Der χ 2 -Test (Chiquadrat-Test)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Der χ 2 -Test (Chiquadrat-Test)"

Transkript

1 Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von den erwarteten Häufigkeiten unterscheiden. Warnung: In den hier gezeigten Beispielen stellt der χ 2 -Test eine Näherung für das eigentliche Testproblem dar. Daher ist vor der Anwendung zu prüfen, ob die (weiter unten genannten) Bedingungen erfüllt sind. Andernfalls ist ein exakter Test (Fisher-Test) ins Auge zu fassen. Beispiel (fiktiv) Es wird vermutet, dass in einer grösseren Stadt der Grossteil der weiblichen und männlichen Jugendlichen ihre Kleider in unterschiedlichen Geschäften einkauft. Um die Signifikanz dieser Hypothese zu untersuchen, wurden 120 zufällig ausgewählte Jugendliche befragt, in welchem Geschäft sie ihre Kleider am liebsten einkaufen: Kleidergeschäft A Kleidergeschäft B Kleidergeschäft C andere Summe Beobachtete Häufigkeiten Da in der Umfrage nur die populärsten Kleidergeschäfte erfasst wurden und bei der Kategorie andere kein Vergleich möglich ist, beschränkt man sich auf die Geschäfte A, B und C: Kleidergeschäft A Kleidergeschäft B Kleidergeschäft C Summe Dies ist eine Kontingenztafel (Kreuztabelle), die alle Ausprägungskombinationen der Merkmale Geschlecht (m, f) und bevorzugtes Kleidergeschäft (A, B, C) enthält. Die Nullhypothese H 0 Wenn wir kein Vorwissen über die Verhältnisse in der Grundgesamtheit haben, ist es sinnvoll, (vorläufig) davon auszugehen, dass keines der Geschäfte von weiblichen (oder männlichen) Jugendlichen bevorzugt wird und dass Unterschiede in der Stichprobe zufälliger Natur sind. Dieser Standpunkt entspricht der Nullhypothese H 0. 1

2 Beachte: Die Nullhypothese ist eine Aussage über die Grundgesamtheit. Die Alternativhypothese H 1 Die Alternativhypothese (H 1 ) ist komplementär zur Nullhypothese. Sie besagt, dass es einen Unterschied gibt. In Bezug das Beispiel bedeutet dies, dass in mindestens einem Geschäft weibliche Jugendliche häufiger (oder seltener) einkaufen als ihre männlichen Altersgenossen. Beachte: Auch die Alternativhypothese ist eine Aussage über die Grundgesamtheit. Gerichtete Alternativhypothese Bei zwei Geschäften wäre es möglich, die Alternativhypothese so zu präzisieren, dass beispielsweise weibliche Jugendliche in einem Geschäft häufiger (oder seltener) einkaufen als im anderen. Bei drei oder mehr Kategorien ist es jedoch nicht mehr sinnvoll eine Richtung für die Bevorzugung anzugeben; d. h. eine gerichtete Alternativhypothese zu formulieren. Moral: Bei mehr als zwei Ausprägungen ist die Alternativhypothesen immer ungerichtet. Anzahl Freiheitsgrade Für weiter unten folgenden Überlegungen geht man davon aus, dass die Randsummen (Geschäfte: 30, 40, 30) und (Geschlecht: 45, 50) unveränderlich sind. In diesem Fall können nicht mehr alle Häufigkeiten im Innern der Tabelle unabhängig von den übrigen gewählt werden. Genauer: Setzt man alle Randsummen als fest voraus, so ist die Tabelle durch die Angabe von zwei Häufigkeiten eindeutig bestimmt. Diese zwei Wahlmöglichkeiten bezeichnet man als Anzahl Freiheitsgrade (df = degrees of freedom). Bei zwei Merkmalen mit jeweils n 1 bzw. n 2 Ausprägungen gilt allgemein: df = (n 1 1) (n 2 1). Im Beispiel gilt deshalb df = (3 1) (2 1) = 2. Erwartete Häufigkeiten Die aufgrund der Nullhypothese erwarteten Häufigkeiten berechnet man so: Für jede innere Zelle der Tabelle bildet man das Produkt der entsprechenden Zeilen- und Spaltensumme und dividiert es durch das Gesamttotal (100): Kleidergeschäft A Kleidergeschäft B Kleidergeschäft C Summe Man beachte, dass diese Berechnungsvorschrift die unterschiedlichen Häufigkeiten in den Randsummen berücksichtigt. Das bedeutet auch, dass die Stichprobe nicht zwingend aus 2

3 gleich vielen weiblichen und männlichen Jugendlichen bestehen muss. Die Testidee Bei den χ 2 -Tests berechnen wir ein Mass dafür, wie sehr die beobachteten Werte von den erwarteten Werten abweichen. Die Vorschrift dafür ist relativ einfach: Berechne für jede innere Zelle der Kontingenztafel in der Zeile i und der Kolonne j die Differenz aus dem beobachteten Wert (B ij ) und dem erwarteten Wert (E ij ), quadriere dieses Differenz und teile sie durch den erwarteten Wert. Bilde anschliessend die Summe dieser Quotienten. Formal: χ 2 = ( ) 2 Bij E ij Zelle ij Je grösser χ 2 ist, desto mehr weicht das beobachtete vom erwarteten Ergebnis (der Nullhypothese) ab. E ij Mit den Beispieldaten erhält man: χ 2 = ( ) (12 18)2 18 ( ) ( ) (28 22)2 22 ( ) Die Wahrscheinlichkeitsdichte Um den berechneten Wert zu interpretieren, benötigen wir die Wahrscheinlichkeitsdichtefunktion der χ 2 -Verteilung zur Anzahl Freiheitsgrade df = dp x Wie diese Funktion genau definiert ist, spielt hier keine Rolle. Wichtig ist nur, dass ihr Graph mit den Koordinatenachsen eine Fläche vom Inhalt 1 (100%) einschliesst. Die Entscheidung Die rot eingefärbte Fläche stellt die Wahrscheinlichkeit aller Ergebnisse dar, die einen χ 2 - Wert von 6.13 oder grösser haben; also gleich stark oder stärker von der Nullhypothese abweichen als das beobachtete Ergebnis. 3

4 Der Inhalt dieser farbigen Fläche ist der p-wert und beträgt Flächeneinheiten. Auch hier braucht man sich über die konkrete Berechnung nicht den Kopf zu zerbrechen. Es genügt, wenn die Idee anschaulich verstanden wird. Da der p-wert das Signifikanzniveau von 5% nicht übertrifft, entscheiden wir uns gegen die Nullhypothese: Die Wahl des Kleidergeschäfts ist bei jugendlichen Kunden offenbar abhängig vom Geschlecht (α = 5%, p-wert = , n = 100, df = 2). Voraussetzungen Da der χ 2 -Test nur eine Näherung für unser eigentliches Testproblem darstellt, muss geprüft werden, ob folgende Voraussetzungen erfüllt sind: (a) Die Einzelbeobachtungen müssen durch eine Zufallsstichprobe zustande kommen; d. h. unabhängig voneinander sein. (b) Die erwarteten Häufigkeiten pro Zelle sollten grösser als 5 sein. Andernfalls ist der exakte Fisher-Yates-Test zu verwenden (siehe weiter unten). Bemerkung Das Resultat des χ 2 -Tests auf Unabhängigkeit sagt uns nur, dass es irgendwo in den Daten mindestens eine Zeile gibt, deren Häufigkeiten sich überzufällig unterscheiden. Der Test sagt uns aber nicht, um welche Zeilen es sich handelt. Dafür sind weitere Analysen (sogenannte Post-Hoc-Tests) nötig, bei denen man jeweils die Merkmalspaarungen einzeln untersucht. Der χ 2 -Test mit dem TI-84 Plus Zuerst müssen die beobachteten Häufigkeiten im Matrix-Editor in eine Matrix (z. B. [A]) eingegeben werden. 2ND/MATRIX/EDIT/ENTER/1:[A]/ENTER/3x2/ENTER/13/ENTER/.../2ND QUIT Dann wählt man die Funktion STAT/TESTS/C:χ 2 -Test... zur Untersuchung der Unabhängigkeit zweier Merkmale. Expected: [A] der Name einer Matrix mit den beobachteten Häufigkeiten. Observed: [B] der Name einer Matrix, in der die erwarteten Häufigkeiten gespeichert werden sollen. (optional) Wählt man Calculate, wird der χ 2 -Wert und der p-wert berechnet und angezeigt. Wählt man Draw, werden χ 2 - und p-wert grafisch dargestellt. Evtl. muss man hier 9:ZoomStat aus dem ZOOM-Menü wählen. Der χ 2 -Test mit R Die folgende Eingabe erzeugt aus der Liste der Elemente 13, 28, 14, 17, 12, 16 eine Matrix mit 3 Zeilen und 2 Kolonnen, wobei die Elemente standardmässig kolonnenweise eingefüllt werden. 4

5 > daten <- matrix(c(13,28,14,17,12,16), 3, 2) Auf Wunsch können die Zeilen und Kolonnen in der entsprechenden Reihenfolge beschriftet werden. Dies ist aber nicht unbedingt nötig. > dimnames(daten) <- list( c("a", "B", "C"), c("f", "m")) Zur Kontrolle kann die Datenmatrix angezeigt werden: > daten f m A B C Wenn alles stimmt, kann der Test durchgeführt werden: > chisq.test(daten) Pearson s Chi-squared test data: daten X-squared = , df = 2, p-value = R zeigt eine Warnung an, falls Voraussetzung (b) verletzt ist. Der exakte Test von Fisher und Yates Falls die Voraussetzung (b) für den χ 2 -Test verletzt ist, kann man den exakten Test von Fisher und Yates verwenden. Die Vorbereitung der Eingabedaten ist dieselbe. Die Elemente der Matrix werden von oben nach unten und dann von links nach rechts interpretiert. Die Dimension und die Beschriftung der Matrix bezieht sich zerst auf die drei Zeilen und dann auf die zwei Kolonnen. daten <- matrix(c(13,28,14,17,12,16),3,2) dimnames(daten) <- list(c("a","b","c"),c("f","m")) fisher.test(daten) Der Fisher-Yates-Test ergibt einen p-wert von was mit dem des χ 2 -Tests vergleichbar ist. Bei grösseren Stichproben muss man etwas länger auf das Resultat warten, da dieser Test sehr rechenintensiv ist. 5

Tutorial:Unabhängigkeitstest

Tutorial:Unabhängigkeitstest Tutorial:Unabhängigkeitstest Mit Daten aus einer Befragung zur Einstellung gegenüber der wissenschaftlich-technischen Entwicklungen untersucht eine Soziologin den Zusammenhang zwischen der Einstellung

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten:

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten: Verfahren zur Analyse von Nominaldaten Chi-Quadrat-Tests Vier-Felder Kontingenztafel Mehrfach gestufte Merkmale Cramers V, Kontingenzkoeffizient, Phi-Koeffizient Muster aller Chi-Quadrat-Verfahren eine

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Bivariater Zusammenhang in der Vierfeldertafel PEΣO

Bivariater Zusammenhang in der Vierfeldertafel PEΣO Bivariater Zusammenhang in der Vierfeldertafel PEΣO 12. Oktober 2001 Zusammenhang zweier Variablen und bivariate Häufigkeitsverteilung Die Bivariate Häufigkeitsverteilung gibt Auskunft darüber, wie zwei

Mehr

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit 121 Zwei kategoriale Merkmale Homogenität Unabhängigkeit 122 Beispiel Gründe für die Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährige Schulkinder in Michigan, USA Grund für Beliebtheit weiblich

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Tutorial: Anpassungstest

Tutorial: Anpassungstest Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom

Mehr

Alternative Darstellung des 2-Stcihprobentests für Anteile

Alternative Darstellung des 2-Stcihprobentests für Anteile Alternative Darstellung des -Stcihprobentests für Anteile DCF CF Total n 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut

Mehr

3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten)

3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) 3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) Beispiel: Gründe für Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährigen Schulkinder in Michigan, USA warum ist man bei seinen Klassenkameraden

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von

Mehr

Musterlösung zu Serie 8

Musterlösung zu Serie 8 Prof. Dr. W. Stahel, Dr. J. Ernest Regression HS 2017 Musterlösung zu Serie 8 1. Im Data Frame http://stat.ethz.ch/teaching/datasets/wbl/umwelt.dat sind die Ergebnisse einer Umfrage zum Umweltschutz gegeben.

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit Kapitel 17 Unabhängigkeit und Homogenität 17.1 Unabhängigkeit Im Rahmen der Wahrscheinlichkeitsrechnung ist das Konzept der Unabhängigkeit von zentraler Bedeutung. Die Ereignisse A und B sind genau dann

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen ob die in diesem Datensatz untersuchte

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

Biometrieübung 11 Kontingenztafeln

Biometrieübung 11 Kontingenztafeln Biometrieübung 11 (Kontingenztafeln) - Aufgabe Biometrieübung 11 Kontingenztafeln Aufgabe 1 2x2-Kontingenztafeln 100 weibliche Patienten sind mit einer konventionellen Therapie behandelt worden 85 Patientinnen

Mehr

Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister

Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister Quantitative Auswertung II Korpuslinguistik Heike Zinsmeister 16.12.2011 Unterschiedstest Fall 1: unabhängige Stichproben Daten eine unabhängige Variable auf Nominal- oder Kategorialniveau eine abhängige

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 6 Alternativer Lösungsweg für SPSS Version 17 und älter 10 Alte Dialogfelder: Eindimensionaler Chi²-Test

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Statistische Überlegungen: Eine kleine Einführung in das 1 x 1

Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 PD Dr. Thomas Friedl Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm München, 23.11.2012 Inhaltsübersicht Allgemeine

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

Grundidee. χ 2 Tests. Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen. Grundidee. Annahme: Einfache Zufallsstichprobe (X 1,..., X n ).

Grundidee. χ 2 Tests. Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen. Grundidee. Annahme: Einfache Zufallsstichprobe (X 1,..., X n ). Grundidee χ 2 -Anpassungstest χ 2 -Unabhängigkeitstest χ 2 -Homogenitätstest χ 2 Tests Grundidee Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen Annahme: Einfache Zufallsstichprobe (X 1,,

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Chi² Test und Kontingenzkoeffizient. - aber keine natürliche Reihenfolge

Chi² Test und Kontingenzkoeffizient. - aber keine natürliche Reihenfolge Chi² Test und Kontingenzoeffizient Für nominalsalierte Daten: - diese haben unterschiedliche Ausprägung, - aber eine natürliche Reihenfolge 1. Chi² Test Test nominalsalierter Daten Vergleich von beobachteten

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

Mehrere kategoriale Merkmale

Mehrere kategoriale Merkmale Kapitel 3 Mehrere kategoriale Merkmale 3.1 Wie kann man zwei kategoriale Merkmale numerisch beschreiben? Kontingenztafeln (Kreuztabellen) erzeugt man wiederum mit table: R> CMMRCIAL

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile

Alternative Darstellung des 2-Stichprobentests für Anteile Alternative Darstellung des -Stichprobentests für Anteile DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut

Mehr

Tutorial: Vergleich von Anteilen

Tutorial: Vergleich von Anteilen Tutorial: Vergleich von Anteilen Die Sicherung des Pensionssystems ist in vielen Ländern ein heikles Thema. Noch stärker als der Streit, wer wann welche Pension beziehen können soll, tobt ein Streit, welche

Mehr

Statistik I. Sommersemester 2009

Statistik I. Sommersemester 2009 I Sommersemester 2009 I χ 2 =?!? Nächste Woche: Maße für ordinale, nominal/intervallskalierte und intervallskalierte Daten I Zum Nachlesen Agresti/Finlay: Kapitel 8.1-8.4 Gehring/Weins: Kapitel 7.1 Schumann:

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Aufgaben zu Kapitel 3

Aufgaben zu Kapitel 3 Aufgaben zu Kapitel 3 Aufgabe 1 a) Berechnen Sie einen t-test für unabhängige Stichproben für den Vergleich der beiden Verarbeitungsgruppen strukturell und emotional für die abhängige Variable neutrale

Mehr

Statistik I. Sommersemester 2009

Statistik I. Sommersemester 2009 I Sommersemester 2009 I Wiederholung/Einführung χ 2 =?!? I Wiederholung/Einführung χ 2 =?!? Nächste Woche: Maße für ordinale, nominal/intervallskalierte und intervallskalierte Daten I Zum Nachlesen Agresti/Finlay:

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Wiederholung. Statistik I. Sommersemester 2009

Wiederholung. Statistik I. Sommersemester 2009 Statistik I Sommersemester 2009 Statistik I (1/21) Daten/graphische Darstellungen Lage- und Streuungsmaße Zusammenhangsmaße Lineare Regression Wahrscheinlichkeitsrechnung Zentraler Grenzwertsatz Konfidenzintervalle

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne

Mehr

Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen

Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen Statistische Überprüfung von Hypothesen Hypothesen sind allgemeine Aussagen über Zusammenhänge zwischen empirischen und logischen Sachverhalten.Allgemein bezeichnet man diejenigen Aussagen als Hypothesen,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Sven Garbade. Statistik 1

Sven Garbade. Statistik 1 χ 2 -Test für nominale Daten Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) χ 2 -Test für nominale

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Kreuztabellenanalyse. bedingte Häufigkeiten

Kreuztabellenanalyse. bedingte Häufigkeiten Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Kreuztabellenanalyse bedingte Häufigkeiten 07. Dezember 2007 Michael Tiemann, Bundesinstitut für Berufsbildung,

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Klausur Wiederholung t-tests. Zusammenfassung. Hypothesentests II. Statistik I. Sommersemester Statistik I Hypothesentests I (1/37)

Klausur Wiederholung t-tests. Zusammenfassung. Hypothesentests II. Statistik I. Sommersemester Statistik I Hypothesentests I (1/37) Hypothesentests II Statistik I Sommersemester 2009 Statistik I Hypothesentests I (1/37) Logik/z-Test Statistische Signifikanz 00 01 02 03 04 4 2 0 2 4 Statistik I Hypothesentests I (2/37) Informationen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Hypothesentests II. Statistik I. Sommersemester Klausur Wiederholung t-tests. Zusammenfassung. Statistik I Hypothesentests I (1/37)

Hypothesentests II. Statistik I. Sommersemester Klausur Wiederholung t-tests. Zusammenfassung. Statistik I Hypothesentests I (1/37) Hypothesentests II Statistik I Sommersemester 2009 Statistik I Hypothesentests I (1/37) Klausur Logik/z-Test Statistische Signifikanz 00 01 02 03 04 4 2 0 2 4 Statistik I Hypothesentests I (2/37) Informationen

Mehr

Bivariate Verteilungen

Bivariate Verteilungen Bivariate Verteilungen Tabellarische Darstellung: Bivariate Tabellen entstehen durch Kreuztabulation zweier Variablen. Beispiel: X Y Student(in) Herkunft Fakultät 0001 Europa Jura 000 Nicht-Europa Medizin

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Übungsblatt 3: Bivariate Deskription I (Sitzung 4)

Übungsblatt 3: Bivariate Deskription I (Sitzung 4) 1 Übungsblatt 3: Bivariate Deskription I (Sitzung 4) Aufgabe 1 Eine Kreuztabelle beinhaltet unterschiedliche Verteilungen. a) Geben Sie an, wie diese Verteilungen heißen und was sie beinhalten. b) Welche

Mehr

Die widerspenstige. Kapitel 5: Chi-Quadrat oder.. Merkmal B: Spalten. Merkmal A: Zeilen. Kreuztabelle zweidimensionale Häufigkeitstabelle

Die widerspenstige. Kapitel 5: Chi-Quadrat oder.. Merkmal B: Spalten. Merkmal A: Zeilen. Kreuztabelle zweidimensionale Häufigkeitstabelle Kapitel 5: Chi-Quadrat oder.. Die widerspenstige Zähmung des Zufalls Ein Lustspiel in mehreren Akten 1. Akt: Die Kreuztabelle Kreuztabelle zweidimensionale Häufigkeitstabelle Merkmal 2 Merkmal 1 y 1 y

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

r=0.666 Number of people who drowned by falling into a pool correlates with Films Nicolas Cage appeared in 140 drownings 6 films 4 films 120 drownings

r=0.666 Number of people who drowned by falling into a pool correlates with Films Nicolas Cage appeared in 140 drownings 6 films 4 films 120 drownings r=.666 Number of people who drowned by falling into a pool correlates with Films Nicolas Cage appeared in 5 6 7 8 9 6 films drownings films drownings films 8 drownings Nicholas Cage Swimming pool drownings

Mehr

Chi Quadrat-Unabhängigkeitstest

Chi Quadrat-Unabhängigkeitstest Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17

Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17 Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/17 Übersicht Besitzen die Daten, die statistisch ausgewertet werden sollen, kategoriales Skalenniveau, unterscheidet man die folgenden Szenarien:

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Lösungen zum Aufgabenblatt 2: Bivariate Kreuztabellen mit nominalem Messniveau

Lösungen zum Aufgabenblatt 2: Bivariate Kreuztabellen mit nominalem Messniveau Lösungen zum Aufgabenblatt 2 1 Lösungen zum Aufgabenblatt 2: Bivariate Kreuztabellen mit nominalem Messniveau Nach dem Laden des Datensatzes (G:\DATEN\METH2\DATEN\EUROBAR\ Euba30.sav) ist zunächst der

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Alte Klausur. Masterstudiengang Sportwissenschaften / Sportmanagement. Abschlussklausur Statistik. Sommersemester , 11:30 Uhr.

Alte Klausur. Masterstudiengang Sportwissenschaften / Sportmanagement. Abschlussklausur Statistik. Sommersemester , 11:30 Uhr. Masterstudiengang Sportwissenschaften / Sportmanagement Abschlussklausur Statistik Sommersemester 2013 2013-06-25, 11:30 Uhr Hinweise: Name: Matrikel-Nr. Sie dürfen alle geschriebenen und gedruckten Unterlagen

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

5. Kolmogorov-Smirnov-Test und χ 2 -Anpassungstest

5. Kolmogorov-Smirnov-Test und χ 2 -Anpassungstest Empirische Wirtschaftsforschung Prof. Dr. Ralf Runde 5. Kolmogorov-Smirnov-Test und χ 2 -Anpassungstest Ein wesentliches Merkmal nichtparametrischer Testverfahren ist, dass diese im Allgemeinen weniger

Mehr

Methodenlehre. Vorlesung 13. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 13. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 13 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 19.05.15 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Juni 2014 Waldherr / Christodoulides Einführung in Quantitative Methoden 1/46 Anpassungstests allgemein Gegeben: Häufigkeitsverteilung

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Testen von Hypothesen, Beurteilende Statistik

Testen von Hypothesen, Beurteilende Statistik Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Zweifache Varianzanalyse

Zweifache Varianzanalyse Zweifache Varianzanalyse Man kann mittels VA auch den (gleichzeitigen) Einfluss mehrerer Faktoren (unabhängige Variablen) auf ein bestimmtes Merkmal (abhängige Variable) analysieren. Die Wirkungen werden

Mehr