Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut"

Transkript

1 Martingal-Maße Manuel Müller Mathematisches Institut Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied)

2 Seite 2 Martingal-Maße Inhaltsverzeichnis Ausgangssituation Idee und Ziel von Martingalen Martingale 1. Fundamentalsatz der Finanzmathematik Beispiel zum FTAP1

3 Seite 3 Ausgangssituation Martingal-Maße Überblick Ausgangssituation Idee und Ziel von Martingalen Martingale 1. Fundamentalsatz der Finanzmathematik Beispiel zum FTAP1

4 Seite 4 Ausgangssituation Martingal-Maße Ausgangssituation Kurze Wiederholung der wichtigsten Definitionen und Annahmen: ) (, F, Q) bezeichnet einen Wahrscheinlichkeitsraum versehen mit einer Filtrierung (F t ) t={0,...,t }, wobei T 2 N für einen festen Zeithorizont (Zahl der Handelsperioden) steht. ) Ein Finanzmarkt mit d + 1 Anlagegütern und Zeithorizont T ist ein (F t )-adaptierter Prozess S t =(S 0 t, S1 t,...,sd t ) t={0,...,t } mit Werten in R d+1. ) Eine Handelsstrategie ist ein vorhersehbarer R d+1 -wertiger Prozess =( 0, )=( 0 t, 1 t,..., d t ) t={1,...,t }.

5 Seite 5 Ausgangssituation Martingal-Maße Ausgangssituation ) Eine Handelsstrategie heißt selbstfinanzierend, wenn t S t = t+1 S t für t = 1,...,T 1. ) Der diskontierte Wertprozess V =(V t ) t={0,...,t } für eine selbstfinanzierende Handelsstrategie ist gegeben durch: V 0 = 1 X 0 und V t = t X t für t = 1,...,T und X i t = Si t S 0 t für t = 0,...,T, i = 0,...,d. ) Eine selbstfinanzierende Handelsstrategie heißt Arbitrage, wenn V 0 ( ) apple 0 apple V T ( ), Q-fast sicher, und P(V T ( ) > 0) > 0.

6 Seite 6 Idee und Ziel von Martingalen Martingal-Maße Überblick Ausgangssituation Idee und Ziel von Martingalen Martingale 1. Fundamentalsatz der Finanzmathematik Beispiel zum FTAP1

7 Seite 7 Idee und Ziel von Martingalen Martingal-Maße Idee und Ziel von Martingalen Zur Untersuchung von Finanzmärkten auf Arbitragefreiheit betrachten wir häufig andere Wahrscheinlichkeitsmaße auf (, F) als Q. ) Arbitragefreiheit einer Handelsstrategie hängt nur von den Nullmengen unter dem Maß Q ab. ) Ersetzt man Q durch ein Maß P mit gleichen Nullmengen, so sind im neuen Marktmodell die Arbitragen die gleichen wie im alten. ) Dann ist P äquivalent zu Q (P Q) Gibt es besondere äquivalente Maße, unter denen die Arbitragefreiheit leicht ersichtlich ist?

8 Seite 8 Martingale Martingal-Maße Überblick Ausgangssituation Idee und Ziel von Martingalen Martingale 1. Fundamentalsatz der Finanzmathematik Beispiel zum FTAP1

9 Seite 9 Martingale Martingal-Maße Q-Martingale Es sei (, F, F t, Q) ein filtrierter Wahrscheinlichkeitsraum. Ein stochastischer Prozess M =(M t ) t={0,...,t } heißt Q-Martingal in diskreter Zeit, wenn folgende Bedingungen erfüllt sind: (1) M t ist messbar bezüglich F t 8 t (adaptiert) (2) E Q [ M t ] < 1 8 t (M t 2 L 1, integrierbar) (3) E Q [M t F s ]=M s 8 0 apple s apple t apple T (innovativ) ) Der bedingte Erwartungswert einer Beobachtung ist gleich dem Wert der vorigen Beobachtung. ) Ein Martingal kann als faires Spiel betrachtet werden.

