Beispiellösungen zu Blatt 107

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Beispiellösungen zu Blatt 107"

Transkript

1 µ κ Mathematisches Institut eorg-ugust-universität öttingen ufgabe 1 eispiellösungen zu latt 107 onstruiere eine Menge M aus 107 positiven ganzen Zahlen mit der folgenden igenschaft: eine zwei der Werte ggt(a, b) mit a, b M und a b sind gleich. ösungsvariante 1: Wir bezeichnen mit p 1, p,..., p 107 genau 107 paarweise verschiedene Primzahlen. ann setzen wir für i = 1,..., 107 a i = p 1 p... p i... p 107. ie Schreibweise p i soll dabei heißen, dass genau der Faktor p i ausgelassen wird. ann gilt für i = j offensichtlich: ggt(a i, a i ) = a i = p 1 p... p i... p 107. Und für i < j gilt fast ebenso offensichtlich: ggt(a i, a j ) = p 1 p... p i... p j... p 107. a die Primfaktorzerlegung von positiven ganzen Zahlen eindeutig ist, sind wie gefordert alle diese Zahlen verschieden. ösungsvariante : s geht auch mit nur sehr wenigen verschiedenen Primzahlen! Wir setzen für i = 1,..., 107: Für i j gilt dann: b i := i i. ggt(b i, b j ) = i j. Mit der gleichen egründung wie oben sind alle diese Zahlen verschieden. emerkung: ie eingesetzten Zahlen sind bei der zweiten Variante zwar wesentlich kleiner als bei der ersten, aber immer noch sehr groß. as größte b i ist b 1 7, Wir könnten problemlos alle b i noch durch teilen, das ergibt ebenso eine ösung; in ihr sind die Zahlen jedoch nicht wesentlich kleiner, dafür ist die Notation ein klein wenig länger. Man kann aber das Prinzip von zwei gegenläufig in größerer beziehungsweise kleinerer Potenz auftretenden Primfaktoren noch nach rt des ualsystems verfeinern und käme damit in Regionen spürbar unter einer Milliarde. ies exakt zu beschreiben würde hier allerdings den Rahmen sprengen.

2 ösungen zu latt 107 ufgabe uf dem abgebildeten Spielfeld kann sich eine Figur immer genau von einem Feld auf eines der maximal vier über eine ante benachbarten Felder bewegen Z Wie viele Möglichkeiten gibt es, eine Figur von nach Z auf einem kürzestmöglichen Weg zu bewegen? Wir markieren auf dem Spielfeld einige weitere Punkte. ußerdem gibt es ereiche, bei denen die Straße breiter als ein Feld wird. Wenn das brücken von der hauptsächlichen ehrichtung offensichtlich einen Umweg bedeutet (wie zum eispiel zwischen den Punkten C und ), dann ignorieren wir das. lle anderen solchen ereiche sind so gestaltet, dass man genau einen Schritt zur Seite tun muss; man hat genau die Wahl, wann man diesen Schritt macht, dazu gibt es genau so viele Möglichkeiten, wie der ereich in ehrichtung lang ist. iese Zahl schreiben wir jeweils in einen solchen ereich. uch den ereich zwischen I und können wir so behandeln. er sich an F rechts anschließende ereich trägt zwei Zahlen, die je nachdem gelten, ob man über oder über weitergehen will C F I Z er Weg von über nach ist 1 ästchen lang, der über F und führende Weg dagegen nur 19 ästchen. amit kann kein kürzestmöglicher Weg über führen. ingegen sind alle verbliebenen drei auptvarianten C Z, F Z und F Z jeweils 38 ästchen lang. Für jede der Varianten ergibt sich die nzahl der Wege im etail als Produkt der Möglichkeiten in den breiteren ereichen, die auf dem Weg liegen. as

3 ösungen zu latt sind: In der Summe gibt es also Möglichkeiten. ufgabe 3 C Z : = 84, F Z : = 19, F Z : 4 4 = = 340 egeben sei ein beliebiges reieck C. uf den Seiten des reiecks werden gleichseitige reiecke, C und CF erreichtet, und auf ihnen jeweils zu einer Seite weitere gleichseitige reiecke, C und F. Schließlich seien, und M die Mittelpunkte der Strecken, F bzw.. F C M Zeige: s ist M + + C gleich dem halben Umfang des reiecks C. Wir betrachten den Punkt. n ihm liegen laut Vorgabe drei Winkel von gleichseitigen reiecken an; außerdem die Winkel C und. amit ist = C = 180 C. Insbesondere ist der Winkel nicht gestreckt oder überstreckt. aher können wir das reieck nach außen auf der Seite zu einem Parallelogramm N ergänzen. ntsprechend erschaffen wir die Parallelogramme P und CQF.

4 ösungen zu latt Q F C M N P Nun betrachten wir das reieck N. Wegen der Parallelogrammeigenschaft ist N = 180 = C. ußerdem ist = C, da CF und F gleichseitige reiecke sind. Wegen der Parallelogrammeigenschaft und weil auch ein gleichseitiges reieck ist, gilt N = =. Nach dem ongruenzsatz sws ist damit N kongruent zu C und folglich N = C. ie iagonalen eines Parallelogramms schneiden sich in ihren Mittelpunkten; daher teilt M die Strecke N in ihrer Mitte. Somit ist schließlich M = 1 C. ntsprechend folgt für die anderen beiden Strecken = 1 C und C = 1. In der Summe ergibt das M + + C = 1 ( + C + C ) = 1 U C. ufgabe 4 eim usteilen nach der Siegerehrung geraten die lausuren der andesrundenteilnehmer der Mathe-Olympiade durcheinander. atastrophe! ber mit gutem usgang, denn zufällig stehen die 00 Teilnehmer gerade so im reis, dass jeder nur seine falsche lausur an den rechten Nachbarn weiterreichen muss, um die Ordnung wiederherzustellen. Und noch etwas ist erstaunlich: erade einmal zwei Teilnehmer hatten eine lausur mit einer zu großen Startnummer erhalten. Wie viele Möglichkeiten gibt es, um eine solche onstellation bei der lausurausgabe zu erzeugen? er infachheit halber nehmen wir an, dass als Startnummern ohne ücke die Zahlen von 1 bis 00 vergeben wurden. iner der beiden, die eine lausur mit zu hoher Startnummer bekommen hatten, hatte die Nummer 00 bekommen.

5 ösungen zu latt Wir nennen diesen Teilnehmer. en anderen Teilnehmer mit zu großer Startnummer nennen wir. hat eine Startnummer kleiner als 00, der Teilnehmer rechts von hat die 00 und ist damit automatisch ungleich. Für den Teilnehmer rechts von und alle nach rechts folgenden Teilnehmer bis hin zum Teilnehmer vor gilt: Sie haben eine lausur mit zu kleiner Startnummer bekommen. a sie diese nach rechts weitergeben, hat der rechte Nachbar eine kleinere Startnummer als sie selbst. ie Folge der Startnummern der Teilnehmer fällt also von der 00 immer weiter bis hin zu. ann steigt sie einmalig und fällt danach wieder kontinuierlich bis zum Teilnehmer. Für die eschreibung der ufstellung der Teilnehmer und damit der genauen onstellation der lausurausgabe reicht es daher zu wissen, welche Teilnehmer sich in dem ereich zwischen dem Teilnehmer mit der (korrekten) Startnummer 00 und einschließlich befinden. enn nach dem vorher esagten stehen diese Teilnehmer der Startnummer nach absteigend geordnet nebeneinander. ie restlichen Teilnehmer rechts von bis zu stehen ebenso absteigend geordnet nebeneinander. Umgekehrt sei eine ufteilung der Teilnehmer 1 bis 199 auf zwei unterscheidbare Teilmengen gegeben. Ohne Nebenbedingungen gibt es 199 ufteilungen. Zu untersuchen ist, welche ufteilungen eine ufstellung ergeben, wie sie vorgegeben wurde. azu ist nur wenig zu erfüllen: ie erste Teilmenge darf nicht leer sein, weil sie mindestens den Teilnehmer enthält. In der zweiten Teilmenge muss mindestens der Teilnehmer sein, sie ist also auch nicht leer. ls letzte edingung muss in der zweiten Teilmenge jemand sein, der eine höhere Startnummer hat als der Teilnehmer aus der ersten Teilmenge mit der kleinsten Startnummer, denn sonst gäbe es keinen Teilnehmer. usgeschlossen sind damit genau die folgenden 00 ufteilungen: M 1 = {} und M = {199, 198, 197,..., 1}, M 1 = {199} und M = {198, 197, 196,..., 1}, M 1 = {199, 198} und M = {197, 196, 195,..., 1},... M 1 = {199, 198, 197,..., 1} und M = {}. s verbleiben genau verschiedene onstellation der fälschlichen lausurausgabe. Stand: 1. Mai 013

Beispiellösungen zu Blatt 3

Beispiellösungen zu Blatt 3 µathematischer κorrespondenz- zirkel ufgabe 1 eispiellösungen zu latt 3 Mathematisches Institut Georg-ugust-Universität Göttingen Statistiken besagen, dass unter 1000 Menschen 35 zu hohen lutdruck haben.

