Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Musterlösung 7 Lineare Algebra für die Naturwissenschaften"

Transkript

1 Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis ihrer Wahl) an: (a) f : R n R, f(x) x für x R n und die Euklidische Norm im R n. (b) Die Abbildung f : R R, x n a i x i, n N. Für welche a i R (i 0,,..., n) ist f eine lineare Abbildung? (c) f : R [x] R, f(ax + bx + c) i0 ( ) a + b b c (d) Die Abbildung f : R 3 R 3, die zuerst 30 im Uhrzeigersinn um die x-achse parallel zur yz-ebene dreht und anschliessend an der xz-ebene spiegelt. Lösung: (a) Wir prüfen f(λx) λx λ x λ x λf(x) für λ negativ. Somit ist f keine lineare Abbildung. (Man könnte auch zeigen, dass f(x + y) f(x) + f(y) nicht für alle x, y R n erfüllt ist.) (b) Zuerst bestimmen wir die a i, für die gilt f(αx) αf(x): n f(αx) a i α i x i, αf(x) i0 n a i αx i. i0 Aus f(αx) αf(x), α R, folgt für beliebige x R a i α i a i α a i (α i ) 0. Seite von 8

2 Also muss gelten a i 0 oder i. Folglich ist a i nur dann ungleich 0, wenn i ist. Es kann also nur die folgende Abbildung linear sein: f(x) a x. Durch Nachprüfen der Bedingung f(x + y) f(x) + f(y) sehen wir, dass diese Abbildung tatsächlich linear ist. Die gesuchte Lösung ist also a R, a i 0 für i {0,, 3,..., n}. (c) Es ist f(λ (a x + b x + c ) + λ (a x + b x + c )) f((λ a + λ a )x + (λ b + λ b )x + (λ c + λ c )) ( ) (λ a + λ a ) + (λ b + λ b ) (λ b + λ b ) (λ c + λ c ) und ( ) ( ) λ f(a x + b x + c ) + λ f(a x a + b + b x + c ) λ a + b + λ b c b c ( ) λ a + λ a + λ b + λ b. λ b + λ b λ c λ c Somit gilt f(λ (a x + b x + c ) + λ (a x + b x + c )) λ f(a x + b x + c ) + λ f(a x + b x + c ) und f ist linear. Wir wählen für R [x] die Basis [x, x, ] und für R die Standardbasis. Dann hat f bzgl. diesen Basen die Matrixdarstellung ( ) 0. 0 (d) Zuerst betrachten wir die Abbildung, welche Punkte 30 Grad im Uhrzeigersinn um die x-achse parallel zur yz-ebene dreht. Da parallel zur yz-ebene gedreht wird, bleibt die x-koordinate gleich. Für ein festes x entspricht die Drehung in der parallelen Ebene einer Drehung im Zweidimensionalen, d. h. (x, y, z) R 3 wird auf (x, cos( π 6 )y + sin( π 6 )z, sin( π 6 )y + cos( π 6 )z) R3 abgebildet (siehe Vorlesung für Drehung im R ). Die Spiegelung an der xz-ebene lässt die x- und z-koordinate invariant und schickt die y-koordinate auf ihr Negatives, d. h. (x, y, z) R 3 wird auf (x, y, z) R 3 abgebildet. Verketten wir die beiden Abbildungen, so sehen wir, dass f(x, y, z) (x, cos( π 6 )y sin(π 6 )z, sin(π 6 )y + cos(π 6 )z) R3. Seite von 8

