Einige Grundbegriffe der Statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einige Grundbegriffe der Statistik"

Transkript

1 Einige Grundbegriffe der Statistik Philipp Mitteröcker Basic terms Statistik (statistics) stammt vom lateinischen statisticum ( den Staat betreffend ) und dem italienischen statista ( Staatsmann" oder Politiker ). Historical roots 17th century Handling of demographic and economic data ( political arithmetic ) John Graunt (1662) Observations on the Bills of Mortality Development of Probability Theory by Pascal, Fermat, and Bernoulli 1794 The method of least squares was described by Carl Friedrich Gauss 19th and early 20th century Francis Galton, Florence Nightingale, Karl Pearson, Ronald A. Fischer

2 Historical roots Basic terms Applied statistics Descriptive statistics Inferential statistics (hypothesis tests, confirmatory a.) Exploratory analysis, modeling, data mining Mathematical statistics Basic terms Biometrics, psychometrics, econometrics, morphometrics... metron = measurement

3 Basic terms Measurement The process of assigning a number to an a3ribute (or phenomenon) according to a rule or set of rules. Sample A collec:on of individual observa:ons selected by a specifc procedure. Popula3on Totality of individual observa:ons about which inferences are to be made Data (sing. Datum), Informa3on, Knowledge Theory, Hypothesis Basic terms Variable A symbol that stands for a value that may vary. Univariat statistics Multivariat statistics Bivariat statistics Messungen Präzision (precision) Maß für die Verlässlichkeit bzw. Reproduzierbarkeit einer Messung (reproducibility). Genauigkeit (accuracy) Ein Maß dafür, wie nahe die experimentellen Ergebnisse dem eigentlichen Wert kommen. Verzerrung (bias) Differenz zwischen Mittelwert der Messungen und dem Referenz- oder Erwartungswert.

4 Messungen Messungen Estimating measurement error by repeated measures Random error Systematic error Messungen Versehen, Ausreißer (outlier) Fehler oder wich:ge Messung?

5 Messungen Longitudinal versus cross-sectional data Datenskalierung Nominalskala (nominal scale, categorial data) z.b. Geschlecht, Nationalität Ordinalskala (ordinal scale) z.b. Noten, Rangfolgen, viele Variablen in der Psychometrie Intervallskala (interval scale) kein natürlicher Nullpunkt, d.h. Differenzen aber keine Verhältnisse, z.b. Grad Celsius Verhältnisskala (ratio scale) z.b. Körpergröße, Anzahl der Bücher die ich besitze, Häufigkeiten, Grad Kelvin Datenskalierung Diskrete (meristische) Daten keine Zwischenwerte, z.b. natürliche Zahlen, Rangfolgen, Anzahl von Fischen in einem Teich, Skala von 1 10 Kontinuierliche Daten z.b. reelle Zahlen, cm, kg, Grad Celsius

6 Deskriptive Statistik Deskriptive Statistik Frequency plots Deskriptive Statistik Frequency plots

7 Deskriptive Statistik Scatter plot Deskriptive Statistik Zentrale Tendenz (central tendency) Mittelwert (mean), gewichteter Mittelwert (weighted mean) arithmetisches, geometrisches, harmonisches Mittel Modus (mode), Median (median) Streuung (dispersion, spread) Spanneweite (range), Varianz (variance), Standardabweichung (standard deviation), Quantilen (quantiles) Coefficient of Variation Deskriptive Statistik The problem of multimodal distributions and outliers

8 Datenskalierung Nominalskala (nominal scale, categorial data) mode, frequencies (contingency tables) Ordinalskala (ordinal scale) median, percentile Intervallskala (interval scale) mean, standard deviation, correlation, regression, analysis of variance Verhältnisskala (ratio scale) geometric mean, coefficient of variation, logarithms Deskriptive Statistik How to describe a bivariate distribu:on? Bivariate statistics Covariance, Correlation Korrelation -1 < r < 1 r = 0... kein linearer Zusammenhang r = 1 oder streng linearer Zusammenhang 1... positiver Zusammenhang negativ Zusammenhang