10 Seite 10 Martingale Martingal-Maße Martingal-Maß und EMM Ein Wahrscheinlichkeitsmaß P auf (, F) im filtrierten Raum (, F, F t, Q) heißt Martingal-Maß, wenn der diskontierte Preisprozess Xt i für jedes i = 1,...,d ein (d-dimensionales) P-Martingal ist. Es muss also gelten: ) E P [X i t ] < 1 und E P[X i t F s]=x i s, 0 apple s apple t apple T Ist das Martingal-Maß P zu Q äquivalent (P Q), so heißt es ein zu Q äquivalentes Martingal-Maß (EMM). Die Menge aller äquivalenten Martingal-Maße bezeichnen wir mit P.

11 Seite 11 Martingale Martingal-Maße Arbitragefreiheit Arbitragefreiheit einer Handelsstrategie hängt nur von den Nullmengen unter dem Maß Q ab. Zwei Wahrscheinlichkeitsmaße Q und P auf (, F) heißen äquivalent, falls sie dieselben Nullmengen haben, d.h. falls für alle A 2Fgilt P(A) =0, Q(A) =0. (Q P) ) Ersetzt man Q durch ein Maß P mit gleichen Nullmengen, so sind im neuen Marktmodell die Arbitragen die gleichen wie im alten. Ist P zusätzlich ein Martingal-Maß, so lässt sich die Arbitragefreiheit eines Finanzmarktes mithilfe des 1. Fundamentalsatzes der Finanzmathematik charakterisieren.

12 Seite Fundamentalsatz der Finanzmathematik Martingal-Maße Überblick Ausgangssituation Idee und Ziel von Martingalen Martingale 1. Fundamentalsatz der Finanzmathematik Beispiel zum FTAP1

13 Seite Fundamentalsatz der Finanzmathematik Martingal-Maße Fundamentalsatz der Finanzmathematik (FTAP1) Mithilfe von äquivalenten Martingal-Maßen können wir die dynamische Version des 1. Fundamentalsatzes der Finanzmathematik einführen: Folgende Aussagen sind für einen Finanzmarkt auf (, F, F t, Q) äquivalent: (1) Der Finanzmarkt ist arbitragefrei (2) Der Finanzmarkt besitzt mindestens ein Q-äquivalentes Martingal-Maß P (P 6= 0)

14 Seite Fundamentalsatz der Finanzmathematik Martingal-Maße Fundamentalsatz der Finanzmathematik Beweisidee: (1) ) (2) : arbitragefrei ) EMM existiert Jedes Mehr-Perioden Modell kann als T Ein-Perioden Modelle aufgefasst werden. Dieses ist genau dann arbitragefrei, wenn alle T Ein-Perioden Modelle arbitragefrei sind. Idee ist nun, durch iteratives Anwenden des FTAP1 im Ein-Perioden Modell ein Wahrscheinlichkeitsmaß P T,...,P 1 =: P 2Pzu konstruieren. Dann zeigt man: E P [Xt i F t d.h (Xt i ) ist ein Martingal unter P. 1] =... = E Pt [X i t F t 1] =X i t 1,

15 Seite Fundamentalsatz der Finanzmathematik Martingal-Maße Fundamentalsatz der Finanzmathematik Beweis: (2) ) (1) : EMM existiert ) arbitragefrei Zum Beweis der Implikation nutzen wir Doob s System Theorem.

16 Seite Fundamentalsatz der Finanzmathematik Martingal-Maße Doob s System Theorem (Doob s System Theorem). Für ein Wahrscheinlichkeitsmaß Q auf (, F) sind folgende Aussagen äquivalent: (1) Q ist ein Martingal-Maß. (2) Für jede selbstfinanzierende Handelsstrategie =( 0, ) mit beschränktem ist der Wertprozess V ( ) ein Q-Martingal. (3) Für jede selbstfinanzierende Handelsstrategie =( 0, ) mit E Q [(V T ( )) ] < 1 ist V ( ) ein Q-Martingal. (4) Für jede selbstfinanzierende Handelsstrategie =( 0, ) mit V T ( ) 0, Q-fast sicher, gilt E Q [V T ( )] = V 0 ( ).

17 Seite Fundamentalsatz der Finanzmathematik Martingal-Maße Fundamentalsatz der Finanzmathematik Beweis: (2) ) (1) : EMM existiert ) arbitragefrei Ersetzt man Q durch ein EMM P, so ändern wir nichts an der Menge der Arbitragen. Es genügt also zu zeigen, dass es keine Handelsstrategie gibt, die unter P eine Arbitrage ist. Sei eine selbstfinanzierende Handelsstrategie mit V 0 ( ) apple 0 apple V T ( ), P-fast sicher. (Doob s System Theorem (4)) ) E P [V T ( )] = V 0 ( ) apple 0. Aus der Nichtnegativität von V T ( ) folgt, dass V T ( ) =0, P-fast sicher. ) ist keine Arbitrage.

18 Seite 18 Beispiel zum FTAP1 Martingal-Maße Überblick Ausgangssituation Idee und Ziel von Martingalen Martingale 1. Fundamentalsatz der Finanzmathematik Beispiel zum FTAP1

19 Seite 19 Beispiel zum FTAP1 Martingal-Maße Beispiel zum FTAP1 Sei ={! 1,! 2,! 3 } und sei (, P( ), Q) ein Wahrscheinlichkeitsraum mit der Filtrierung {{;, }, P( )}. Weiter sei S t =(St 0, S1 t, S2 t ) ein Finanzmarkt mit Anfangspreisen S 0 =(S0 0, S1 0, S2 0 )=(1, 15, 28) und Zeithorizont T = 1. S 0 bezeichne die risikolose Anlage mit konstantem Preisprozess in! und der Zinssatz sei r = 20%. Zu T = 1 seien die Preise durch folgende Matrix gegeben: S 1 1 (! 1 ) S1 1(! 2) S1 1(! 3) S1 2(! 1) S1 2(! 2) S1 2(! = 3) ) Ist der Finanzmarkt arbitragefrei?

20 Seite 20 Beispiel zum FTAP1 Martingal-Maße Beispiel Lösung: Um zu bestimmen ob der Finanzmarkt arbitragefrei ist, genügt es die Menge der EMM P 2Pvon Q zu bestimmen (FTAP1). Die EMM ergeben sich als Lösungen der linearen Gleichungen: E P [X1 k F 0]=X 0, E P [ Sk 1 ]= Sk S1 0 0 S0 0 = S0 k, k = 0, 1, 2. (1) p 1 S 0 1 (! 1) S 0 1 (2) p 1 S 1 1 (! 1) S 0 1 (3) p 1 S 2 1 (! 1) S p 2 S 0 1 (! 2) S p 2 S 1 1 (! 2) S p 2 S 2 1 (! 2) S p 3 S 0 1 (! 3) S p 3 S 1 1 (! 3) S p 3 S 2 1 (! 3) S 0 1 = S 0 0 = S 1 0 = S 2 0

21 Seite 21 Beispiel zum FTAP1 Martingal-Maße Beispiel (1) p 1 + p 2 + p 3 = 1 (2) 30p p p 3 = 15 (3) 10p p p 3 = 28 (1) p 1 + p 2 + p 3 = 1 (2) 20p 2 20p 3 = 15 (3) +20p p 3 = 18 (1) p 1 + p 2 + p 3 = 1 ) p 1 = 1 4 (2) 20p 2 20p 3 = 15 ) p 2 = (3) +30p 3 = 3 ) p 3 = 1 10 ) LGS hat eindeutige Lösung P =(p 1, p 2, p 3 ) T =( 1 4, 13 ) P6= 0, Markt arbitragefrei. 20, 1 10 )T, p i > 0.