Mehr

3. Winkelsätze und der Kongruenzsatz (WWS).

3. Winkelsätze und der Kongruenzsatz (WWS). 3. Winkelsätze und der Kongruenzsatz (WWS). Nachdem wir die beiden ersten Kongruenzsätze bewiesen haben, kommen wir zum ritten Kongruenzsatz (WWS). r ist der am schwersten zu beweisende. Um ihn zu beweisen,

Mehr

Jede Fläche hat einen Inhalt aber welchen?

Jede Fläche hat einen Inhalt aber welchen? Jede Fläche hat einen Inhalt aber welchen? ufgabe 46 ürgermeister Pfiffig sitzt mit zwei auern aus seiner Gemeinde an einem Tisch. Vor sich haben sie einen Plan, in den eine trapezförmige Fläche eingezeichnet

Mehr

9. Landeswettbewerb Mathematik Bayern

9. Landeswettbewerb Mathematik Bayern 9 Landeswettbewerb Mathematik aern ufgaben und Lösungsbeispiele Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt ür die ganze igur sind 6² 3² Streichhölzer

Mehr

4. Parallelität ohne Metrik

4. Parallelität ohne Metrik 4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon

Mehr

Känguru 2016 Student Lösungen und Erklärungen

Känguru 2016 Student Lösungen und Erklärungen Känguru 016 Student Lösungen und Erklärungen 1. Lösungsweg 1: Tom und Johann sind zusammen 3 Jahre alt, Tom und le zusammen 5. a das lter von Tom in beiden Summen gleich ist, muss le also um Jahre älter

Mehr

2. Kongruenzsätze (SWS und SSS) ohne Parallelen.

2. Kongruenzsätze (SWS und SSS) ohne Parallelen. 2. Kongruenzsätze (SWS und SSS) ohne Parallelen. In diesem Kapitel beginnen wir mit der systematischen ufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. ls erstes Lehrstück

Mehr

(b) Wie viele Zahlen hat die Folge für n = 6? Finde einen Term für die Anzahl A(n) der Zahlen der n-ten Zahlenfolge.

(b) Wie viele Zahlen hat die Folge für n = 6? Finde einen Term für die Anzahl A(n) der Zahlen der n-ten Zahlenfolge. Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 7, 8 ufgabe 1 (3+7+10 Punkte). Gegeben seien die Zahlenfolgen: n n-te Zahlenfolge 1 1 2 1, 2, 2, 3 3 1, 2, 2, 3, 3, 3, 4, 4, 5

Mehr

4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele

4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele 4. Landeswettbewerb athematik ayern. Runde 00/00 ufgaben und Lösungsbeispiele ufgabe In einem Viereck sind die Seiten [], [] und [] gleich lang. ie Seite [] hat die gleiche Länge wie die iagonale []. iese

Mehr

Hilberts Drittes Problem

Hilberts Drittes Problem Hilberts rittes Problem Oliver Fortmeier Auf dem internationalen Kongress für Mathematiker 1900 in Paris formulierte Hilbert sein rittes Problem: Zwei Tetraeder mit gleicher Grundfläche und von gleicher

Mehr

45. Österreichische Mathematik-Olympiade

45. Österreichische Mathematik-Olympiade 45. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfängerinnen und Anfänger 1. Juni 014 Aufgabe 1. Man bestimme alle Lösungen der Gleichung a = b (b + 7) mit ganzen Zahlen a 0 und b 0. W.

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 00 Runde ufgabe Yannick besitzt gleichseitige reiecke, Quadrate sowie regelmäßige Sechs- und chtecke, die alle dieselbe Seitenlänge haben. Er legt damit ohne Lücken und Überlappungen regelmäßige Muster.

Mehr

Demo für Mengenlehre Teil 1. Die Grundlagen. Text INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W.

Demo für  Mengenlehre Teil 1. Die Grundlagen. Text INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. Die Grundlagen Stand..0 Friedrich W. uckel Text 0 FRIEDRIH W. UKEL INTERNETILIOTHEK FÜR SHULMTHEMTIK Mengenlehre Teil 0 Mengenlehre Vorwort Die Mengenlehre wurde lange als die unverzichtbare Grundlage

Mehr

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation Methodische Hinweise und nregungen zur rgänzung bzw. rweiterung der Power-Point-Präsentation ktivationen, die während der Präsentation angeboten werden n den nachfolgend beschriebenen Stellen wird der

Mehr

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen.

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 1 as Geodreieck als Mess- und Prüfinstrument VORNSI 1. Lies die Sätze. Ordne den ildern die richtige Nummer zu. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 2 Mit der Mittellinie

Mehr

Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie».

Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie». 4 9 2 3 5 7 8 6 2 Magische Quadrate Magische Quadrate ie bbildung zeigt einen usschnitt aus lbrecht ürers Kupferstich «Melancholie». ei genauem Hinsehen erkennen Sie ein magisches Quadrat vierter Ordnung.

Mehr

Für den fitten Denker: Teil 4 Thema Winkel in ebenen Figuren

Für den fitten Denker: Teil 4 Thema Winkel in ebenen Figuren Klasse 7 - Fit in Winkeln und Eigenschaften ebener Figuren Für den fitten enker: Teil 4 Thema Winkel in ebenen Figuren 1. Ein Seil, das am linken Ende mit einem Gewicht belastet ist, wird über eine feste

Mehr

Der Feuerbach Kreis oder Neun Punkte Kreis 1. Der Feuerbach Kreis oder Neun Punkte Kreis

Der Feuerbach Kreis oder Neun Punkte Kreis 1. Der Feuerbach Kreis oder Neun Punkte Kreis er euerbach Kreis oder eun unkte Kreis 1 Geometrie er euerbach Kreis oder eun unkte Kreis utor: eter ndree Inhaltsverzeichnis 6 er euerbach Kreis oder eun unkte Kreis 1 6.1 Vorbemerkungen und Satz über

Mehr

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen.

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 1 as Geodreieck als Mess- und Prüfinstrument VORNSI 1. Lies die Sätze. Ordne den ildern die richtige Nummer zu. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 2 Mit der Mittellinie

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 999 Runde ufgabe In einem regelmäßigen Sechseck werden wie abgebildet Diagonalen eingezeichnet. Dadurch entsteht ein kleines Sechseck. Welchen nteil an der Gesamtfläche

Mehr

Beispiellösungen zu Blatt 110

Beispiellösungen zu Blatt 110 µ κ Mathematisches Institut Georg-August-Universität Göttingen Aufgabe Ausgehend vom Beispiel Beispiellösungen zu Blatt 0 2 55 = 0 suchen wir Paare (x, y) von positiven ganzen Zahlen mit folgenden igenschaften:

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Dreiecke und Vierecke

Dreiecke und Vierecke 1. Von einem reieck weiß man: (a) a = 5cm, = 65 und γ = 50 (b) a = b und β = 60 reiecke und Vierecke Fertige jeweils für den Fall (a) und für den Fall (b) eine Planfigur an. egründe damit die besonderen

Mehr

Zu Aufgabe 1: Bestimmen Sie einen Fundamentalbereich der Drehsymmetriegruppe (a) des Tetraeders, und (b) des Würfels.

Zu Aufgabe 1: Bestimmen Sie einen Fundamentalbereich der Drehsymmetriegruppe (a) des Tetraeders, und (b) des Würfels. Westfälische Wilhelms-Universität Münster Mathematisches Institut apl. Prof. r. Lutz Hille r. Karin Halupczok Übungen zur Vorlesung lementare Geometrie Sommersemester 00 Musterlösung zu latt vom 8. Juni

Mehr

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004 Klausur zum Modul im SS 004 und Klausur zur Einführung in die Geometrie im SS 004 PO neu PO alt Name, Vorname... Matr.Nr.... Semester-nzahl im SS 004:... Studiengang G/H/R... Tutor/in:... ufg.1 ufg, ufg.3

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche 1. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε o 6,57 Lösung: δ = 90 = 45 ε = 16,86 = 63,43 ψ = 81,86. Gegeben ist ein Kreis

Mehr

Kongruenzsätze für Dreiecke, grundlegende Konstruktionen

Kongruenzsätze für Dreiecke, grundlegende Konstruktionen Kongruenzsätze für reiecke, grundlegende Konstruktionen 1. Von einem Viereck kennt man die Längen der eiten = = 4cm und = = 6cm. Warum sind die reiecke und kongruent? Lösung: reiecke und sind kongruent

Mehr

Lösungen Übungsblatt 1 (Mengenlehre)

Lösungen Übungsblatt 1 (Mengenlehre) Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Lösungen Übungsblatt 1 (Mengenlehre) Roger urkhardt 17 Mathematik 1 1. ufgabe egeben seien die

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2016/2017

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2016/2017 Landeswettbewerb Mathematik aden-württemberg Musterlösungen 2. Runde 206/207 ufgabe Paul soll fünf positive ganze Zahlen nebeneinander schreiben. abei muss er Folgendes beachten: ie erste Zahl ist so groß

Mehr

a) b) Abb. 1: Buchstaben

a) b) Abb. 1: Buchstaben Hans Walser, [20171019] Magische Quarate ungeraer Seitenlänge nregung: uler (1782) 1 Worum geht es? Zu einer gegebenen ungeraen Zahl u wir ein magisches Quarat mit er Seitenlänge u konstruiert. 2 as Vorgehen

Mehr

Beispiellösungen zu Blatt 68

Beispiellösungen zu Blatt 68 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufge 1 Beispiellösungen zu Blatt 68 Für zwei positive reelle Zahlen a und b gelte a2 +b 2 = 68. Welche Werte

Mehr

Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion:

Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Lösungen Geometrie-ossier 7 - Ebene Figuren eiten 7/ 8 ufgaben reiecke (ie Lösungen sind verkleinert gezeichnet. ie hier vorgeschlagenen Konstruktionswege sind nur eispiele unter einige Möglichkeiten.)

Mehr

Alle hier gezeigten Aufgaben verwenden Sinussatz und Kosinussatz. Die Sammlung wird weiter ergänzt. Klassenstufe 10. Datei Nr

Alle hier gezeigten Aufgaben verwenden Sinussatz und Kosinussatz. Die Sammlung wird weiter ergänzt. Klassenstufe 10. Datei Nr Trigonometrie Trainingsaufgaben 2 lle hier gezeigten ufgaben verwenden Sinussatz und Kosinussatz ie Sammlung wird weiter ergänzt Klassenstufe 10 atei Nr. 16032 November 2005 Friedrich uckel INTERNETILITHEK

Mehr

2. Landeswettbewerb Mathematik Bayern 1. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 1. Runde 1999/2000 . Landeswettbewerb Mathematik ayern. Runde 999/000 ufgabe In einem regelmäßigen Sechseck werden wie abgebildet Diagonalen eingezeichnet. Dadurch entsteht ein kleines Sechseck. Welchen nteil an der Gesamtfläche

Mehr

Winkel. Die Kreislinie k mit dem Mittelpunkt M berührt die Seiten des Dreeicks ABC in den Punkten F, P und Q.

Winkel. Die Kreislinie k mit dem Mittelpunkt M berührt die Seiten des Dreeicks ABC in den Punkten F, P und Q. Winkel 1. k Q F ie Kreislinie k mit dem ittelpunkt berührt die Seiten des reeicks in den unkten F, und Q. (a) Zeichne die Figur mit = 8cm und = 66. Zeichne die zwei Kreisradien ein, die zu den unkten und

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Beispiellösungen zu Blatt 4

Beispiellösungen zu Blatt 4 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-ugust-Universität Göttingen eispiellösungen zu latt 4 ufgabe 1 Für ein Verbrechen gibt es vier Verdächtige und jeder von ihnen macht eine

Mehr

Mathematik für Techniker

Mathematik für Techniker Siegfried Völkel u.a. Mathematik für Techniker 7., neu bearbeitete und erweiterte uflage 16 1 Rechenoperationen Prinzip der Mengenbildung Wenn eine ussageform für die Objekte eines Grundbereichs vorliegt,

Mehr

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt.

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt. Summen von Quadraten 1 Physikalische Motivation Eine schwingende Saite hat eine Grundfrequenz F, die von Länge, Dicke, Beschaffenheit der Saite und so fort abhängt Neben dieser Grundfrequenz gibt es auch

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 1996 Runde 1 ufgabe 1 Ein Rechteck mit den eitenlängen 5 cm und 9 cm wird in kleinere Rechtecke mit ganzzahligen eitenlängen, in Zentimeter gemessen, zerlegt.

Mehr

Verknüpfungen von Mengen

Verknüpfungen von Mengen R. rinkmann http://brinkmann-du.de Seite 1 0.10.008 Verknüpfungen von Mengen urch Verknüpfungen von Mengen lassen sich andere Mengen bilden, die zu ihren usgangsmengen in bestimmten eziehungen stehen.

Mehr

Geometrie I - Winkeljagd

Geometrie I - Winkeljagd Schweizer Mathematik-Olympiade smo osm Geometrie I - Winkeljagd aniel Sprecher ktualisiert: 1. ezember 2015 vers. 1.0.0 Inhaltsverzeichnis 1 Einleitung 2 2 Winkel im reieck 2 3 Winkel im Kreis 5 4 Sehnenvierecke

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε ϕ α o 26,57 Lösung: δ = 90 α = 45 ε = 26,86 ϕ = 63,43 ψ = 8,86 2. Gegeben ist

Mehr

3 a) A berechnen: u berechnen: A = a 2

3 a) A berechnen: u berechnen: A = a 2 Umfang und Flächeninhalt Schülerbuchseite 9 Umfang und Flächeninhalt uftakt Seiten 9, 0 Seite 9 Um den Flächeninhalt der Wohnung zu berechnen, zählt man im Plan die nzahl der kleinen Kästchen. Kästchen

Mehr

Zusammenfassung des 2. Abends

Zusammenfassung des 2. Abends lgorithmen in der iologie r. Hans-Joachim öckenhauer r. ennis Komm Zusammenfassung des. bends Zürich, 0. pril 0 lignment-verfahren Für einen Überblick über die lignment-lgorithmen zur estimmung der Ähnlichkeit

Mehr

Beispiellösungen zu Blatt 98

Beispiellösungen zu Blatt 98 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 98 Finde vier paarweise verschiedene positive ganze Zahlen a, b, c, d

Mehr

2.3 Sätze und Konstruktionen

2.3 Sätze und Konstruktionen 43 2.3 Sätze und Konstruktionen Proposition 1. Über einer gegebenen Strecke kann ein gleichseitiges reieck errichtet werden. eweis: ie ormulierung ist etwas eigenartig. ber viele der euklidischen Sätze

Mehr

Inhalt der Lösungen zur Prüfung 2016:

Inhalt der Lösungen zur Prüfung 2016: Inhalt der Lösungen zur Prüfung 06: Pflichtteil Wahlteil ufgabe Wa 0 Wahlteil ufgabe Wb Wahlteil ufgabe Wa Wahlteil ufgabe Wb 6 Wahlteil ufgabe W3a 9 Wahlteil ufgabe W3b Wahlteil ufgabe Wa Wahlteil ufgabe

Mehr

Download. Mathe an Stationen. Mathe an Stationen SPEZIAL Geometrische Abbildungen. Zentrische Streckung. Jan-Christoph Frühauf

Download. Mathe an Stationen. Mathe an Stationen SPEZIAL Geometrische Abbildungen. Zentrische Streckung. Jan-Christoph Frühauf ownload Jan-hristoph Frühauf Mathe an Stationen SPEIL Geometrische bbildungen entrische Streckung ownloadauszug aus dem Originaltitel: SPEIL Sekundarstufe I Jan-hristoph Frühauf Mathe an Stationen Geometrische

Mehr

Reell : rational irrational 13

Reell : rational irrational 13 Reell : rational irrational -0 5 Mögliche : Reelle Zahlen sind alle Zahlen innerhalb des dunkelblauen Ovals. azu gehören also auch alle rationalen Zahlen. Rationale Zahlen sind alle Zahlen innerhalb des

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 7

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 7 Übung zur Vorlesung Statistik I für iowissenschaften WS 205-206 Übungsblatt 7 30. November 205 ufgabe 9 (4 Punkte): eim Gesellschaftsspiel Mensch ärgere ich nicht muss man eine Sechs würfeln, um eine Figur

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Caesar Substitution (monoalphabetisch)

Caesar Substitution (monoalphabetisch) 6 aesar ubstitution (monoalphabetisch) ie uchstaben bleiben wo sie sind, aber nicht was sie sind. olche erschlüsselungen heißen ubstitution. (as ort ubstitution ist abgeleitet vom lateinischen ort substituere

Mehr

40. Algorithmus der Woche Das Travelling Salesman Problem oder die optimale Tour für den Nikolaus

40. Algorithmus der Woche Das Travelling Salesman Problem oder die optimale Tour für den Nikolaus 40. lgorithmus der Woche as Travelling Salesman Problem oder die optimale Tour für den Nikolaus utor Stefan Näher, Universität Trier as Problem des Handlungsreisenden as Travelling Salesman Problem (TSP)

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 998 Runde ufgabe Helena möchte für Weihnachten Strohsterne aus gleich langen Strohhalmen basteln. Dazu will sie zunächst Elemente aus fünf gleich langen Strohhalmen wie in der Skizze anfertigen und diese

Mehr

Formale Systeme, WS 2010/2011 Lösungen zum Übungsblatt 1

Formale Systeme, WS 2010/2011 Lösungen zum Übungsblatt 1 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. r. B. Beckert Thorsten Bormer Formale Systeme, WS 2/2 Lösungen zum Übungsblatt ieses Blatt wurde in der Übung am 29..2 besprochen.

Mehr

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128 Aufgabe 1 Wir betrachten die beiden Zahlen a = 57 101 3 und b = 3 57 79 101 (4+2+4=10 Punkte) ( Es gilt: 3, 57, 79, 101 P ) Hier liegt ein Fehler in der Aufgabenstellung vor, denn wegen 57 = 3 19 ist 57

Mehr

3. Vorlesung. Die Existenz des Pentagons. (*)

3. Vorlesung. Die Existenz des Pentagons. (*) 3. Vorlesung. ie Existenz des Pentagons. (*) In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. ieser eweis ist schon recht anspruchsvoll. So anspruchsvoll,

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

ZAHLENMAUERN UND ZAHLENDREIECKE. Korrekturen, Verbesserungsvorschläge und Anregungen bitte an herrmann bei mathematik.tu-darmstadt.

ZAHLENMAUERN UND ZAHLENDREIECKE. Korrekturen, Verbesserungsvorschläge und Anregungen bitte an herrmann bei mathematik.tu-darmstadt. ZAHLENMAUERN UN ZAHLENREIEKE HRISTIAN HERRMANN Korrekturen, Verbesserungsvorschläge und Anregungen bitte an herrmann bei mathematik.tu-darmstadt.de 1. Vorbemerkung Lösugen von Zahlenmauern und Zahlendreiecken

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2012/2013

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2012/2013 Landeswettbewerb Mathematik aden-württemberg Musterlösungen. Runde 0/0 ufgabe n der Tafel stehen die Zahlen 0 und. Paul will eine weitere natürliche Zahl hinzufügen, so dass jede dieser drei Zahlen das

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Das Geobrett. Carolin Donat. Downloadauszug aus dem Originaltitel: Geometrie

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Das Geobrett. Carolin Donat. Downloadauszug aus dem Originaltitel: Geometrie ownload arolin onat Mathe an Stationen Spezial Geometrie 1+2 as Geobrett zielt üben nforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz unterschiedlicher Lern vorausielen,

Mehr

P-Median Problem. Michael Enser Anzahl der ausgewählten Standorte oder Mediane

P-Median Problem. Michael Enser Anzahl der ausgewählten Standorte oder Mediane P-Median Problem Michael nser 4..20 Inhaltsverzeichnis Allgemeines p-median-problem. Allgemeine ention............................. 2.2 in kleines eispiel.............................. 2 2 -median Problem

Mehr

Beispiellösungen zu Blatt 17

Beispiellösungen zu Blatt 17 aktualisiert4. April 2002 blattnr17 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 eispiellösungen zu latt 17 Frau Porta hat in ihren 1 Meter

Mehr

Mersennesche Primzahlen

Mersennesche Primzahlen Mersennesche Primzahlen Michael E. Pohst Technische Universität Berlin Die Zahlen von Mersenne Zu einer natürlichen Zahl n wird die zugehörige Mersennezahl M n als M n = 2 n 1 definiert. Für n = 2, 3,

Mehr

Aus Knoten und Kanten, die Bezeichnungen haben können. Ein Graph, bei dem die Kanten Richtungen haben.

Aus Knoten und Kanten, die Bezeichnungen haben können. Ein Graph, bei dem die Kanten Richtungen haben. ormale Methoden der Informatik WS 2/2 Lehrstuhl für atenbanken und Künstliche Intelligenz ProfrrJRadermacher H Ünver T Rehfeld J ollinger 3 ufgabenblatt esprechung in den Tutorien vom 72 (ab Übungstermin)

Mehr

Beispiellösungen zu Blatt 9

Beispiellösungen zu Blatt 9 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg August Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 9 Frank verwechselt an seiner Armbanduhr gelegentlich den großen mit

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

STAATLICHE ABSCHLUSSPRÜFUNG DER UNTERSTUFE GESAMTSTAATLICHE PRÜFUNGSARBEIT ERSATZTERMIN AM 22. JUNI 2017

STAATLICHE ABSCHLUSSPRÜFUNG DER UNTERSTUFE GESAMTSTAATLICHE PRÜFUNGSARBEIT ERSATZTERMIN AM 22. JUNI 2017 ozen, 22.06.2017 earbeitet von: Klaus Niederstätter Tel. 0471 417253 klaus.niederstaetter@schule.suedtirol.it n die Präsidentinnen und Präsidenten der staatlichen bschlussprüfung der Unterstufe n die Kommissionsmitglieder

Mehr

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MVT/D-MTL nalysis II FS 8 Dr. nreas Steiger Lösung - Serie MC-ufgaben (Online-bgabe). Es sei ie Einheitskugel um en Ursprung. Für welches er Vektorfeler (x, y, z) v(x, y, z) arf er Divergenzsatz für

Mehr

Der Lucas Lehmer Test

Der Lucas Lehmer Test Michael E. Pohst Der Lucas Lehmer Test Dieser Vortrag wird gehalten am 12. Juni 2004 anläßlich der Langen Nacht der Wissenschaften http://www.math.tu-berlin.de/~kant/mersenne.html

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Dreiecke Vierecke 11. Lösungen B211-01

Dreiecke Vierecke 11.  Lösungen B211-01 reieke Viereke 11 211-01 1 5 1 ei den Winkelhalbierenden sind zwei Seiten, ausgehend von einem Ekpunkt, aufeinanderzulegen. ei genauem Falten treffen sih die drei Winkelhalbierenden in einem Punkt, dem

Mehr

Tutoraufgabe 1 (Floyd-Warshall):

Tutoraufgabe 1 (Floyd-Warshall): für Informatik Prof. aa r. Ir. Joost-Pieter Katoen atenstrukturen und lgorithmen SS hristian ehnert, Friedrich Gretz, enjamin Kaminski, Thomas Ströder Tutoraufgabe (Floyd-Warshall): etrachten Sie den folgenden

Mehr

Beispiellösungen zu Blatt 99

Beispiellösungen zu Blatt 99 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 99 99 Luftballons fliegen am Horizont ganz friedlich in rechteckiger

Mehr

10. Übungsblatt zu Algorithmen I im SoSe 2016

10. Übungsblatt zu Algorithmen I im SoSe 2016 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. r. ennis ofheinz Lukas arth, Lisa Kohl 0. Übungsblatt zu lgorithmen I im SoSe 0 https://crypto.iti.kit.edu/index.php?id=algo-sose

Mehr

3. Landeswettbewerb Mathematik Bayern 2. Runde 2000/ Aufgaben und Lösungsbeispiele

3. Landeswettbewerb Mathematik Bayern 2. Runde 2000/ Aufgaben und Lösungsbeispiele . Landeswettbewerb Mathematik ayern. Runde 000/001 - ufgaben und Lösungsbeispiele ufgabe 1 uf einer Tafel stehen 40 positive, ganze Zahlen in acht Zeilen und fünf Spalten angeordnet. Die Zahlen dürfen

Mehr

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2 7 Lineare Unabhängigkeit, asis Existenzsatz M Am Ende des vorigen Paragraphen betrachteten wir bei vorgegebener Teilmenge T eines K-Vektorraumes V das Erzeugnis U von T in V. Die ildung des Erzeugnisses

Mehr

Huffman-Kodierung. Prof. Dr. Margarita Esponda

Huffman-Kodierung. Prof. Dr. Margarita Esponda uffman-kodierung rof. r. argarita sponda otivation ir möchten achrichten komprimieren: - peicherplatzreduzierung => nergie und Zeit bei Übertragung sparen - ohne nformationsverlust - mit einer effizienten

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011 13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 20/2011 Aufgabe 1 Sonja hat neun Karten, auf denen die neun kleinsten zweistelligen Primzahlen stehen. Sie will diese Karten so in eine

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis.

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis. 8 2. Golener Schnitt Die Geometrie birgt zwei grosse Schätze: er eine ist er Satz von Pythagoras, er anere ist er Golene Schnitt. Den ersten können wir mit einem Scheffel Gol vergleichen, en zweiten ürfen

Mehr