3 Damit lässt sich leicht nachrechnen, dass f(λ (x, y, z )+λ (x, y, z )) λ f(x, y, z )+ λ f(x, y, z ) und f somit linear ist. An der expliziten Beschreibung von f sieht man, dass diese Abbildung folgende Matrixdarstellung (bzgl. der Standardbasis) hat: 0 0 f [e] [e] 0 cos( π) sin( π) sin( π) cos( π) 6 6 Aufgabe Es sei gegeben die Basis [v] [v (), v (), v (3) ] von R 3 mit v () 0, v (), 0 v (3) 0, 0 und die Basis [w] [w (), w () ] von R mit ( ) w (), w () ( ) 3. 0 Die lineare Abbildung T sei gegeben durch x ( ) T : R 3 R, x x 3x 3. 4x x + x 3 (a) Bestimmen Sie die Matrixdarstellung T [e] [e] bezüglich der Standardbasis [e]. (b) Bestimmen Sie die Basiswechselmatrizen Id [v] [e], Id [w] [e] und Id [e] [w]. (c) Bestimmen Sie die Matrixdarstellung T [v] [w]. (d) Sei x in Koordinatendarstellung bezüglich der Standardbasis [e] gegeben durch x Bestimmen Sie die Koordinatendarstellung x bezüglich der Basis [v] von x. Berechnen Sie T (x) in beiden Basisdarstellungen als T [e] [e] x und T [v] [w] x und zeigen Sie, dass beide Darstellungen dasselbe Ergebnis haben. Seite 3 von 8

4 Lösung: (a) T [e] [e] ( 0 ) (b) Id [v] [e] ( v () v () v (3)) Id [w] [e] ( ( ) w () w ()) 3 0 Id [e] [w] Id [w] [e] ( ) (c) T [v] [w] 6 ( ) 0 3 ( ) ( ) (d) 0 0 x Id [e] [v] x Id [v] [e] x 0 0 ( ) ( ) 0 3 y T [e] [e] x ( ) 0 ( ) 0 y T [v] [w] x Es ist zu zeigen, dass y und y derselbe Vektor ist. Da y die Koordinatendarstellung bezüglich Basis [e] und y die Koordinatendarstellung bezüglich Basis [w] ist, ist zu prüfen, dass y Id [w] [e] y : Id [w] [e] y ( ) ( ) ( ) 7 y Aufgabe 3 Gegeben sei die Abbildung T : R 4 [x] R 4 [x] mit T (f) : f f + 3f x für f R 4 [x]. Seite 4 von 8

5 (a) Zeigen Sie, dass T eine lineare Abbildung ist, und geben Sie T in Matrixdarstellung an (Basis frei wählbar). ( Pt.) (b) Sei f : V W eine lineare Abbildung zwischen zwei Vektorräumen V, W. Zeigen Sie, dass die Bildmenge von f, also die Menge {w W : w f(v) für ein v V }, ein Untervektorraum von W ist. ( Pt.) (c) Berechnen Sie die Dimension der Bildmenge von T. Lösung: (a) Sei f(x) a x 4 + a x 3 + a 3 x + a 4 x + a 5. Dann ist T (f(x)) a x + 6a x + a 3 (4a x 3 + 3a x + a 3 x + a 4 ) + 3(4a )x 8a x 3 + (a 6a )x + (6a 4a 3 + 7a )x + a 3 a 4. Sei g(x) b x 4 + b x 3 + b 3 x + b 4 x + b 5. Dann folgt T (λ f(x) + λ g(x)) 8(λ a + λ b )x 3 + ((λ a + λ b ) 6(λ a + λ b ))x + (6(λ a + λ b ) 4(λ a 3 + λ b 3 ) + 7(λ a + λ b ))x + (λ a 3 + λ b 3 ) (λ a 4 + λ b 4 ) λ ( 8a x 3 + (a 6a )x + (6a 4a 3 + 7a )x + a 3 a 4 ) + λ ( 8b x 3 + (b 6b )x + (6b 4b 3 + 7b )x + b 3 b 4 ) λ T (f(x)) + λ T (g(x)). Somit ist T eine lineare Abbildung. Die Matrixdarstellung von T bzgl. der Basis [x 4, x 3, x, x, ] ist dann von der Form (b) Wir setzen B f : {w W : w f(v) für ein v V }. Wir müssen prüfen, ob w, w B f w + w B f gilt und ob für alle α R gilt, dass w B f αw B f. Seien w, w B f. Dann gibt es v, v V mit f(v i ) w i, i,. Somit ist w + w f(v ) + f(v ) f(v + v ), Seite 5 von 8

6 da f eine lineare Abbildung ist. Insbesondere haben wir ein Element v + v von V gefunden, das von f auf w + w abbildet wird. Also ist w + w B f. Ebenso sei w B f und v V mit f(v ) w. Dann ist für alle α R αw αf(v ) f(αv ), und somit ist αw B f. Also ist B f ein Untervektorraum von W. (c) Jedes Element g in B T kann als g T (f) geschrieben werden. Jedes f R 4 [x] wiederum kann als Linearkombination der Basis [x 4, x 3, x, x, ] geschrieben werden. Da T eine lineare Abbildung ist, kann somit jedes g B T als a T (x 4 ) + a T (x 3 ) + a 3 T (x ) + a 4 T (x) + a 5 T () mit a,..., a 5 R geschrieben werden. Also ist B T span(t (x 4 ), T (x 3 ), T (x ), T (x), T ()). Die Dimension von B T entspricht damit dem Rang der Matrixdarstellung von T bzgl. [x 4, x 3, x, x, ]. Also dim B T rang Der Rang bleibt unter Zeilenstufenoperationen erhalten. Wir wenden den Gaussalgorithmus an und erhalten Es ist leicht zu sehen, dass der Spaltenraum der letzten Matrix von der Form a x 3 + a 3 x + a 4 x + a 5 ist. Insbesondere ist [x 3, x, x, ] eine Basis dieses Spaltenraums, der damit die Dimension 4 hat. Also ist dim B T 4. Aufgabe 4 Seien v, v, v 3, w, w, w 3 R 3 paarweise verschiedene Vektoren. (a) Welche Bedingungen müssen v, v, v 3, w, w, w 3 erfüllen, dass eine lineare Abbildung f : R 3 R 3 mit f(v i ) w i für i,, 3 existiert? Seite 6 von 8

7 (b) Welche Bedingungen müssen v, v, v 3, w, w, w 3 erfüllen, dass eine eindeutige lineare Abbildung f : R 3 R 3 mit f(v i ) w i für i,, 3 existiert? (c) Sei f : R 3 R 3 mit f(v i ) w i für i,, 3. Welche Bedingungen müssen v, v, v 3, w, w, w 3 erfüllen, dass eine eindeutige lineare Abbildung f : R 3 R 3 existiert so, dass f f Id R 3 (d.h. die Komposition der beiden Abbildungen ist die Identitätsabbildung auf R 3 )? Lösung: (a) Zuerst merken wir an, dass w i 0, wenn v i 0 (i,, 3), da lineare Abbildungen den 0-Vektor immer auf den 0-Vektor abbilden. Der Fall v i 0 und w i 0 hat also keinen Einfluss auf die Existenz einer linearen Abbildung. Wir können also annehmen, dass kein v i gleich dem 0-Vektor ist. Nehmen wir an, eine lineare Abbildung erfüllt f(v ) w. Das definiert f für alle Vektoren αv mit α R. Das heisst, ist v i αv, i, 3, für ein α R, so muss w i αw. Sind hingegen v, v linear unabhängig, so ist f(α v + α v ) : α w + α w linear auf span(v, v ) und f muss von dieser Form auf span(v, v ) sein. Ist v 3 span(v, v ), so finden wir a, a R mit v 3 a v + a v. Dann ist f(v 3 ) f(a v + a v ) a f(v ) + a f(v 3 ) a w + a w. Also muss gelten w 3 a w + a w. Sind v, v, v 3 linear unabhängig und somit eine Basis, so definiert f(α v + α v + α 3 v 3 ) : α w + α w + α 3 w 3 eine lineare Abbildung. Sind v, v, v 3 linear abhängig, so wissen wir aus der Vorlesung, dass wir entweder einen oder zwei Vektoren wegfallen lassen können und durch die passende Anzahl an Vektoren ergänzen, damit wir eine Basis erhalten. Wir nehmen der Einfachheit halber an, dass [v, v, ˆv 3 ] eine Basis sei (für den Fall, dass v, v linear unabhängig und v 3 span(v, v )). Dann definiert f(α v + α v + α 3ˆv 3 ) : α w + α w + α 3 ŵ 3 () eine lineare Abbildung, wobei ŵ 3 R 3 beliebig ist. So kann man insgesamt zeigen: Wenn wir eine lineare Abbildung f auf span(v, v, v 3 ) definiert haben, die die Bedingung f(v i ) w i für i,, 3 erfüllt, so kann man eine lineare Abbildung f auf R 3 finden, die ebenso die Bedingung f(v i ) w i für i,, 3 erfüllt. Zusammengefasst müssen v, v, v 3, w, w, w 3 folgende Bedingungen erfüllen, damit eine lineare Abbildung f : R 3 R 3 mit f(v i ) w i für i,, 3 existiert: Seite 7 von 8

8 Wenn v i 0, so muss auch w i 0 gelten. Wenn v αv, so muss gelten w αw. Wenn v 3 a v + a v span(v, v ), so muss gelten w 3 a w + a w. (b) Ist [v, v, v 3 ] eine Basis, so ist f(α v + α v + α 3 v 3 ) : α w + α w + α 3 w 3 die einzige lineare Abbildung, die die Bedingung f(v i ) w i für i,, 3 erfüllt. In Gleichung () von Aufgabenteil (a) haben wir gesehen, dass eine lineare Abbildung f : span(v, v, v 3 ) span(w, w, w 3 ) auf verschiedene Weisen auf ganz R 3 vorgesetzt werden kann, wenn v, v, v 3 nicht linear unabhängig sind. Insbesondere existiert genau dann eine eindeutige lineare Abbildung f : R 3 R 3 mit f(v i ) w i für i,, 3, wenn [v, v, v 3 ] eine Basis des R 3 ist. (c) Angenommen, so eine Abbildung existiert. Dann gilt f (w i ) v i für i,, 3. Da diese Abbildung eindeutig sein soll, können wir aus (b) folgern, dass [w, w, w 3 ] eine Basis sein muss. Nehmen wir nun an, dass [v, v, v 3 ] keine Basis sei, dass also diese Vektoren linear abhängig seien. Dann gibt es a, a, a 3 R 3 so, dass nicht alle gleichzeitig 0 sind und a v + a v + a 3 v 3 0. Das impliziert 0 f(a v + a v + a 3 v 3 ) a f(v ) + a f(v ) + a 3 f(v 3 ) a w + a w + a 3 w 3, was im Widerspruch dazu steht, dass [w, w, w 3 ] eine Basis ist. Also muss [v, v, v 3 ] ebenso eine Basis sein. Sind also [v, v, v 3 ] und [w, w, w 3 ] Basen, so definiert f (a w + a w + a 3 w 3 ) : a v + a v + a 3 v 3 die gewünschte eindeutige lineare Abbildung. Die Bedingung ist also, dass [v, v, v 3 ] und [w, w, w 3 ] Basen sein müssen. Seite 8 von 8

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo Fachbereich Mathematik Prof. J. Lehn Hasan Gündoğan, Nicole Nowak Sommersemester 8 4./5./8. April 4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo Gruppenübung Aufgabe G9 (Multiple Choice Bei

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Lineare Algebra I. Lösung 9.2:

Lineare Algebra I. Lösung 9.2: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 9 Prof. Dr. Markus Schweighofer 20.01.2010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 9.1: Voraussetzung:

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing Musterlösung zur Klausur zur Linearen Algebra I 1 Aufgabe 1: (8 Punkte) Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind: Aussage wahr

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

auf C[; ] sind linear III Formale Dierentiation und Integration: Die Abbildungen und a + a t + + a n t n a + a t + + na n t n a + a t + + a n t n an a

auf C[; ] sind linear III Formale Dierentiation und Integration: Die Abbildungen und a + a t + + a n t n a + a t + + na n t n a + a t + + a n t n an a x LINEARE ABBILDUNGEN Denition: Seien V; V Vektorraume Eine Abbildung f heit linear, falls (i) (ii) f(x + y) f(x) + f(y) (x; y V ) f(x) f(x) ( R; x V ) Bemerkungen: I (i) und (ii) oben sind aquivalent

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 11/1 Blatt 1 7.1.1 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag 45. a) Wegen 1

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

4 Orthogonale Endormorphismen

4 Orthogonale Endormorphismen 4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 15. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Probeklausur: Samstag, 5.11. 10 Uhr, B6 A001 Anmeldung in den Übungsgruppen Wir hatten gesehen: =! 7 Mat(m, n; K) Hom (Mat(n,

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 21.11.2016 6. Vorlesung aufgespannter Untervektorraum Span(T ), Linearkombinationen von Vektoren Lineare Unabhängigkeit

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen 9 Aus der linearen Algebra Themen: Der à n Lineare Abbildungen Darstellung durch Matrizen Der à n besteht aus den n-tupeln mit x i Ã. x 1 x 2 x = (x 1, x 2,...,x n ) oder x =. x n Der à n besteht aus den

Mehr

3.8. Lineare Abbildungen.

3.8. Lineare Abbildungen. 38 Lineare Abbildungen 38 Lineare Abbildungen 38 Definition Es seien V und W Vektorräume über K Eine Abbildung α : V W heißt linear, wenn für alle Vektoren u, v V und alle Skalare k K gilt: α(u + v α(u

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Freitag, 6.. Sascha Frölich

Mehr

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI Fachbereich Mathematik Prof Dr K Ritter Dr M Slassi M Fuchssteiner SS 9 9 Mai 9 5 Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo und UI Gruppenübung Aufgabe G (a Betrachten Sie die Vektoren

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Musterlösung zur Nachklausur Lineare Algebra I

Musterlösung zur Nachklausur Lineare Algebra I Musterlösung zur Nachklausur Lineare Algebra I Aufgabe 1 5 Punkte: Welche der folgenden Aussagen sind wahr bzw falsch? Setzen Sie in jeder Zeile genau ein Kreuz Für jede korrekte Antwort erhalten Sie 0,5

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben Aufgabe 74. Untersuchen Sie die folgenden Abbildungen auf Linearität. 1. f : R 2 R 2 mit (x, y) f(x, y) := (3x + 2y, x) 2. f : R R mit x f(x) := ϑx + ζ für feste ϑ, ζ R 3. f : Q 2 R mit (x, y) f(x, y)

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

Basis eines Vektorraumes

Basis eines Vektorraumes Basis eines Vektorraumes Basisergänzungssatz: Ist U V ein Unterraum von V und dim V = n, so kann jede Menge linear unabhängiger Vektoren aus U zu einer Basis von U erweitert werden Und es gilt: Beweis:

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008

Eigenwerttheorie. Martin Gubisch Lineare Algebra I WS 2007/2008 Eigenwerttheorie Martin Gubisch Lineare Algebra I WS 27/28 Motivation Gegeben seien ein K-Vektorraum V der Dimension n < und eine K-lineare Abbildung f : V V Wir suchen eine Basis V = v 1,, v n von V,

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 9 1. [Aufgabe] Sei f : V W eine lineare Abbildung. Zeige: a) Die Abbildung f ist injektiv genau dann, wenn eine lineare Abbildung g :

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007 KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Kapitel 7. Lineare Abbildungen. 7.1 Motivation

Kapitel 7. Lineare Abbildungen. 7.1 Motivation Kapitel 7 Lineare Abbildungen 71 Motivation Verschieben, Drehen und Scheren sind parallelentreu, dh sie lassen sich auch als Abbildung zwischen Vektorräumen fomulieren Die Verschiebung, beispielsweise,

Mehr

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr