MPI Prozessgruppen, Topologien, kollektive Kommunikation

Größe: px
Ab Seite anzeigen:

Download "MPI Prozessgruppen, Topologien, kollektive Kommunikation"

Transkript

1 MPI Prozessgruppen, Topologien, kollektive Kommunikation Parallelrechner Sommersemester 2004

2 Inhalt Prozessgruppen und der Communicator Kollektive Kommunikation Prozess Topologien

3 Punkt zu Punkt Kommunikation Datentransfer mit "klassischer" Punkt zu Punkt Semantik MPI_Send(), MPI_Bsend(), MPI_Ssend(),... MPI_Recv() Addressierung unter Angabe von "Ranks" Blockierend/Nicht blockierend Synchronisierend/Nicht synchronisierend

4 Prozessgruppen MPI unterstützt Prozessgruppen Prozesse können in beliebigen Gruppen zusammengefasst werden Der Rank eines Prozesses ist immer relativ zu einer speziellen Gruppe Bisher haben wir nur die vordefinierte Gruppe aller Prozesse benutzt

5 Communicator und Prozessgruppen Ein Communicator und eine Gruppe sind eng verwandt Aber: MPI Communicator und MPI Gruppen sind unterschiedliche Konstrukte Ein Communicator ist mit genau einer Gruppe assoziiert Aber: Eine Gruppe kann mit mehreren Communicators assoziiert sein

6 Fest vorgegebene Gruppen/Communicator Gruppen sind zunächst einmal abstrakt Zu Anfang gibt es zwei Communicators MPI_COMM_WORLD MPI_COMM_SELF Die initialen Prozess Gruppen sind implizit durch die Communicators gegeben Die Funktion MPI_Comm_group(MPI_Comm, MPI_Group*) wird benutzt um eine Gruppe zu extrahieren.

7 Neue Gruppen bilden Neue Gruppen werden aus existierenden erzeugt MPI_Group_union(MPI_Group, MPI_Group, MPI_Group*) Auch als Intersection und Difference Gruppen haben Ähnlichkeiten zu Mengen Daher gibt es "mengenähnliche" Operationen Aber: Die Reihenfolge der Prozesse spielt trotzdem eine Rolle

8 Gruppeneigenschaften Schlussfolgerung: Größe und Rank sind Gruppeneigenschaften MPI_Group_size(MPI_Group group, int *size) MPI_Group_rank(MPI_Group group, int *rank) Die anderen Funktionen sind "Abkürzungen" Gruppen sind lokal definiert d.h. Operationen auf Gruppen sind lokal

9 Communicator Communicator partitionieren den Kommunikationsraum Ein Communicator wird auf einer Gruppe definiert Die Erzeugung eines Communicator ist global d.h. Kommunikation findet statt Konträr zu Gruppen

10 Einen Communicator erzeugen MPI_Comm_create(MPI_Comm, MPI_Group, MPI_Comm *) erzeugt einen neuen Communicator Die Angabe eines bestehenden Communicator erleichtert die globale Kommunikation Die MPI Bibliothek wird kollektive Kommunikation nutzen können Ein gemeinsamer Zustand wird erzeugt MPI_Comm_split(MPI_Comm c, int col, int key, MPI_Comm *nc)

11 Eine Beispielapplikation MPI_Comm_split(MPI_COMM_WORLD, rank % n, 0, &new_comm); MPI_Comm_size(new_comm, &new_size); MPI_Comm_rank(new_comm, &new_rank); start = new_rank * (n / new_size); for (i = start; i == (start + (n / new_size)); i++) { } res[i] = 0; for (j = 0; j == n; j++) { res[i] = res[i] + (matrix[i][j] * matrix2[i][j]); } MPI_Bcast(...

12 Kollektive Kommunikation Innerhalb eines Communicator können alle Prozesse gleichzeitig Daten austauschen Verschiedene Semantiken des Datenaustauschs Entweder alle Prozesse oder paarweise Synchronisation ist zumeist implizit enthalten Jede kollektive Operation kann mit Hilfe von MPI_Send/MPI_Recv ausgedrückt werden

13 MPI Broadcast Die einfachste, kollektive Operation ist der Broadcast MPI_Bcast(void *buf, int cnt, MPI_Datatype type, int root, MPI_Comm c); Der "root" sendet an alle anderen Prozesse "buf" ist entweder Quell- oder Zielpuffer Diese Funktion ist (natürlich) global Alle Partizipanten müssen in der Angabe von "root" übereinstimmen

14 Gather und Scatter Gather bewerkstelligt das Einsammeln der Daten bei einem Prozess "root" MPI_Gather(void *sb, int scnt, MPI_Datatype stype, void *rb, int rcnt, MPI_Datatype rtype, int root, MPI_Comm comm); "root" empfängt, alle anderen senden Entsprechend sind manche Parameter bei einigen Prozessen irrelevant Scatter funktioniert analog