9 Bivariate Verteilung s 12 = Equal frequency ellipses Data matrix Var. 1 Var. 2 Var. 3 Var Case 1 Case 2 Case 3 Case 4 Case 5... Statistische Räume B A B A Q-space R-space

10 Multivariate Verteilung Beschreibung einer multivariaten Normalverteilung durch die Varianz-Kovarianzmatrix s 1 2 s 12 s 1n s 21 s 2 2 s n1 s n 2 Multivariate Verteilung Korrelationsmatrix 1 r 12 r 1n r 21 1 r n1 1 Bivariate Verteilung Diagonalisieren einer Kovarianzmatrix

11 Hauptkomponenten Hauptkomponentenanalyse Principal Component Analysis (PCA) Rotation von Datenräumen Discriminant function analysis

Syntax. Ausgabe *Ü12. *1. corr it25 with alter li_re kontakt.

Syntax. Ausgabe *Ü12. *1. corr it25 with alter li_re kontakt. Syntax *Ü2. *. corr it25 with alter li_re kontakt. *2. regression var=it25 alter li_re kontakt/statistics /dependent=it25 /enter. regression var=it25 li_re kontakt/statistics /dependent=it25 /enter. *3.

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Gundlagen empirischer Forschung & deskriptive Statistik Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Grundlagen Vorbereitung einer empirischen Studie Allgemeine Beschreibung

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik 1. Deskriptive Statistik 2. Induktive Statistik 1. Deskriptive Statistik 1.0 Grundbegriffe 1.1 Skalenniveaus 1.2 Empirische Verteilungen 1.3 Mittelwerte 1.4 Streuungsmaße 1.0

Mehr

Correlational analysis

Correlational analysis Correlational analysis Students performance on an exam are influenced by multiple factors. Two possible factors are (i) anxiety and (ii) study time. In order to test the effect of these two factors on

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

SAP Predictive Challenge - Lösung. DI Walter Müllner, Dr. Ingo Peter, Markus Tempel 22. April 2015

SAP Predictive Challenge - Lösung. DI Walter Müllner, Dr. Ingo Peter, Markus Tempel 22. April 2015 SAP Predictive Challenge - Lösung DI Walter Müllner, Dr. Ingo Peter, Markus Tempel 22. April 2015 Teil II - Lösung Teil II-1: Fachbereich (automated mode) Teil II-2: Experte (PAL HANA) Teil II-3: Vergleich

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Stichwortverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Stichwortverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Stichwortverzeichnis Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch):

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Statistik mit R, Sitzung am

Statistik mit R, Sitzung am Statistik mit R, Sitzung am 19.06.07 Mike Kühne 1 R-Kurs INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Bivariate Statistik 3 1.1 Tabellen.............................. 3 1.2 Zusammenhangsmaße für nominal skalierte

Mehr

Analyse von Querschnittsdaten. Arten von Variablen und Strategien der Datenanalyse

Analyse von Querschnittsdaten. Arten von Variablen und Strategien der Datenanalyse Analyse von Querschnittsdaten Arten von Variablen und Strategien der Datenanalyse Gliederung 1. Arten von Variablen 2. Analyse einzelner Variablen (univariate Verteilungen) 3. Analyse der Zusammenhänge

Mehr

Statistische Erhebung

Statistische Erhebung Fachhochschule Hannover Sommersemester 2001 Fachbereich Information und Kommunikation Studiengang Allgemeine Dokumentation Lehrveranstaltung Deskriptive Statistik II Frau Prof. Dr. Kira Klenke Statistische

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler Haupt Verlag Bern Stuttgart Wien Inhaltsverzeichnis Vorwort 13 1 Beschreibende Statistik 15 1.1 Mittelwerte 15 1.1.1 Minimum der Abstände 15 1.1.2 Der Mediän

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 2. Beschreibende Statistik (descriptive Statistics) Literatur Kapitel 2 * Storrer: Kapitel 29-31 * Stahel: Kapitel 1-3 * Statistik in Cartoons:

Mehr

Deskriptive Statistik

Deskriptive Statistik Markus Wirtz, Christof Nachtigall Deskriptive Statistik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Statistische

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010

I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 I.3. Computergestützte Methoden 1. Deskriptive Statistik Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 1 Seminarübersicht Nr. Thema 1 Deskriptive Statistik 1.1 Organisation und Darstellung von

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Deskriptive Statistik Peter Frentrup Humboldt-Universität zu Berlin 7. November 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November 2017 1 / 27 Übersicht

Mehr

Vergleich zweier Stichproben

Vergleich zweier Stichproben zurück zum Inhaltsverzeichnis Die Werte sind verbunden, abhängig oder korreliert. Beispiel: Eine Probe wird mit zwei Messgeräten bestimmt. Es gibt eine paarweise Zuordnung. Die Werte sind unabhängig also

Mehr

1 (2π) m/2 det (Σ) exp 1 ]

1 (2π) m/2 det (Σ) exp 1 ] Multivariate Normalverteilung: m=1: Y N(µ; σ 2 ) Erwartungswert: µ Varianz: σ 2 f Y (y) = f Y1 Y 2...Y m (y 1,y 2,...,y m ) = [ 1 exp 1 ] 2πσ 2 2 (y µ)2 /σ 2 Σ: m m-matrix, symmetrisch, positiv definit.

Mehr

Statistik-Quiz Sommersemester

Statistik-Quiz Sommersemester Statistik-Quiz Sommersemester Seite 1 von 8 Statistik-Quiz Sommersemester Die richtigen Lösungen sind mit gekennzeichnet. 1 In einer Gruppe von 337 Probandinnen und Probanden wurden verschiedene Merkmale

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Variablen und Skalenniveaus

Variablen und Skalenniveaus Analytics Grundlagen Variablen und Skalenniveaus : Photo Credit: Unsplash, Roman Mager Statistik Was ist eigentlich eine Variable? Variable In der Datenanalyse wird häufig die Bezeichnung Variable verwendet.

Mehr

Karl Entacher. FH-Salzburg

Karl Entacher. FH-Salzburg Ahorn Versteinert Bernhard.Zimmer@fh-salzburg.ac.at Statistik @ HTK Karl Entacher FH-Salzburg karl.entacher@fh-salzburg.ac.at Beispiel 3 Gegeben sind 241 NIR Spektren (Vektoren der Länge 223) zu Holzproben

Mehr

Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen.

Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen. Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen. 1 Einleitung...1 1.1 Die Bedeutung der Statistik für die Medizin...1 1.2 Die medizinische

Mehr

Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner

Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner Was werden wir behandeln? Grundbegriffe der Statistik 2 wesentliche Themen bereits behandelt Wissenschaftliche Studien

Mehr

ÖNORM S Zählstatistische Aspekte bei Radioaktivitätsmessungen Teil 1: Messunsicherheiten, Erkennungs- und Nachweisgrenzen. Ausgabe:

ÖNORM S Zählstatistische Aspekte bei Radioaktivitätsmessungen Teil 1: Messunsicherheiten, Erkennungs- und Nachweisgrenzen. Ausgabe: ÖNORM S 550-1 Ausgabe: 00-1-01 Auch Normengruppen S3 und U1 Ersatz für Ausgabe 1995-10 und /AC1:1998-01 ICS 17.40 Zählstatistische Aspekte bei Radioaktivitätsmessungen Teil 1: Messunsicherheiten, Erkennungs-

Mehr

Analyse von Querschnittsdaten. Arten von Variablen

Analyse von Querschnittsdaten. Arten von Variablen Analyse von Querschnittsdaten Arten von Variablen Warum geht es in den folgenden Sitzungen? Vorarbeiten Datum 18.10.2006 18.10.2006 25.10.2006 08.11.2006 15.11.2006 22.11.2006 29.11.2006 06.12.2006 13.12.2006

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Einige Grundbegriffe der Statistik

Einige Grundbegriffe der Statistik Einige Grundbegriffe der Statistik 1 Überblick Das Gesamtbild (Ineichen & Stocker, 1996) 1. Ziehen einer Stichprobe Grundgesamtheit 2. Aufbereiten der Stichprobe (deskriptive Statistik) 3. Rückschluss

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

Lösung zu Kapitel 11: Beispiel 1

Lösung zu Kapitel 11: Beispiel 1 Lösung zu Kapitel 11: Beispiel 1 Eine Untersuchung bei 253 Personen zur Kundenzufriedenheit mit einer Einzelhandelskette im Südosten der USA enthält Variablen mit sozialstatistischen Daten der befragten

Mehr

Primärspannungsmessungen mit der. CSIRO Triaxialzelle

Primärspannungsmessungen mit der. CSIRO Triaxialzelle Blatt Nr.: 1 STRESS CELL REDUCTION PROGRAM ******************************** ******************************** Authorized & accredited by the CSIRO Division of Geomechanics. Copyright Mindata Ltd, July 1990

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Inferenzstatistik Vergleich mehrerer Stichproben - Varianzanalyse

Inferenzstatistik Vergleich mehrerer Stichproben - Varianzanalyse Vergleich mehrerer Stichproben - Varianzanalyse Zweifache VA mit hierarchischen Faktoren Voraussetzungen zwei unabhängige Variablen (Faktoren), die unabhängige Gruppen definiert zweite Faktor ist innerhalb

Mehr

Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten!

Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten! Inhaltsverzeichnis Inhaltsverzeichnis VII 1 Erst mal locker bleiben: Es fängt ganz einfach an! 1 1.1 Subjektive Wahrscheinlichkeit - oder warum...?..... 4 1.2 Was Ethik mit Statistik zu tun hat - Pinocchio

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Deskriptive Statistik

Deskriptive Statistik Helge Toutenburg Christian Heumann Deskriptive Statistik Eine Einführung in Methoden und Anwendungen mit R und SPSS Siebte, aktualisierte und erweiterte Auflage Mit Beiträgen von Michael Schomaker 4ü Springer

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS tfü. Springer Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R 3 1.1 Installieren und Starten von R 3 1.2 R-Befehle

Mehr

Deskriptive Statistik

Deskriptive Statistik Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG Markus.Schumacher@physik.uni-freiburg.de

Mehr

Frank Lammers. Statistik I: deskriptive und explorative Statistik. Lehr- und Übungsbuch

Frank Lammers. Statistik I: deskriptive und explorative Statistik. Lehr- und Übungsbuch Frank Lammers Statistik I: deskriptive und explorative Statistik Lehr- und Übungsbuch 2004 Verlag der Gesellschaft für Unternehmensrechnung und Controlling m.b.h. Vorwort I Vorwort zur zweiten Auflage

Mehr

Statistische Methoden in der MMST: Deskriptive Statistik

Statistische Methoden in der MMST: Deskriptive Statistik Statistische Methoden in der MMST: Deskriptive Statistik VL MMS Wintersemester 2013/14 Professur für Prozessleittechnik L. Urbas; J. Pfeffer Ziele und Inhalt Statistik in der MMST Anwendungsgebiete Evaluationen

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Keine Panik vor Statistik!

Keine Panik vor Statistik! Markus Oestreich Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge 4., aktualisierte Auflage STUDIUM 4y Springer Spektrum Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Werkzeuge der empirischen Forschung

Werkzeuge der empirischen Forschung Werkzeuge der empirischen Forschung I. Daten und Beschreibende Statistik 1. Einführung 2. Dateneingabe, Datentransformation, Datenbehandlung 3. Beschreibende Statistik II. Schließende Statistik 1 III.

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Mathematik IV: Statistik

Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS16 Sie hören Vitamin String Quartet Daniel Stekhoven 14.04.2016 1 Daniel Stekhoven 14.04.2016 2 Überblick Lernziele Erledigt! Grundlagen Wahrscheinlichkeitsmodell

Mehr

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15 Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Der Mittelwert (arithmetisches Mittel)

Der Mittelwert (arithmetisches Mittel) Der Mittelwert (arithmetisches Mittel) x = 1 n n x i bekanntestes Lagemaß instabil gegen extreme Werte geeignet für intervallskalierte Daten Deskriptive Statistik WiSe 2015/2016 Helmut Küchenhoff (Institut

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Das arithmetische Mittel. x i = = 8. x = 1 4. und. y i = = 8

Das arithmetische Mittel. x i = = 8. x = 1 4. und. y i = = 8 .2 Einige statistische Maßzahlen.2. Die Schusser in zwei Familien Die vier Kinder der Familie Huber haben x = 5, x 2 = 7, x 3 = 9, x 4 = Schusser. Die vier Kinder der Familie Maier haben y = 7, y 2 = 7,

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/cover_sheet.tex. p./26 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types 3. Geometry 4. Interpolation Approach Function

Mehr

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Varianzanpassungstest Untersuchung der Streuung einer bzw.

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Einführung in die Statistik mit R

Einführung in die Statistik mit R Einführung in die Statistik mit R Bernd Weiler syntegris information solutions GmbH Neu Isenburg Schlüsselworte Statistik, R Einleitung Es ist seit längerer Zeit möglich statistische Berechnungen mit der

Mehr

Wiederholung und ein mehrfaktorielles Verfahren. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Wiederholung und ein mehrfaktorielles Verfahren. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Wiederholung und ein mehrfaktorielles Verfahren Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Einstieg und Wiederholung Daten unterscheiden sich in ihrem mathematischen Informationsgehalt!

Mehr

JMP 10 Student Edition Quick Guide

JMP 10 Student Edition Quick Guide JMP 10 Student Edition Quick Guide Voraussetzung für die Befehle sind eine geöffnete Datentabelle, Standard Voreinstellungen und nutzerdefinierte Variablen mit geeigneter Typisierung. RMC = Rechter Mausklick

Mehr

Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6. Statistik-Tutorium. Lösungsskizzen Übung SS2005. Thilo Klein. Grundstudium Sommersemester 2008

Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6. Statistik-Tutorium. Lösungsskizzen Übung SS2005. Thilo Klein. Grundstudium Sommersemester 2008 Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6 Lösungsskizzen Übung SS2005 Grundstudium Sommersemester 2008 Serie 1 Serie 2 Serie 3 Serie 4 Serie 5 Serie 6 Inhalt Serie 1 Serie 2 Serie 3 Serie 4 Serie

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Ausblick; Darstellung von Ergebnissen; Wiederholung

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Ausblick; Darstellung von Ergebnissen; Wiederholung Institut für Soziologie Dipl.-Soz. Methoden 2 Ausblick; Darstellung von Ergebnissen; Wiederholung Ein (nicht programmierbarer) Taschenrechner kann in der Klausur hilfreich sein. # 2 Programm Ausblick über

Mehr

1 GRUNDLAGEN Grundbegriffe Skalen...15

1 GRUNDLAGEN Grundbegriffe Skalen...15 Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH

Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH Biostatistische Studienplanung Dr. Matthias Kohl SIRS-Lab GmbH Ausgangspunkt Fragestellung(en)/Hypothese(n): Hauptfragestellung: Grund für Durchführung der Studie Nebenfragestellung(en): Welche Fragestellungen

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

'+4 Elisabeth Raab-Steiner / Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 4., aktualisierte und überarbeitete Auflage

'+4 Elisabeth Raab-Steiner / Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 4., aktualisierte und überarbeitete Auflage '+4 Elisabeth Raab-Steiner / Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS-Auswertung 4., aktualisierte und überarbeitete Auflage facultas «4 Inhaltsverzeichnis 1 Elementare Definitionen

Mehr

Bisher behandelte Verfahren: Kurze Wiederholung

Bisher behandelte Verfahren: Kurze Wiederholung Weitere Verfahren der Explorativen Datenanalyse Thomas Schäfer SS 9 1 Bisher behandelte Verfahren: Kurze Wiederholung Generelle Vorgehensweise bei Einzelstudien: 1. (Graphische) Veranschaulichung der Daten

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM)

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM) Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM) Dr. Winfried Willems, IAWG Outline Classical Approach, short

Mehr