 2015/2016 1 / 46 Logik in Elektronik 2 Zustände:

Mehr

Algorithmen & Programmierung. Steuerstrukturen im Detail Selektion und Iteration

Algorithmen & Programmierung. Steuerstrukturen im Detail Selektion und Iteration Algorithmen & Programmierung Steuerstrukturen im Detail Selektion und Iteration Selektion Selektion Vollständige einfache Selektion Wir kennen schon eine Möglichkeit, Selektionen in C zu formulieren: if

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Algebraische Grundlagen 1

Algebraische Grundlagen 1 Algebraische Grundlagen 1 B.Grabowski 25. Oktober 2011 1 (C) Prof.Dr.B.Grabowski, HTW des Saarlandes, 10/2011, Skript zur Vorlesung Höhere Mathematik 1 Inhaltsverzeichnis 1 Algebra-Grundlagen 2 1.1 Zweiwertige

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

2. Vorlesung: Boolesche Algebra

2. Vorlesung: Boolesche Algebra 2. Vorlesung: Boolesche Algebra Wiederholung Codierung, Decodierung Boolesche Algebra UND-, ODER-Verknüpfung, Negation Boolesche Postulate Boolesche Gesetze 1 Wiederholung 2 Bits und Bitfolgen Bit: Maßeinheit

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP2 Slide 1 Grundlagen der Programmierung Vorlesung 2 Sebastian Ianoski FH Wedel GdP2 Slide 2 Beispiel ür eine Programmveriikation Gegeben sei olgender Algorithmus: i (x>0) ((y+x) 0) then z := x y else

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 5., bedingte Ausführung und Albert-Ludwigs-Universität Freiburg Bernhard Nebel 27. Oktober 2017 1 und der Typ bool Typ bool Typ bool Vergleichsoperationen

Mehr

5. Vorlesung: Normalformen

5. Vorlesung: Normalformen 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1

Mehr

Vorkurs Mathematik für Informatiker Aussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek,

Vorkurs Mathematik für Informatiker Aussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek, Vorkurs Mathematik für Informatiker -- 4 ussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek, 7..2 ussagenlogik Rechnen mit Wahrheitswerten: oder, oder Objekte, die wir untersuchen, sind jetzt

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 1 MINT Mathekurs SS 2017 1 / 19 Organisation Vorlesung (2 SWS): Do., 16:15 Uhr -18:00

Mehr

Informatik. Studiengang Chemische Technologie. Michael Roth WS 2012/2013. Hochschule Darmstadt -Fachbereich Informatik-

Informatik. Studiengang Chemische Technologie. Michael Roth WS 2012/2013. Hochschule Darmstadt -Fachbereich Informatik- Informatik Studiengang Chemische Technologie Michael Roth michael.roth@h-da.de Hochschule Darmstadt -Fachbereich Informatik- WS 2012/2013 Inhalt Teil IV Einführung in die Programmierung - II Michael Roth

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 2: Grundlagen (Aussagenlogik 1)

WS 2015/16 Diskrete Strukturen Kapitel 2: Grundlagen (Aussagenlogik 1) WS 25/6 Diskrete Strukturen Kapitel 2: Grundlagen (Aussagenlogik ) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_5

Mehr

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik Übung zur Vorlesung Technische Informatik I, SS03 Ergänzung Übungsblatt 1 Boole sche Algebra, Kombinatorische Logik Guenkova, Schmied, Bindhammer, Sauer {guenkova@vs., schmied@vs., bindhammer@vs., dietmar.sauer@}

Mehr

Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage

Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage Logik Die Logik ist in der Programmierung sehr wichtig. Sie hilft z.b. bei der systematischen Behandlung von Verzweigungen und Schleifen. z.b. if (X Y und Y>0) then Oder beim Beweis, dass ein Algorithmus

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Datentypen: integer, char, string, boolean

Datentypen: integer, char, string, boolean Agenda für heute, 13. April, 2006 Der Datentyp integer Vergleichsoperatoren, Wahrheitswerte und boolesche Variablen Zusammengesetzte if-then-else-anweisungen Var i: integer; Teilbereich der ganzen Zahlen,

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Informationsdarstellung

Informationsdarstellung Informationsdarstellung Signale und Logik Grundzüge der Booleschen Algebra Signale und Logik (2) Grundzüge d. Informationstheorie [Logarithmen-Repetitorium] Zahlensysteme und ihre Anwendung Signale und

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Begriff Logik wird im Alltag vielseitig verwendet

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Begriff Logik wird im Alltag vielseitig verwendet Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Mehr

Kapitel 2. Boolesche Algebra. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 2. Boolesche Algebra. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 2 oolesche lgebra Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of pplied Sciences w Fakultät für Informatik Schaltalgebra, und sind Operatoren über der Menge {0,1} a b a b 0 0 0

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 12/13. Kapitel 3. Grunddatentypen, Ausdrücke und Variable

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 12/13. Kapitel 3. Grunddatentypen, Ausdrücke und Variable 1 Kapitel 3 Grunddatentypen, Ausdrücke und Variable 2 Eine Datenstruktur besteht aus Grunddatentypen in Java einer Menge von Daten (Werten) charakteristischen Operationen Datenstrukturen werden mit einem

Mehr

Black Box erklärt Logische Verknüpfungen

Black Box erklärt Logische Verknüpfungen Black Box erklärt Logische Verknüpfungen Jeden Tag treffen wir Entscheidungen wie Trinke ich Cola ODER Kaffee? oder Heute ist es sonnig UND warm!. Dabei verwenden wir unbewusst logische Verknüpfungen (UND,

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

1 Einfache diskrete, digitale Verknüpfungen

1 Einfache diskrete, digitale Verknüpfungen 1 Einfache diskrete, digitale Verknüpfungen Mit den drei Grund Gattern UND, ODER und Nicht lassen sich alle anderen Gattertypen realisieren! Q = e 1 e 1.1 AND, UND, Konjunktion 2 Die Konjunktion (lateinisch

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Bei der Und-Verknüpfung müssen beide Ausdrücke wahr sein, dass der gesamte Ausdruck wahr wird. a=1; b=2; a=1; b=3; else. endif

Bei der Und-Verknüpfung müssen beide Ausdrücke wahr sein, dass der gesamte Ausdruck wahr wird. a=1; b=2; a=1; b=3; else. endif 1. Kontrollstrukturen in Octave 1.1 Logische Vergleichs- und Verknuepfungsoperatoren Es existieren die gleichen logischen Vergleichs- und Vernüpfungsoperatoren wie bei praktisch allen Programmiersprachen.

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil III Boolesche Algebra, Signalarten, Elektronische Bauteile Seite 1 Boolesche Algebra George Boole => englischer Mathematiker Mitte 19. Jahrhundert Formale Sicht digitaler

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

( ) ( ) für x = 9 gilt:

( ) ( ) für x = 9 gilt: R. Brinkmann http://brinkmann-du.de Seite 1 05.10.2008 Verknüpfung von Aussagen Werden Aussagen miteinander verknüpft, so entstehen zusammengesetzte Aussagen, deren Wahrheitsgehalt in der angegebenen Verbindung

Mehr

2 Schaltalgebra bzw. Boole sche Algebra *

2 Schaltalgebra bzw. Boole sche Algebra * 9 2 Schaltalgebra bzw. Boole sche Algebra * Die zweiwertige Logik nimmt eine besondere Bedeutung in der Rechnerentwicklung ein, da Daten mit physikalischen Größen besonders gut durch zwei Werte dargestellt

Mehr

12 2 Mathematische Logik: Denken in Wahrheitswerten *

12 2 Mathematische Logik: Denken in Wahrheitswerten * 12 2 Mathematische Logik: Denken in Wahrheitswerten * 2.1 Junktoren und Boolesche Funktionen * Die Aussagenlogik formalisiert Verknüpfungen, Junktoren, von bestimmten Sätzen, Aussagen, denen eindeutig

Mehr

Boolesche Terme und Boolesche Funktionen

Boolesche Terme und Boolesche Funktionen Boolesche Terme und Boolesche Funktionen Aussagen Mit dem Begriff der Aussage und der logischen Verknüpfung von Aussagen beschäftigte man sich schon im alten Griechenland. Die Charakterisierung einer Aussage

Mehr

Intensivübung zu Algorithmen und Datenstrukturen

Intensivübung zu Algorithmen und Datenstrukturen Intensivübung zu Algorithmen und Datenstrukturen Silvia Schreier Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Übersicht Programmierung Fallunterscheidung Flussdiagramm Bedingungen Boolesche

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen

Mehr