15 Die Vektor Varianten Es gibt auch Vektor Varianten MPI_Scatterv(...,int *rcnt, int *displ, MPI_Datatype rtype,...); MPI_Gatherv() ist analog definiert Auch hier müssen alle globalen Parameter konsistent sein Diese Varianten sind prinzipiell identisch mit den eben gezeigten Funktionen Beispiel: Übertragung von Dreiecksmatrizen

16 All-to-all Datenaustausch Die Semantik von MPI_Gather wird erweitert All-to-all empfängt Information von allen anderen Prozessen MPI_Alltoall(void *sb, int scnt, MPI_Datatype stype, void *rb, int rcnt, MPI_Datatype rtype, MPI_Comm c); Resultat ist einer transponierten Matrix sehr ähnlich Diese Funktion synchronisiert die Prozesse

17 Daten senden und berechnen Es gibt eine Möglichkeit das im selben Schritt Kommunikation und Berechnungen auszuführen Reduktion: Nicht alle Daten werden 1-zu-1 zum Empfänger transportiert MPI_Reduce(void *sb, void *rb, int cnt, MPI_Datatype type, MPI_Op op, int root, MPI_Comm c); Die Operation "op" verknüpft alle Daten Operationen: Arithmetik, Max/Min, Logik

18 Ein Beispiel für Reduktion... for (i = 0, j = 0; i < m; i += n, j++) vect[j] = matrix[i]; MPI_Reduce(vect, vect2, m, MPI_2INT, MPI_MINLOC, 0, my_c); if (my_rank == 0) { MPI_Bsend(matrix, n / num_proc, my_type, vect2[0].rank, 0, my_c); } else { MPI_Recv(...

19 Prozess Topologie Einem Communicator kann eine virtuelle Topologie zugewiesen werden Unabhängig von der Hardware MPI Topologien sind ausschließlich virtuell Sinn und Zweck von Topologien Sinnvolles Numerierungs Schema Anhaltspunkt für Optimierungen (Prozessverteilung) Lesbarer Code

20 Beschreibung einer Topologie Prinzipiell wird ein Graph erzeugt Knoten sind Prozesse (keine Prozessoren) Kanten sind Kommunikationswege Eine virtuelle Topologie ist nicht verbindlich Auch nicht verbundene Prozesse können Daten austauschen Eine Kante ist somit ein besonders wahrscheinlicher Kommunikationsweg MPI darf die Topologie auf die Hardware abbilden

21 Topologien erzeugen Topologien werden als allg. Graph beschrieben Aber: Es gibt eine Hilfestellung MPI_Cart_create(MPI_Comm oc, int ndims, int *dims, int *periods, int reorder, MPI_Comm *new_c); Kartesische Strukturen beliebiger Dimension können damit erzeugt werden Diese Funktion ist kollektiv Ein neuer Communicator wird erzeugt

22 Hilfe bei der Prozess Anordnung Wie sollte man die Prozesse in einem Grid/Torus anordnen? Normalerweise ist eine gleichmäßige Verteilung anzustreben MPI_Dims_create(int nnodes, int ndims, int *dims); Aufrufer darf die Nummer der Prozesse pro Dimension begrenzen Eine gleichmäßige Verteilung wird berechnet

23 Allgemeine Graphstrukturen Allgemeine Graphen müssen in einer anderen Notation beschrieben werden Weniger anschaulich als Grid Topologien MPI_Graph_create(MPI_Comm oc, int nnodes, int *index, int *edges, int reorder, MPI_Comm *nc); Es wird eine flache Kantenliste spezifiziert Anzahl der Knoten Akkumulierte Anzahl der Kanten Liste aller Kanten

24 Die Topologie erfragen Die Topologie eines Communicator kann natürlich erfragt werden MPI_Topo_test(MPI_Comm c, int *status) MPI_Cartdim_get(MPI_Comm c, int *ndims) MPI_Cart_get(MPI_Comm c, int max, int *dims, int *periods, int *coords) MPI_Cart_rank(MPI_Comm c, int *coords, int *rank) MPI_Card_coords(MPI_Comm c, int rank, int max, int *coords)

Programmieren mit MPI

Programmieren mit MPI Programmieren mit MPI MPI steht für: Message Passing Interface Standard. Spezifiziert die Schnittstelle einer Bibliothek für Nachrichtentausch. Standardisierung durch ein Gremium, in dem: Hersteller v.

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Programmieren mit MPI Prof. Dr. Walter F. Tichy Thomas Moschny Ali Jannesari Programmieren mit MPI MPI steht für: Message Passing Interface

Mehr

Kurzübersicht über die wichtigsten MPI-Befehle

Kurzübersicht über die wichtigsten MPI-Befehle Kurzübersicht über die wichtigsten MPI-Befehle Hans Joachim Pflug Rechen- und Kommunkationszentrum der RWTH Aachen Inhalt MPI_Init / MPI_Finalize...2 MPI_Comm_size / MPI_Comm_rank...3 MPI_Send / MPI_Recv...4

Mehr

Exkurs: Paralleles Rechnen

Exkurs: Paralleles Rechnen Münster Exkurs: Paralleles Rechnen Münster Exkurs: Paralleles Rechnen 2 /21 Konzepte für Parallelrechner P P P C C C Gemeinsamer Speicher Verteilter Speicher Verbindungsnetzwerk Speicher M, Münster Exkurs:

Mehr

4.4. MPI Message Passing Interface

4.4. MPI Message Passing Interface 4.4. MPI Message Passing Interface Ferienakademie 2009 Franz Diebold Agenda 1. Einführung, Motivation 2. Kommunikationsmodell 3. Punkt-Zu-Punkt-Kommunikation 4. Globale Kommunikation 5. Vergleich MPI und

Mehr

Message Passing Interface: MPI

Message Passing Interface: MPI Message Passing Interface: MPI Geschichte: Erster MPI Standard Etwa 60 Personen, von 40 Institutionen (29-30 April 1992) MPI 1 im November 1993 MPI 1.1 im Juni 1995 MPI 1.2 Juli 1997 (Nur Ergänzung zu

Mehr

Modelle der Parallelverarbeitung

Modelle der Parallelverarbeitung Modelle der Parallelverarbeitung Modelle der Parallelverarbeitung 12. Message Passing Interface Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Sommersemester 2017 1 / 36 Überblick

Mehr

Programmieren mit MPI

Programmieren mit MPI Programmieren mit MPI Dr. Victor Pankratius David J. Meder IPD Tichy Lehrstuhl für Programmiersysteme KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Programmieren

Mehr

de facto Standard für nachrichten-basierte Programmierung für FORTRAN, C und C++ =>

de facto Standard für nachrichten-basierte Programmierung für FORTRAN, C und C++ => 7. MPI Message Passing Interface de facto Standard für nachrichten-basierte Programmierung für FORTRAN, C und C++ => www.mpi-forum.de MPI Programmiermodell SPMD- Programmstruktur 6 Basisfunktionen: MPI_Init

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart, Nathanael Hübbe MPI Kollektive Operationen Neben Point-to-Point Kommunikation mittels Send & Recv verfügt

Mehr

Beschreiben Sie die Eigenschaften der verschiedenen Rechnertypen an Hand:

Beschreiben Sie die Eigenschaften der verschiedenen Rechnertypen an Hand: Hochschule Harz FB Automatisierung/Informatik Fachprüfung: Parallele Algorithmen (Musterklausur) Alle Hilfsmittel sind zugelassen! 1. Aufgabe Beschreiben Sie die Eigenschaften der verschiedenen Rechnertypen

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart & Felix Hoffmann hermann.lenhart@informatik.uni-hamburg.de MPI Einführung III Scatterv / Gatherv Programmbeispiele

Mehr

Parallelverarbeitung

Parallelverarbeitung Parallelverarbeitung WS 2015/16 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 18. Januar 2016 Betriebssysteme / verteilte Systeme Parallelverarbeitung

Mehr

Message Passing Interface (MPI)

Message Passing Interface (MPI) Westfälische Wilhelms-Universität Münster Ausarbeitung Message Passing Interface (MPI) Im Rahmen des Seminars Parallele und Verteilte Programmierung Julian Pascal Werra Themensteller: Prof. Dr. Herbert

Mehr

Parallele Programmierung mit MPI im Überblick

Parallele Programmierung mit MPI im Überblick Parallele Programmierung mit MPI im Überblick Dieter an Mey e-mail: anmey@rz.rwth-aachen.de 1 Parallelisierung im Überblick Parallelisierung mit OpenMP und MPI an einigen einfachen Beispielen Rechenarchitekturen

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart & Enno Zickler Dr. HermannJ. Lenhart hermann.lenhart@informatik.unihamburg.de MPI Einführung II: Kollektive

Mehr

Parallele Programmierung mit MPI

Parallele Programmierung mit MPI Parallele Programmierung mit MPI Marc-Oliver Straub entstanden aus: Parallele Programmierung mit MPI - ein Praktikum Warum Parallelprogrammierung große numerische Probleme (Simulation) optische Bildverarbeitung

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Programmtransformationen: Vom PRAM Algorithmus zum MPI Programm Prof. Dr. Walter F. Tichy Dr. Victor Pankratius Ali Jannesari Modell und

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart, Ulrich Körner, Nathanael Hübbe hermann.lenhart@zmaw.de MPI Einführung III: Kommunikation Standard = blockierende

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart hermann.lenhart@zmaw.de MPI Einführung I: Einführung Nachrichtenaustausch mit MPI MPI point-to-point communication

Mehr

Konzepte der parallelen Programmierung

Konzepte der parallelen Programmierung Fakultät Informatik, Institut für Technische Informatik, Professur Rechnerarchitektur Konzepte der parallelen Programmierung Parallele Programmiermodelle Nöthnitzer Straße 46 Raum 1029 Tel. +49 351-463

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart, Nathanael Hübbe hermann.lenhart@informatik.uni-hamburg.de MPI Kommunikation: Das wichtigste Kriterium für

Mehr

Einführung in das parallele Programmieren mit MPI und Java

Einführung in das parallele Programmieren mit MPI und Java Einführung in das parallele Programmieren mit und Java Seite 1 Übersicht Parallele Prozesse und Erste Schritte mit Kollektive Kommunikation Weitere Möglichkeiten Seite 2 Literatur (1) Homepage des 2-Forums

Mehr

Vorlesung Betriebssysteme II

Vorlesung Betriebssysteme II 1 / 15 Vorlesung Betriebssysteme II Thema 3: IPC Robert Baumgartl 20. April 2015 2 / 15 Message Passing (Nachrichtenaustausch) Prinzip 2 grundlegende Operationen: send(), receive() notwendig, wenn kein

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart, Enno Zieckler hermann.lenhart@informatik.uni-hamburg.de MPI Kommunikation: Das wichtigste Kriterium für

Mehr

Kapitel 1 Parallele Modelle Wie rechnet man parallel?

Kapitel 1 Parallele Modelle Wie rechnet man parallel? PRAM- PRAM- DAG- R UND R Coles und Kapitel 1 Wie rechnet man parallel? Vorlesung Theorie Paralleler und Verteilter Systeme vom 11. April 2008 der Das DAG- Das PRAM- Das werkmodell Institut für Theoretische

Mehr

Praktikum: Paralleles Programmieren für Geowissenschaftler

Praktikum: Paralleles Programmieren für Geowissenschaftler Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart hermann.lenhart@informatik.uni-hamburg.de MPI Einführung II: Send/Receive Syntax Broadcast Reduce Operation

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen

Mehr

Rechnernetze Übung 10. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011

Rechnernetze Übung 10. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011 Rechnernetze Übung 10 rank Weinhold Professur VSR akultät für Informatik TU hemnitz Juni 2011 Das Weiterleiten (Routing) erfüllt die wichtige ufgabe, einzelne Teilstrecken des Kommunikationsnetzes so zu

Mehr

Programmtransformationen: Vom PRAM Algorithmus zum MPI Programm

Programmtransformationen: Vom PRAM Algorithmus zum MPI Programm Programmtransformationen: Vom PRAM Algorithmus Dr. Victor Pankratius David J. Meder IPD Tichy Lehrstuhl für Programmiersysteme KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe

Mehr

Konzepte der Programmiersprachen

Konzepte der Programmiersprachen Konzepte der Programmiersprachen Sommersemester 2010 4. Übungsblatt Besprechung am 9. Juli 2010 http://www.iste.uni-stuttgart.de/ps/lehre/ss2010/v_konzepte/ Aufgabe 4.1: Klassen in C ++ Das folgende C

Mehr

Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich

Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich WS 02/03 Warum muss ein Objekt wissen, zu welcher Klasse es gehört? Damit die Klassenzugehörigkeit

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2009 5. April 2009 Vorteile bei der Verwendung höherer Programmiersprachen Vorteile bei der Verwendung höherer Programmiersprachen 1. Einfache Notation

Mehr

Einführung Paralleles Rechnen

Einführung Paralleles Rechnen Einführung Paralleles Rechnen Dr.-Ing. Andreas Herzog, Otto-von-Guericke Universität Magdeburg, Institut für Elektronik, Signalverarbeitung und Kommunikationstechnik 1 Gliederung 1. Einleitung 2. Konzepte,

Mehr

Kommunikationsmodelle

Kommunikationsmodelle Kommunikationsmodelle Dr. Victor Pankratius David J. Meder IPD Tichy Lehrstuhl für Programmiersysteme KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Grundlegende

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j,

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j, 6.2 Boolesche Matrixmultiplikation und Transitive Hülle Wir ersetzen nun im vorhergehenden Abschnitt die Distanzmatrix durch die (boolesche) Adjazenzmatrix und (min, +) durch (, ), d.h.: n C = A B; c ij

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven Kosub

Mehr

m-files sind Folgen von MATLAB-Anweisungen oder Daten-Files.

m-files sind Folgen von MATLAB-Anweisungen oder Daten-Files. MATLAB m-files m-files sind Folgen von MATLAB- oder Daten-Files. Erstellen von m-files Über File New M-file wird ein Texteditor geöffnet. Dort wird das m-file als ASCII-File erzeugt und unter name.m im

Mehr

Vorlesung Parallelrechner und Parallelprogrammierung, SoSe 2016

Vorlesung Parallelrechner und Parallelprogrammierung, SoSe 2016 Paralleles Programmieren mit OpenMP und MPI MPI-Übungsaufgaben Vorlesung Parallelrechner und Parallelprogrammierung, SoSe 2016 Hartmut Steinbuch Häfner, Centre Steinbuch for Computing Centre for Computing

Mehr

Semantische Bewertung und personalisierte Erzeugung von Übungsaufgaben zu Mathematik, Logik, Informatik

Semantische Bewertung und personalisierte Erzeugung von Übungsaufgaben zu Mathematik, Logik, Informatik Semantische Bewertung und personalisierte Erzeugung von Übungsaufgaben zu Mathematik, Logik, Informatik Johannes Waldmann (HTWK Leipzig) September 2, 2014 Beispiel (Sicht des Studenten) Gesucht ist ein

Mehr

Kapitel 1: Informationsverarbeitung durch Programme

Kapitel 1: Informationsverarbeitung durch Programme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 1: Informationsverarbeitung

Mehr

Datenparallelität. Bildverarbeitung Differentialgleichungen lösen Finite Element Methode in Entwurfssystemen

Datenparallelität. Bildverarbeitung Differentialgleichungen lösen Finite Element Methode in Entwurfssystemen Datenparallelität PPJ-38 Viele Prozesse bzw. Prozessoren führen zugleich die gleichen Operationen auf verschiedenen Daten aus; meist Datenelemente in regulären Datenstrukturen: Array, Folge Matrix, Liste.

Mehr

Vorlesung Parallelrechner und Parallelprogrammierung, SoSe 2016

Vorlesung Parallelrechner und Parallelprogrammierung, SoSe 2016 Paralleles Programmieren mit OpenMP und MPI Einführung in MPI Vorlesung Parallelrechner und Parallelprogrammierung, SoSe 2016 Steinbuch Centre for Computing Hartmut Häfner, Steinbuch Centre for Computing

Mehr

Kapitel 1: Informationsverarbeitung durch Programme

Kapitel 1: Informationsverarbeitung durch Programme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2018 Kapitel 1: Informationsverarbeitung

Mehr

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als Kapitel 4 Bäume 4.1 Bäume, Datenstrukturen und Algorithmen Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als eine Menge von Knoten und eine Menge von zugehörigen

Mehr

Tag 8 Repetitorium Informatik (Java)

Tag 8 Repetitorium Informatik (Java) Tag 8 Repetitorium Informatik (Java) Dozent: Michael Baer Lehrstuhl für Informatik 2 (Programmiersysteme) Friedrich-Alexander-Universität Erlangen-Nürnberg Wintersemester 2017/2018 Informatik-Repetitorium

Mehr

Informatik I (D-MAVT)

Informatik I (D-MAVT) Informatik I (D-MAVT) Übungsstunde 7 simon.mayer@inf.ethz.ch Distributed Systems Group, ETH Zürich Ablauf Nachbesprechung Übung 5 Besprechung/Vertiefung der Vorlesung Vorbesprechung Übung 7 Aufgabe 1:

Mehr

Repetitorium Informatik (Java)

Repetitorium Informatik (Java) Repetitorium Informatik (Java) Tag 6 Lehrstuhl für Informatik 2 (Programmiersysteme) Übersicht 1 Klassen und Objekte Objektorientierung Begrifflichkeiten Deklaration von Klassen Instanzmethoden/-variablen

Mehr

Programmieren in Java

Programmieren in Java Programmieren in Java Vorlesung 03: Schleifen Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg, Germany SS 2017 Peter Thiemann (Univ. Freiburg) Programmieren in Java JAVA 1 / 12 Inhalt Codequalität

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Programmiertechnik. Teil 4. C++ Funktionen: Prototypen Overloading Parameter. C++ Funktionen: Eigenschaften

Programmiertechnik. Teil 4. C++ Funktionen: Prototypen Overloading Parameter. C++ Funktionen: Eigenschaften Programmiertechnik Teil 4 C++ Funktionen: Prototypen Overloading Parameter C++ Funktionen: Eigenschaften Funktionen (Unterprogramme, Prozeduren) fassen Folgen von Anweisungen zusammen, die immer wieder

Mehr

Rechnerarchitektur SS 2013

Rechnerarchitektur SS 2013 Rechnerarchitektur SS 2013 Verbindungsnetze Michael Engel TU Dortmund, Fakultät für Informatik Teilweise basierend auf Material von Gernot A. Fink und R. Yahyapour 2. Juli 2013 Leistungsbewertung von Kommunikationsmechanismen

Mehr

2. Hausübung Algorithmen und Datenstrukturen

2. Hausübung Algorithmen und Datenstrukturen Prof. Dr. Gerd Stumme, Folke Eisterlehner, Dominik Benz Fachgebiet Wissensverarbeitung 7.4.009. Hausübung Algorithmen und Datenstrukturen Sommersemester 009 Abgabetermin: Montag, 04.05.009, 10:00 Uhr 1

Mehr

Klausur zu High Performance Computing 09. Juli 2011, SS 2011

Klausur zu High Performance Computing 09. Juli 2011, SS 2011 Alexander Vondrous, Britta Nestler, Fakultät IWI, Hochschule Karlsruhe Klausur zu High Performance Computing 09. Juli 2011, SS 2011 Es sind keine Hilfsmittel zugelassen. Bearbeitungszeit: 90 Minuten Aufgabe

Mehr

Probeklausur Programmieren in C Sommersemester 2007 Dipl. Biol. Franz Schenk 12. April 2007, Uhr Bearbeitungszeit: 105 Minuten

Probeklausur Programmieren in C Sommersemester 2007 Dipl. Biol. Franz Schenk 12. April 2007, Uhr Bearbeitungszeit: 105 Minuten Probeklausur Programmieren in C Sommersemester 2007 Dipl. Biol. Franz Schenk 12. April 2007, 13.00-14.45 Uhr Bearbeitungszeit: 105 Minuten Schalten Sie ihr Mobiltelefon aus. Bei der Klausur ist als einziges

Mehr

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +).

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit für A Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit des resultierenden Algo für A: t A (n) p(n) + q(n) t B (r(n)). Ist polynomiell, falls t B Polynom.

Mehr

C.3 Funktionen und Prozeduren

C.3 Funktionen und Prozeduren C3 - Funktionen und Prozeduren Funktionsdeklarationen in Pascal auch in Pascal kann man selbstdefinierte Funktionen einführen: Funktionen und Prozeduren THEN sign:= 0 Funktion zur Bestimmung des Vorzeichens

Mehr

Einführung in die Programmierung II. 5. Zeiger

Einführung in die Programmierung II. 5. Zeiger Einführung in die Programmierung II 5. Zeiger Thomas Huckle, Stefan Zimmer 16. 5. 2007-1- Bezüge als Objekte Bisher kennen wir als Bezüge (Lvalues) nur Variablennamen Jetzt kommt eine neue Sorte dazu,

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Das Nelder Mead Verfahren Sei f : R n R eine (nicht

Mehr

Algorithmen & Datenstrukturen Midterm Test 2

Algorithmen & Datenstrukturen Midterm Test 2 Algorithmen & Datenstrukturen Midterm Test 2 Martin Avanzini Thomas Bauereiß Herbert Jordan René Thiemann

Mehr

Serielle Kommunikation - Kodierung

Serielle Kommunikation - Kodierung Serielle Kommunikation - Kodierung (1.) Erstellen Sie nachfolgende Klasse: Dabei haben die Methoden folgende Funktionen: exists(): Überprüft, ob eine serielle Schnittstelle existiert getproperties(): Liefert

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Vgl. Oestereich Kap 2.7 Seiten 134-147

Vgl. Oestereich Kap 2.7 Seiten 134-147 Vgl. Oestereich Kap 2.7 Seiten 134-147 1 Sequenzdiagramme beschreiben die Kommunikation/Interaktion zwischen den Objekten (bzw. verschiedenen Rollen) eines Szenarios. Es wird beschrieben, welche Objekte

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Felder - Arrays. Typ feldname[] = new Typ[<ganze Zahl >]; Beispiel: double vektor[] = new double[5]; auch eine Initialisierung ist möglich.

Felder - Arrays. Typ feldname[] = new Typ[<ganze Zahl >]; Beispiel: double vektor[] = new double[5]; auch eine Initialisierung ist möglich. Felder Felder - Arrays Variable gleichen Types können in Feldern (array) zusammengefasst werden. Typ[] feldname; oder Typ feldname[]; dabei kann unter Benutzung des new-operators gleich die Dimension zugewiesen

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Vorlesung "Verteilte Systeme" Sommersemester Verteilte Systeme. 9. Verteilte Algorithmen

Vorlesung Verteilte Systeme Sommersemester Verteilte Systeme. 9. Verteilte Algorithmen Vorlesung "Verteilte Systeme" Sommersemester 999 Verteilte Systeme 9. Verteilte Algorithmen Bereits behandelte Bereiche Logische Uhren Keine globale Uhrensynchronisation möglich (Theorie) Kausalitätserhaltender

Mehr

4. OBDDs und Modellüberprüfung

4. OBDDs und Modellüberprüfung 4. OBDDs und Modellüberprüfung OBDD Ordered Binary Decision Diagrams Geordnete binäre Entscheidungsdiagramme Binäres Entscheidungsdiagramm: in der einfachsten Form ein binärer Entscheidungsbaum, in dem

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm Hintergrundinformationen zur Vorlesung GRUNDLAGEN DER INFORMATIK I Studiengang Elektrotechnik WS 02/03 AG Betriebssysteme FB3 Kirsten Berkenkötter 1 Vom Problem zum Programm Aufgabenstellung analysieren

Mehr

Parallel Programming: Message-Passing-Interface

Parallel Programming: Message-Passing-Interface Vorlesung Rechnerarchitektur 2 Seite 71 MPI-Einführung Parallel Programming: Voraussetzungen im Source-Code für ein MPI Programm: mpi.h includen Die Kommandozeilenparameter des Programms müssen an MPI_Init

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Wie teuer ist dynamischer Polymorphismus? 194

Wie teuer ist dynamischer Polymorphismus? 194 Wie teuer ist dynamischer Polymorphismus? 194 Function f vtable data RTTI ~Function get_name type name type info "Sinus\0" execute Nicht-polymorphe Methoden und reguläre Funktionen können in C++ direkt

Mehr

View-Dependent Simplification. Computer Graphics

View-Dependent Simplification. Computer Graphics View-Dependent Simplification in Computer Graphics Metovic Sasa - Mustafa Fettahoglu Salzburg, am 30.01.2003 INHALTSVERZEICHNIS EINFÜHRUNG ANSICHT ABHÄNGIGE VEREINFACHUNG AUFBAU EINES MESHES EDGE COLLAPSE

Mehr

Nicht-Kanonizität von AIGs Systemtheorie 1 Formale Systeme 1 # WS 2006/2007 Armin Biere JKU Linz Revision: 1.6

Nicht-Kanonizität von AIGs Systemtheorie 1 Formale Systeme 1 # WS 2006/2007 Armin Biere JKU Linz Revision: 1.6 Nicht-Kanonizität von AIGs BDDs Binar Decision Diagrams BDDs 2 neue dreistellige Basis-Operation ITE (i-then-else): Bedingung ist immer eine Variable ( ) ( ) gehen zurück au Shannon (deshalb auch Shannon-Graphs)

Mehr

Parallele und verteilte Programmierung

Parallele und verteilte Programmierung Thomas Rauber Gudula Rünger Parallele und verteilte Programmierung Mit 165 Abbildungen und 17 Tabellen Jp Springer Inhaltsverzeichnis 1. Einleitung 1 Teil I. Architektur 2. Architektur von Parallelrechnern

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2008/09 Einführung in die Informatik 2 Übungsblatt 10 Prof. Dr. Helmut Seidl, T. M. Gawlitza,

Mehr

FHZ. K20 Arrays. Lernziele. Hochschule Technik+Architektur Luzern Abteilung Informatik, Fach Programmieren. Inhalt

FHZ. K20 Arrays. Lernziele. Hochschule Technik+Architektur Luzern Abteilung Informatik, Fach Programmieren. Inhalt Inhalt 1. Einführung 2. Array-Komponenten von elementaren Datentypen 3. Array-Komponenten sind Objekte 4. Array als Parameter 5. Kopieren von Arrays 6. Beispiel 7. Vector versus Array Folie 1 Lernziele

Mehr

Wahlalgorithmen auf beliebigen Netzstrukturen. Verteilte Algorithmen (VA), WS 2003/04 43

Wahlalgorithmen auf beliebigen Netzstrukturen. Verteilte Algorithmen (VA), WS 2003/04 43 Wahlalgorithmen Überblick/Problemstellung Wahlalgorithmen auf Ringstrukturen Beispiel TokenRing Wahlalgorithmen auf Baumstrukturen Wahlalgorithmen auf beliebigen Netzstrukturen Verteilte Algorithmen (VA),

Mehr

Felder (1) Allgemeines

Felder (1) Allgemeines Felder (1) Allgemeines Gleichartige Daten, wie Tabelle von Zahlen, Datumswerten, Namen etc. Felder (engl. Array) stellen einen Verbundtyp dar, in dem mehrere Daten desselben Typs gespeichert werden Oft

Mehr

188.154 Einführung in die Programmierung Vorlesungsprüfung

188.154 Einführung in die Programmierung Vorlesungsprüfung Matrikelnummer Studienkennzahl Name Vorname 188.154 Einführung in die Programmierung Vorlesungsprüfung Donnerstag, 27.1.2005, 18:15 Uhr EI 7 Arbeitszeit: 60 min - max. 50 Punkte erreichbar - Unterlagen

Mehr

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de > Programmierbeispiele und Implementierung Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de 2 > Übersicht > Matrix Vektor Multiplikation > Mandelbrotmenge / Apfelmännchen berechnen > Kantendetektion

Mehr

Felder, Zeiger und Adreßrechnung

Felder, Zeiger und Adreßrechnung Felder, Zeiger und Adreßrechnung Felder bestehen aus Variablen eines einzigen Datentyps. Bisher kennen wir eindimensionale Felder. In C sind Felder mit beliebigen Dimensionen möglich. Unsere räumliche

Mehr

Kapitel 12: Induktive

Kapitel 12: Induktive Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter

Mehr

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 266 Lastbalancierung Motivation! Ein paralleles System besteht aus! verschiedenen Recheneinheiten,! die miteinander kommunizieren können! Warum

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

7. Transitive Hülle. Kante des Graphen. Zusatz-Kante der transitiven Hülle

7. Transitive Hülle. Kante des Graphen. Zusatz-Kante der transitiven Hülle In Anwendungen ist es oft interessant zu wissen, ob man überhaupt von einem Knoten v zu einem Knoten w gelangen kann, ganz gleich wie lang der Weg auch ist. Gegeben sei dabei ein gerichteter Graph G =

Mehr

Parallele FFT-Algorithmen

Parallele FFT-Algorithmen Parallele FFT-Algorithmen Jörg Haeger 11. Juli 1996 1 Die diskrete Fourier-Transformation (DFT) 2 2 Permutationen und Graphen 2 2.1 Permutationen.............................. 2 2.2 Graphen..................................

Mehr

Software Entwicklung 1. Rekursion. Beispiel: Fibonacci-Folge I. Motivation. Annette Bieniusa / Arnd Poetzsch-Heffter

Software Entwicklung 1. Rekursion. Beispiel: Fibonacci-Folge I. Motivation. Annette Bieniusa / Arnd Poetzsch-Heffter Software Entwicklung 1 Annette Bieniusa / Arnd Poetzsch-Heffter AG Softech FB Informatik TU Kaiserslautern Rekursion Bieniusa/Poetzsch-Heffter Software Entwicklung 1 2/ 27 Motivation Beispiel: Fibonacci-Folge

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Musterlösung zu Übungsserie 09

Musterlösung zu Übungsserie 09 Musterlösung zu Übungsserie 09 Prof. Dr. H. Schweppe I. Dageförde M. Waldvogel Aufgabe 9.1 Für diese Aufgabe gibt es nicht genau eine beste Lösung. Zunächst sei bemerkt, dass eine rekursive Lösung möglich

Mehr

1) Gegeben Sei der auf der rechten Seite beschriebene Prozess mit folgenden globalen Deklarationen. const int N := 4; chan c[n]; int wert := 0;

1) Gegeben Sei der auf der rechten Seite beschriebene Prozess mit folgenden globalen Deklarationen. const int N := 4; chan c[n]; int wert := 0; 1) Gegeben Sei der auf der rechten Seite beschriebene Prozess mit folgenden globalen Deklarationen. const int N := 4; chan c[n]; int wert := 0; Weiterhin hat der Prozess folgende lokale Deklaration. void

Mehr

Arrays. Einleitung. Deklarieren einer Array Variablen

Arrays. Einleitung. Deklarieren einer Array Variablen Arrays Einleitung bisher jede Variable einzeln deklariert: 12 3 14 12 32 32 3 32 5 3 double sum; int count; ÿ Sie können Zweck und Aufbau von Array-Datentypen erklären ÿ Sie können einen Array korrekt

Mehr

Programmieren. Aufgabe 1 (Eine erste Datenstruktur)

Programmieren. Aufgabe 1 (Eine erste Datenstruktur) Prof. Dr. S.-J. Kimmerle (Vorlesung) Dipl.-Ing. (FH) V. Habiyambere (Übung) Institut BAU-1 Fakultät für Bauingenieurwesen und Umweltwissenschaften Herbsttrimester 2016 Aufgabe 1 (Eine erste Datenstruktur)

Mehr

TI-89. Gleichungssysteme

TI-89. Gleichungssysteme TI-89 Gleichungssysteme Hans Berger 005 Lineare Gleichungssysteme Der TI-89 kann beliebige Objekte in Variable speichern, auch ganze Gleichungen. Man kann somit beliebige Gleichungen z.b. in g1, g, g3,

Mehr