22 Seite 22 Beispiel zum FTAP1 Martingal-Maße Ende Vielen Dank für Ihre Aufmerksamkeit!!!

Finanzmathematik in diskreter Zeit

Finanzmathematik in diskreter Zeit Finanzmathematik in diskreter Zeit Version vom: 27. Mai 2017 Prof. Dr. Thorsten Schmidt 1 1 Universität Freiburg. www.stochastik.uni-freiburg.de/schmidt Vorwort Dieses Skriptum ist aus einer Vorlesung

Mehr

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

Stochastische Finanzmathematik I

Stochastische Finanzmathematik I Notizen zu der Vorlesung Stochastische Finanzmathemati I 1 Zum Ein-perioden-Modell 1.1 Beispiel: Zwei-wertiges Modell: π 0 = 1, S 0 =, { b Wahrs. p S 1 = a Wahrs. 1 p Arbitrage frei: Es gibt p 0, 1) mit

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Lösungen zur 1. Klausur Diskrete Stochastische Finanzmathematik ( , SoSe 2014) am , Zeit: 10-12, Raum: W

Lösungen zur 1. Klausur Diskrete Stochastische Finanzmathematik ( , SoSe 2014) am , Zeit: 10-12, Raum: W Prof. Dr. Dietmar Pfeifer Institut für Mathematik Lösungen zur. Klausur Diskrete Stochastische Finanzmathematik (5..862, SoSe 24 am 5.8.24, Zeit: - 2, Raum: W--6 Name:... Matr.-Nr.:... Geb.-Datum:... Studiengang:...

Mehr

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin Bewertung von amerikanischen Optionen im CRR Modell Seminararbeit von Nadja Amedsin 22.05.10 i Inhaltsverzeichnis 1 Einführung 1 2 Amerikanischer Claim 1 2.1 Beispiele................................ 2

Mehr

Inhaltsverzeichnis. Teil I

Inhaltsverzeichnis. Teil I Inhaltsverzeichnis Teil I Ein-Perioden-Wertpapiermärkte 3 1.1 Ein-Perioden-Modelle 4 1.2 Portfolios 7 1.3 Optionen und Forward-Kontrakte 9 1.3.1 Optionen 10 1.3.2 Forward-Kontrakte 12 1.4 Die Bewertung

Mehr

Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten

Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten Jürgen Kremer Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten Zweite, vollständig überarbeitete und erweiterte Auflage 45J Springer Inhaltsverzeichnis Teill Ein-Perioden- Wertpapiermärkte

Mehr

1 Bedingte Erwartungswerte

1 Bedingte Erwartungswerte Die folgenden Regeln sind das alltägliche Handwerkszeug für den Umgang mit bedingten Erwartungen und werden in diesem Abschnitt, allerdings ohne Beweise, zitiert. Es ist durchaus eine lohnenswerte Übung,

Mehr

Inhaltsverzeichnis. 2 Portfoliotheorie Rendite und Risiko Die erwartete Rendite... 74

Inhaltsverzeichnis. 2 Portfoliotheorie Rendite und Risiko Die erwartete Rendite... 74 1 Ein-Perioden-Wertpapiermärkte........................... 1 1.1 Portfolios............................................... 5 1.2 Optionen und Forward-Kontrakte......................... 8 1.2.1 Optionen.........................................

Mehr

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01.

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01. Vorlesung Finanzmathematik I Steffen Dereich und Marcel Ortgiese Westfälische Wilhelms-Universität Münster WS2013/14 Version: 31.01.2014 Inhaltsverzeichnis 1. Einführung 1 1.1. Das Finanzmarktmodell...........................

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

2 Das Marktmodell C1(WS08/09) [2] 1

2 Das Marktmodell C1(WS08/09) [2] 1 2 Das Marktmodell 2.1 Ein allgemeines Finanzmarktmodell 2.2 Aufsteigende Systeme von σ-algebren und adaptierte Prozesse 2.3 Elementare Handelsstrategien im Finanzmarktmodell 2.4 Die σ-algebra der previsiblen

Mehr

Übungen zur Vorlesung Finanzmathematik. Wintersemester 2014/15

Übungen zur Vorlesung Finanzmathematik. Wintersemester 2014/15 Übungen zur Vorlesung Finanzmathematik Wintersemester 2014/15 PD Dr. V. Paulsen Blatt 7 25.11.2014 Aufgabe 1: Ruinwahrscheinlichkeit beim Roulette Sei S n = n X i, n N 0 eine Irrfahrt in Z, die aus dem

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Einführung in die Diskrete Finanzmathematik

Einführung in die Diskrete Finanzmathematik Springer-Lehrbuch Einführung in die Diskrete Finanzmathematik Bearbeitet von Jürgen Kremer 1. Auflage 2005. Taschenbuch. XVI, 500 S. Paperback ISBN 978 3 540 25394 5 Format (B x L): 15,5 x 23,5 cm Gewicht:

Mehr

Jan Kallsen. Einführung in die zeitdiskrete Finanzmathematik

Jan Kallsen. Einführung in die zeitdiskrete Finanzmathematik Jan Kallsen Einführung in die zeitdiskrete Finanzmathematik 22. Juli 2005 Inhaltsverzeichnis 0 Mathematische Hilfsmittel 3 0.1 Absolutstetigkeit und Äquivalenz....................... 3 0.2 Bedingte Erwartung..............................

Mehr

Prof. Dr. Thilo Meyer-Brandis. Finanzmathematik 1 WS 2012/13

Prof. Dr. Thilo Meyer-Brandis. Finanzmathematik 1 WS 2012/13 Prof. Dr. Thilo Meyer-Brandis Finanzmathematik 1 WS 2012/13 Dieses Skript gibt den Inhalt der Vorlesung Finanzmathematik I: Eine Einführung in diskreter Zeit wieder und basiert auf dem Buch Stochastic

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Skript. Finanzmathematik I. Max v. Renesse Aufgezeichnet von Tobias Weihrauch. Wintersemester 2012/13 Universität Leipzig. Version vom 4.

Skript. Finanzmathematik I. Max v. Renesse Aufgezeichnet von Tobias Weihrauch. Wintersemester 2012/13 Universität Leipzig. Version vom 4. Skript Finanzmathematik I Max v. Renesse Aufgezeichnet von Tobias Weihrauch Wintersemester 2012/13 Universität Leipzig Version vom 4. März 2013 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Einführung Der

Mehr

II. Bewertung von Derivaten in diskreter Zeit

II. Bewertung von Derivaten in diskreter Zeit II. Bewertung von Derivaten in diskreter Zeit 2.1. Wahrscheinlichkeitstheoretische Grundlagen 2.1.1. Bedingte Erwartungswerte Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Für A, B F mit P(B) > 0 ist die

Mehr

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten Kapitel 4 Stochastische Grundlagen An dieser Stelle möchte ich auf einige stochastische Grundlagen eingehen, die bisher im Kapitel 3 Anwendung gefunden haben und im Folgenden Anwendung finden werden. Grundproblem

Mehr

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik Univ. Leipzig Mathematisches Institut Vertretung Professur Stochastische Prozesse Max v. Renesse email: mrenesse@math.tu-berlin.de Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Monte-Carlo-Methoden für amerikanische Optionen

Monte-Carlo-Methoden für amerikanische Optionen Stefan Kremsner Monte-Carlo-Methoden für amerikanische Optionen Longstaff-Schwartz, Dualität und Policy-Iteration MASTERARBEIT zur Erlangung des akademischen Grades Diplom-Ingenieur Masterstudium Finanz-

Mehr

Bewertung von Derivaten in einem Finanzmarkt mit restringierten Handelsstrategien

Bewertung von Derivaten in einem Finanzmarkt mit restringierten Handelsstrategien Bewertung von Derivaten in einem Finanzmarkt mit restringierten Handelsstrategien am 14. Mai 2013 als Diplomarbeit vorgelegt von André Fuhrken Betreuer: Privatdozent Dr. Volkert Paulsen Institut für Mathematische

Mehr

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Masterarbeit am Lehrstuhl für angewandte Mathematik der Universität Bayreuth bei Prof. Dr. Lars Grüne von Michaela Baumann,

Mehr

Ein Dualitätsansatz zur Bewertung von amerikanischen Optionen

Ein Dualitätsansatz zur Bewertung von amerikanischen Optionen Fachbereich 10 (Mathematik und Informatik) Ein Dualitätsansatz zur Bewertung von amerikanischen Optionen Diplomarbeit in Finanzmathematik bei Herrn PD Dr. Volkert Paulsen am Institut für Mathematische

Mehr

Vorlesungsskript: Martingale

Vorlesungsskript: Martingale Vorlesungsskript: Martingale von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 25. Februar 2010 Inhaltsverzeichnis 4 Martingale 2 4.1 Einführung.......................................

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt Grundbegriffe der Wahrscheinlichkeitstheorie Karin Haenelt 1 Inhalt Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeit Abhängige und unabhängige Ereignisse Stochastischer Prozess Markow-Kette 2 Wahrscheinlichkeitsraum

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

Terminologie Stochastischer Prozesse

Terminologie Stochastischer Prozesse Terminologie Stochastischer Prozesse Nikolai Nowaczyk 2014-03-31 Dieses Script ist die Ausarbeitung zum einem Vortrag, gehalten im Seminar zur Wahrscheinlichkeitstheorie im SS 14 an der Uni Regensburg.

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm 31.05.2010 Page 2 Brownsche Bewegung 31.05.2010 Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche

Mehr

HHL - Handelshochschule Leipzig Leipzig Graduate School of Management

HHL - Handelshochschule Leipzig Leipzig Graduate School of Management HHL - Handelshochschule Leipzig Leipzig Graduate School of Management Lehrstuhl für Finanzmangement und Banken Bemerkungen zu Löfflers Miles-Ezzell s WACC yields Arbitrage Prof. Dr. Bernhard Schwetzler

Mehr

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit Teil I: Wahrscheinlichkeitstheorie 1 Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 3: Bedingte Wahrscheinlichkeit Kapitel 4: Zufallsvariablen Kapitel 5: Erwartungswerte, Varianz, Kovarianz

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen en 1. Vortrag - Einführung Technische Universität Berlin Institut für Mathematik 8. November 2007 Inhaltsverzeichnis 1 Definitionen amerikanische / europäische

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Strassen Type Theorems Proseminar Stochastik

Strassen Type Theorems Proseminar Stochastik Strassen Type Theorems Proseminar Stochastik Cecelie Hector Universität Hamburg Fachbereich Mathematik SoSe 2004 Vortrag am 25.06.04 Definition (a). Ein topologischer Raum E heißt polnisch, wenn es eine

Mehr

1. EINFÜHRUNG INS STATE-PRICING 1

1. EINFÜHRUNG INS STATE-PRICING 1 1. EINFÜHRUNG INS STATE-PRICING 1 1. Einführung ins State-Pricing In diesem Kapitel betrachten wir eine Periode. Das heisst, wir können nur zu den Zeitpunkten 0 und 1 handeln. Im weiteren arbeiten wir

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Humboldt Universiät zu Berlin 25. Januar 2017 Institut für Mathematik Prof. Dr. Dirk Becherer. Übungen zur Vorlesung Stochastische Finanzmathematik I

Humboldt Universiät zu Berlin 25. Januar 2017 Institut für Mathematik Prof. Dr. Dirk Becherer. Übungen zur Vorlesung Stochastische Finanzmathematik I Humboldt Universiät zu Berlin 25. Januar 2017 Serie 1 1) Gegeben sei ein Finanzmarkt bestehend aus einer risikofreien Anlage und zwei Aktien. Die risikofreie Anlage habe einen Zinssatz von 0.4, d.h. π

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Signifikanztests Optimalitätstheorie

Signifikanztests Optimalitätstheorie Kapitel Signifikanztests Optimalitätstheorie Randomisierte Tests In einem statistischen Modell M, A, P ϑ sei ein Testproblem gegeben: H : ϑ Θ gegen H : ϑ Θ ; wobei also durch Θ Θ Θ eine Zerlegung des Parameterbereichs

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Stochastische Analysis

Stochastische Analysis Stochastische Analysis SS1 von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 6. Mai 21 Inhaltsverzeichnis 1 Motivation / Einführung 4 1.1 Motivation anhand

Mehr

Kapitel 5: Markovketten

Kapitel 5: Markovketten Kapitel 5: Markovketten Definition 5.1 Bezeichnungen Bsp. 5.1 Definition 5.2 Eine Fam. (X i ) i I von ZV en X i : Ω E auf (Ω, F, P) mit Werten im messb. Raum (E, E) heißt Stochastischer Prozess. E Zustandsraum

Mehr

Finanzmathematik. Inhalt: Martin Keller-Ressel Satz: Martin Haubold 17. November 2014

Finanzmathematik. Inhalt: Martin Keller-Ressel Satz: Martin Haubold 17. November 2014 Finanzmathematik Inhalt: Martin Keller-Ressel Satz: Martin Haubold 17. November 2014 Inhaltsverzeichnis 0 Einführung und Motivation 1 0.1 Zentrale Fragestellungen der Finanzmathematik.............. 1 0.2

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Vorlesungsskript Finanzmathematik in stetiger Zeit

Vorlesungsskript Finanzmathematik in stetiger Zeit Vorlesungsskript Finanzmathematik in stetiger Zeit Christoph Kühn Sommersemester 27 letzte Aktualisierung: 9. Februar 217 1 Inhaltsverzeichnis 1 Modellierung von Finanzmärkten 3 1.1 Das allgemeine stochastische

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung Brownsche Bewegung M. Gruber 20. März 2015, Rev.1 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

1 A dp = P(A B). (1.3)

1 A dp = P(A B). (1.3) Markov-etten Seminar Stochastik vom 4-500 Version Oktober 00 Markus Penz Vorbemerkungen zu bedingten Wahrscheinlichkeiten Sei (Ω, F,P) ein Wahrscheinlichkeitsraum und X : Ω R eine F-messbare sowie integrierbare

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren Universität Hamburg Fachbereich Mathematik Schwerpunkt Mathematische Statistik und Stochastische Prozesse Bundesstr. 55 D-20146 Hamburg Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung

Mehr

Universität Lepizig. Modellunabhängige Bewertung von Optionen mithilfe des optimalen Transports

Universität Lepizig. Modellunabhängige Bewertung von Optionen mithilfe des optimalen Transports Universität Leipzig Fakultät für Mathematik und Informatik Mathematisches Institut Modellunabhängige Bewertung von Optionen mithilfe des optimalen Transports Diplomarbeit vorgelegt durch: Florian Schleu

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung Brownsche Bewegung M. Gruber SS 2016, KW 11 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume Extremalpunkte und der Satz von Krein-Milman Seminar zu ausgewählten Kapiteln der Banachraumtheorie Vortrag von Michael Hoffmann 1 Lokalkonvexe topologische Vektorräume Im folgenden betrachten wir stets

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

Die Bewertung von Derivaten in zeitdiskreten Modellen

Die Bewertung von Derivaten in zeitdiskreten Modellen Die Bewertung von Derivaten in zeitdiskreten Modellen Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Themen des Bachelorseminars zur Finanz- und Versicherungsmathematik

Themen des Bachelorseminars zur Finanz- und Versicherungsmathematik Themen des Bachelorseminars zur Finanz- und Versicherungsmathematik 1. Das mehrdimensionale Cox-Ross-Rubinstein Modell Ein CRR Modell für d Aktien kann dadurch spezifiziert werden, dass der Preisprozeß

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

Arbitrage Free Pricing

Arbitrage Free Pricing Beim CAPM wurde gezeigt, dass man Finanztitel basierend auf der Verteilung ihres künftigen Preises bewerten kann. Dabei haben wir [unter der Annahme gewisser Präferenzen des Es] den Preis eines Finanztitels

Mehr

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer)

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Reinhold Kainhofer FAM, TU Wien Mai 2007 Inhaltsverzeichnis 1 Das Ein-Perioden-Modell 1 1.1 Definitionen............................................

Mehr

7 Bedingte Erwartungswerte und Bedingte Verteilungen

7 Bedingte Erwartungswerte und Bedingte Verteilungen 7 edingte Erwartungswerte und edingte Verteilungen Sei (Ω,, P ein W Raum, (Ω, ein Messraum, Y : Ω Ω sei (, -messbar und nehme die Werte y 1,..., y n Ω an. Y 1 (y k {ω Ω Y (ω y k } : k Ω 1 + + n und σ(y

Mehr

Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012

Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012 Euler-Approximation Leonie van de Sandt TU Dortmund Prof. Dr. Christine Müller 5. Juni 2012 Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni 2012 1 / 26 Inhaltsverzeichnis 1 Einleitung Leonie

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr