2.2.4 Logische Äquivalenz

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2.2.4 Logische Äquivalenz"

Transkript

1 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden sich lediglich hinsichtlich ihrer Formulierung. Aussagenlogisch betrachtet handelt es sich aber nicht bloß um irrelevante Formulierungsalternativen! Dass sieht man, wenn man zur aussagenlogischen Form der Aussagen übergeht. (I) p q (II) (p q) Vergleicht man die Wahrheitstafeln beider Formeln, stellt man fest, dass sie hinsichtlich ihrer Hauptspalten gleich sind. Wenn eine bestimmte extensionale Interpretation Formel (I) wahr bzw. falsch macht, macht sie auch Formel (II) wahr bzw. falsch. Obwohl es sich um unterschiedliche aussagenlogische Formeln handelt, werden die Teilaussagen der Beispielsätze in beiden Fällen so verknüpft, dass die resultierenden Gesamtaussagen unter den genau gleichen Bedingungen wahr bzw. falsch sind. Diese Art der Gleichwertigkeit von Aussagen bzw. von aussagenlogischen Formeln wird mit dem Begriff der logischen Äquivalenz bezeichnet. Die Definition lässt sich mit Hilfe des Bikonditionals formulieren, das bei gleichen Wahrheitswerten der Teilaussagen stets wahr ist. Genau dies soll ja bei der logischen Äquivalenz gelten. Definition 18: Seien A und B Aussagen oder aussagenlogische Formeln. A und B heißen aussagenlogisch äquivalent genau dann, wenn A B aussagenlogisch wahr ist. Als Zeichen für die logische Äquivalenz wird das Zeichen verwendet, man schreibt also A B für A ist logisch äquivalent mit B. Alternativ kann man auch schreiben = (A B) oder = A B. Wie schon bei der materialen und der logischen Implikation ist zu beachten, dass das Bikonditional (die materiale Äquivalenz) eine Aussageverknüpfung ist, während die logische Äquivalenz eine Beziehung zwischen Aussagen bzw. aussagenlogischen Formeln bezeichnet. Wichtige aussagenlogische Äquivalenzen: 1) Prinzip der doppelten Negation: p p 2) Gesetze der Idempotenz: p p p

2 und p p p 3) Kommutativgesetze: p q q p und p q q p und p q q p 4) Assoziativgesetze: (p q) r p (q r) und (p q) r p (q r) 5) Distributivgesetze: p (q r) (p q) (p r) und p (q r) (p q) (p r) 6) Regeln von de Morgan: (p q) p q und (p q) p q 7) Transpositionsgesetz: p q q p Exkurs: Das Einsetzungstheorem Logisch äquivalente Aussagen sind nicht bezüglich aller Eigenschaften gleich, wohl aber bezüglich ihrer logischen Eigenschaften. Diesen Sachverhalt verdeutlicht das Einsetzungstheorem: Einsetzungstheorem: Sei F A eine aussagenlogische (a.l.) Formel, die eine Teilformel A enthält. Sei F B eine Formel, die aus F A entsteht, indem man A durch eine a.l. Formel B ersetzt (nicht notwendig überall, falls A mehrfach vorkommen sollte). Sei nun A B, dann gilt F A F B. Beispiel: F A : (p q) r A: (p q) B: p q F B : p q r Weil (p q) p q gilt, gilt auch: (p q) r p q r 6. Vorlesung

3 Beweis des Satzes: Man betrachte eine beliebige Zeile der Wahrheitstafeln von F A und F B. Wegen A B ist allen unterschiedlichen Teilen in F A und F B (nämlich da, wo A durch B ersetzt ist) der gleiche Wahrheitswert zugeordnet. Damit ist aber auch den Gesamtformeln F A und F B der gleiche Wahrheitswert zugeordnet. (vgl. HH, 133) Korollar 1 zum Einsetzungstheorem: Seien A, B und F a.l. Formeln. Es gelte A B und A = F, dann gilt auch B =F. (Aus logisch äquivalenten Formeln, folgt das gleiche.) Beweis: Zu zeigen ist: = B F, d.h. B F ist eine aussagenlogisch wahre Formel. Sei F A : A F und F B : B F, dann sind die Voraussetzungen des Einsetzungstheorems erfüllt. Wegen A = F, d.h. = A F gilt dann auch = B F. Analog: Korollar 2 zum Einsetzungstheorem: Seien A, B und V a.l. Formeln. Es gelte A B und V = A, dann gilt auch V =B. (Logisch äquivalente Formeln haben die gleichen Voraussetzungen) (Beweis siehe HH 134). Ende des Exkurses Logischer Widerspruch Von einem Widerspruch zwischen zwei Aussagen spricht man, wenn sie nicht zugleich wahr sein können. Von einem logischen Widerspruch oder einer logischen Inkonsistenz ist die Rede, wenn ein Widerspruch zwischen zwei Aussagen aufgrund ihrer (aussagen-)logischen Form besteht. Man unterscheidet eine stärkere (kontradiktorische) und eine schwächere (konträre) Form des (aussagen-)logischen Widerspruchs. Beim konträren Widerspruch können zwei Aussagen zwar nicht zugleich wahr sein, es ist aber die Möglichkeit offen gelassen, dass beide Aussagen falsch sind. (A) (B) Penélope ging in die Stadt und Penélope ging in eine Bar. Penélope ging nicht in eine Bar. Die Wahrheit von (A) schließt die Wahrheit von (B) aus und umgekehrt. Es ist aber durchaus möglich, dass beide Aussagen falsch sind, z.b. wenn Penélope auf dem Lande ins Bei Erwin ging. Betrachtet man die Konjunktion der aussagenlogischen Formen der beiden Sätze, also (p q) q, dann stellt man fest, dass diese Formel eine logische Falschheit, also für alle extensionalen Interpretationen falsch ist. 6. Vorlesung

4 Definition 19 Seien A und B Aussagen oder aussagenlogische Formeln. A und B stehen in konträrem aussagenlogischen Widerspruch genau dann, wenn A B aussagenlogisch falsch ist. Beim kontradiktorischen aussagenlogischen Widerspruch ist zudem verlangt, dass die beiden im Widerspruch zueinander stehenden Aussagen auch nicht zugleich falsch sind. Die beiden Aussagen müssen also immer entgegen gesetzte Wahrheitswerte haben. (A) Der Mond ist aufgegangen. (B) Der Mond ist nicht aufgegangen. Das geforderte Widerspruchsverhältnis lässt sich leicht mit Hilfe des Bikonditionals definieren: Definition 20 Seien A und B Aussagen oder aussagenlogische Formeln. A und B stehen in kontradiktorischem aussagenlogischen Widerspruch genau dann, wenn A B aussagenlogisch falsch ist Logische Konsistenz Der Begriff der Konsistenz ist der Gegenbegriff zum Begriff des Widerspruchs. Zwei Aussagen sind miteinander konsistent, wenn keine Wahrheitskonkurrenz, also kein Widerspruch zwischen ihnen besteht. Die aussagenlogische Konsistenz ist entsprechend als die Negation des konträren aussagenlogischen Widerspruchs definiert. Definition 21 Seien A und B Aussagen oder aussagenlogische Formeln. A und B sind aussagenlogisch konsistent genau dann, wenn A B nicht aussagenlogisch falsch ist. Zu berücksichtigen ist aber, dass zwei Aussagen nicht nur aus aussagenlogischen Gründen in Wahrheitskonkurrenz zueinander stehen können, sondern etwa auch aus begrifflichen Gründen wie im folgenden Beispiel: (A) Hans ist ein Junggeselle. 6. Vorlesung

5 (B) Hans ist verheiratet. Der begriffliche oder semantische Widerspruch dieser beiden Aussagen, der auf der Bedeutung der in ihnen vorkommenden Ausdrücke (insbesondere Junggeselle und verheiratet ) beruht, kann mit Mitteln der Aussagenlogik nicht analysiert werden Logische Abhängigkeit Wenn man sagt, dass zwei Aussagen voneinander abhängig sind, meint man, dass aus der Wahrheit oder Falschheit der einen Aussage etwas über die Wahrheit oder Falschheit der anderen Aussage folgt. Eine solche Abhängigkeit kann aufgrund der logischen Form der Aussagen bestehen. Grundsätzlich sind vier Fälle zu unterscheiden: Definition 22 Seien A und B Aussagen oder aussagenlogische Formeln. A und B heißen aussagenlogisch abhängig genau dann, wenn A = B oder B = A oder A = B o- der B = A gilt Zwei wichtige Spezialfälle der logischen Abhängigkeit sind zu unterscheiden: Definition 23 Seien A und B Aussagen oder aussagenlogische Formeln. A ist aussagenlogisch notwendig für B genau dann, wenn B = A gilt. Zu beachten ist, dass das für B Notwendige logisch aus B folgt! Das kommt dadurch zustande, dass etwas, das für B notwendig ist, immer vorliegen muss, wenn B vorliegt, d.h. aus dem Vorliegen von B geschlossen werden kann. Der umgekehrte Fall, bei dem von dem Vorliegen von A auf das Vorliegen von B geschlossen werden kann, wird in die folgende Definition gefasst: Definition 24 Seien A und B Aussagen oder aussagenlogische Formeln. A ist aussagenlogisch hinreichend für B genau dann, wenn A = B gilt. Oftmals wird im Kontext der in den letzten beiden Definitionen formulierten logischen Abhängigkeiten auch von notwendigen und hinreichenden Bedingungen gesprochen. Man sagt beispielsweise im Fall B = A, dass A eine notwendige Bedingung von B ist. Im Fall A = B ist A eine hinreichende Bedingung für B. Fasst man beide Abhängigkeiten zusammen, gelangt man zu notwendigen und hinreichenden 6. Vorlesung

6 Bedingungen. A ist genau dann eine notwendige und hinreichende Bedingung für B, wenn A B gilt. 6. Vorlesung

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

2.1.3 Interpretation von aussagenlogischen Formeln. 1) Intensionale Interpretation

2.1.3 Interpretation von aussagenlogischen Formeln. 1) Intensionale Interpretation 2.1.3 Interpretation von aussagenlogischen Formeln 1) Intensionale Interpretation Definition 11: Eine intensionale Interpretation einer aussagenlogischen Formel besteht aus der Zuordnung von Aussagen zu

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1 Grundbegriffe der Aussagenlogik 1 Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Aussagenlogik: Lexikon, Syntax und Semantik

Aussagenlogik: Lexikon, Syntax und Semantik Einführung in die Logik - 2 Aussagenlogik: Lexikon, Syntax und Semantik Wiederholung: Was ist Logik? Logik : Die Lehre» vom formal korrekten Schließen» von den Wahrheitsbedingungen von Sätzen Unter welchen

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus: Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Algorithmen & Programmierung. Logik

Algorithmen & Programmierung. Logik Algorithmen & Programmierung Logik Aussagenlogik Gegenstand der Untersuchung Es werden Verknüpfungen zwischen Aussagen untersucht. Aussagen Was eine Aussage ist, wird nicht betrachtet, aber jede Aussage

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck. 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1 5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

5. SITZUNG: AUSSAGENLOGIK

5. SITZUNG: AUSSAGENLOGIK 5. SITZUNG: AUSSAGENLOGIK 1. Die Bedeutung komplexer Aussagen Die Bedeutung von atomaren Sätzen ist ein Wahrheitswert, welcher durch Überprüfung der Wahrheitsbedingungen relativ zu einer Situation ermittelt

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

6. AUSSAGENLOGIK: TABLEAUS

6. AUSSAGENLOGIK: TABLEAUS 6. AUSSAGENLOGIK: TABLEAUS 6.1 Motivation 6.2 Wahrheitstafeln, Wahrheitsbedingungen und Tableauregeln 6.3 Tableaus und wahrheitsfunktionale Konsistenz 6.4 Das Tableauverfahren 6.5 Terminologie und Definitionen

Mehr

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw.

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw. 1.1 Aussagenlogik Grundlagen der Mathematik 1 1.1 Aussagenlogik Definition: Aussage Eine Aussage im Sinne der Logik ist ein formulierter Tatbestand, der sich bei objektiver Prüfung immer eindeutig als

Mehr

Junktoren der Aussagenlogik zur Verknüpfung zweier Aussagen A, B

Junktoren der Aussagenlogik zur Verknüpfung zweier Aussagen A, B Junktoren der Aussagenlogik zur Verknüpfung zweier Aussagen A, B Name Zeichen Bedeutung Wahrheitstafel Bemerkung mit zugehöriger Dualzahl ---------------------------------------------------------------------------------------------------------------

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Wissen und Gesellschaft I Einführung in die analytische Wissenschaftstheorie. Prof. Dr. Jörg Rössel

Wissen und Gesellschaft I Einführung in die analytische Wissenschaftstheorie. Prof. Dr. Jörg Rössel Wissen und Gesellschaft I Einführung in die analytische Wissenschaftstheorie Prof. Dr. Jörg Rössel Ablaufplan 1. Einleitung: Was ist Wissenschaft(stheorie) überhaupt? 2. Was sind wissenschaftliche Theorien?

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Rückblick: Logelei Wir kehren zurück auf das Inselreich mit Menschen von Typ W (Wahrheitssager) und Typ L (Lügner). THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 3 Aussagenlogik

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 31. Mai 2017 Rückblick: Logelei Wir kehren zurück auf

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann

Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann Einführung in die formale Logik Prof. Dr. Andreas Hüttemann Textgrundlage: Paul Hoyningen-Huene: Formale Logik, Stuttgart 1998 1. Einführung 1.1 Logische Folgerung und logische Form 1.1.1 Logische Folgerung

Mehr

1 K-Rahmen und K-Modelle

1 K-Rahmen und K-Modelle Seminar: Einführung in die Modallogik (WS 15/16) Lehrender: Daniel Milne-Plückebaum, M.A. E-Mail: dmilne@uni-bielefeld.de Handout: K-Rahmen, K-Modelle & K-Wahrheitsbedingungen Im Folgenden werden wir uns

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK1 vom 8.9.2016 VK1: Logik Die Kunst des Schlussfolgerns Denition 1: Eine Aussage ist ein sprachliches

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen.

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen. 2 Aussagenlogik (AL) 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren [ Gamut 28-35, Partee -6 ] Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungssätze bringen das Zutreffen

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 2 Aufgabe 6 (4 Punkte). Bestimmen Sie mit Hilfe von Wahrheitstafeln, welche der folgenden aussagenlogischen

Mehr

Vorlesung. Beweise und Logisches Schließen

Vorlesung. Beweise und Logisches Schließen Vorlesung Beweise und Logisches Schließen Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollten nur genannt bzw. Teilweise schon vor der Vorlesung angeschrieben

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

2.3 Deduktiver Aufbau der Aussagenlogik

2.3 Deduktiver Aufbau der Aussagenlogik 2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Formale Grundlagen (Nachträge)

Formale Grundlagen (Nachträge) Inhaltsverzeichnis 1 Aussagenlogik: Funktionale Vollständigkeit................... 1 Bit-Arithmetik mit logischen Operationen.................... 3 Prädikatenlogik: Eine ganz kurze Einführung..................

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen?

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung 1 1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? a Niemand versteht

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 4. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 4. Vorlesung 1 / 21 Themen

Mehr

Logik und Beweismethoden I

Logik und Beweismethoden I Logik und Beweismethoden I Anita Ullrich WS2017/18 Inhaltsverzeichnis 1 Klassische Aussagenlogik 2 1.1 Aussagen und Wahrheitswerte.................................... 2 1.2 Operatoren..............................................

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1 Musterlösung Grundbegriffe der Mathematik Frühlingssemester 01, Aufgabenblatt 1 Aufgabenblatt 1 0 Punkte Aufgabe 1 Welche der folgenden Ausdrücke sind Aussagen, welche sind Aussageformen und welche sind

Mehr

5.2 Logische Gültigkeit, Folgerung, Äquivalenz

5.2 Logische Gültigkeit, Folgerung, Äquivalenz 5.2 Logische Gültigkeit, Folgerung, Äquivalenz Durch Einsetzung von PL1-Formeln für die Metavariablen in AL-Gesetzen erhält man PL1-Instanzen von AL-Gesetzen. Beispiele: φ φ AL PL1-Instanzen: Pa () Pa

Mehr