Sterne der Platonischen Körper

Größe: px
Ab Seite anzeigen:

Download "Sterne der Platonischen Körper"

Transkript

1 Der Griechische Philosoph Platon ( v. Chr.) ordnete die regelmässigen geometrischen Körper den Naturelementen und dem Himmelsraum zu. Feuer Luft Wasser Erde Himmelsraum Wie präsentieren sich die Platonischen Körper als Sterne, wenn deren Strukturprinzipien in den Umraum strahlend eingehalten werden? Dazu werden die ebenen Seitenflächen der Körper über ihre Kanten hinaus so weit ausgedehnt, bis sie sich mit einer anderen erweiterten Seitenfläche schneiden. Dadurch werden über die Flächen des Körpers Sternzacken errichtet. Die auf diese Art gebildeten Sterne sind charakteristisch für die Platonischen Körper und verstärken deren Eindruck in Bezug zu den Naturelementen. Die fünf einfachen Sterne Pentagondodekaeder (Himmelsraum) Als Erweiterung der Fünfeckoberflächen ergeben sich Fünfsterne (Pentagramme). Ihre 12 x 5 Spitzen errichten über den 12 Fünfecksflächen steile Pyramiden. Das Pentagondodekaeder wird zum echten Stern, dem Kleinen Keplerstern. Dodekaederstern / Kleiner Keplerstern 12 identische Bauelemente werden zum Stern zusammengefügt Eine fortgesetzte Flächenerweiterung führt noch zu zwei weiteren sternartigen Stufen: Poinsots Sternkörper und zum grossen Ikosaederstern mit 20 Zacken, dem Grossen Keplerstern. (siehe unten: Sterne des Pentagondodekaeders). Ueli Wittorf 1

2 geometricdesign Ikosaeder (Wasser) Über den 20 Dreiecksflächen bilden sich aus den 20 sechseckigen Bauelementen über den Dreiecksflächen sehr flache Pyramiden als Sternzacken. Das Ikosaeder ist der rundeste aller Platonischen Körper, aber auch sein erster Stern ist sehr rund. Erster Ikosaederstern / Pyramidenikosaeder / Bindelstern 20 identische Sechseckselemente werden zum Pyramidenikosaeder zusammen gefügt. Wird die Flächenerweiterung fortgesetzt, so ergeben sich stufenweise eine ganze Reihe sehr verschieden geformter Sterne (siehe weiter unten: Sterne des Ikosaeders) Mit Ikosaedern wie auch mit Pentagondodekaedern lässt sich keine raumfüllende Struktur bilden. Ikosaeder und Pentagondodekaeder sind als kugelig, sphärische Körper Individualisten. Oktaeder (Luft) Die Erweiterung der Seitenflächen führt zu vier Mal so grossen Dreiecken. Über jeder Oktaederfläche kommt ein kleines Tetraeder als Sternzacke zu liegen. Johannes Kepler nannte diesen Stern auch stella octangula. Man erkennt aber den Körper auch als zwei sich durchdringende grosse Tetraeder, die als gemeinsamen Kern das Oktaeder einschliessen. Oktaederstern / stella octangula / Doppeltetraeder 8 identische Dreieckselemente werden zu einem Doppeltetraeder zusammengefügt Mit seinen Spitzen spannt dieser Stern einen Würfel auf. In den Lücken zwischen den Zacken würden weitere Oktaeder hineinpassen, und zusammen mit weiteren kleinen Tetraedern könnte diese Struktur in allen drei Dimensionen den Raum lückenlos füllend fortgesetzt werden. 2 Ueli Wittorf

3 Hexaeder/Würfel (Erde) Die Bauelemente sind Kreuze, deren Enden ins Unendliche gedacht werden müssen. Der Würfelstern hat seine Spitzen im Unendlichen (gemäss der Projektiven Geometrie schneiden sich Parallelen im Unendlichen). Mit Würfeln allein lässt sich der Raum in allen drei Dimensionen lückenlos füllen. Der Würfel gehört ganz der Mineralwelt an. Hexaeder- Stern 6 identische, kreuzförmige Bauelemente werden zu einem räumlichen Kreuz zusammengefügt Teraeder (Feuer) Die vier Bauelemente sind eine Art dreiflüglige Propeller (das Warnzeichen für Stahlung im Dreieck zeigt auch dieses Bild). Über den vier Dreiecken des Tetraeders kommt es nicht zur Bildung einer Spitze, sondern im Gegenteil zu einem Trichter, der sich nach aussen öffnet. Vier Zacken aus dem Umkreis einstrahlend durchdringen sich gegenseitig und schaffen das Tetraeder (den göttlichen Funken). Das Tetraeder ist ein Antistern. Tetraeder- Stern, ein Antistern 4 identische Bauelemente werden zu einem Antistern zusammengefügt. Ueli Wittorf 3

4 geometricdesign Kantenwinkel und Sternbildung Die grosse Verschiedenheit der fünf Sterne hat seinen Grund in den Winkeln, in welchen sich zwei benachbarte Körperflächen treffen. Tetraeder Hexaeder Oktaeder Flächen 6 Flächen 8 Flächen Dodekaeder Ikosaeder Flächen 20 Flächen Kantenwinkel der Platonischen Körper in zunehmender Reihenfolge Die Platonischen Körper sind orthogonal, d.h. senkrecht zu einer Kante geschnitten dargestellt. Mit zunehmender Flächenzahl vergrössert sich der Kantenwinkel. Die gelben Rechtecke zeigen die Massverhältnisse in der Projektionsrichtung an. Der Kantenwinkel des Tetraeders ist um den gleichen Winkel kleiner als der Winkel des Würfels von 90, wie der Kantenwinkel des Oktaeders grösser ist. Sie ergänzen sich auf = 180. Der Stern des Oktaeders ist ein Doppeltetraeder im Würfel. Das Oktaeder ist der gemeinsame Kern der Tetraeder-Durchdringung. 8 kleine Tetraeder bilden die Sternspitzen. Würfel, Oktaeder und Tetraeder vereinen sich ineinander liegend dicht gepackt in der kubischen Struktur, welche in alle drei Raumesrichtungen erweitert werden kann. Die Lücken zwischen den Zacken liessen sich mit weiteren Oktaedern ausfüllen. Den stumpfesten Winkel von finden wir beim Ikosaeder. Als Projektion im Quadrat (Würfe) eingeschrieben, erscheint das Dodekaeder mit dem Kantenwinkel von wesentlich kantiger. Doppeltetraeder mit Oktaeder-Kern in der Würfelstruktur 4 Ueli Wittorf

5 Die Elemente Je nach Kriterium ergibt sich offenbar eine andere Reihenfolge der Platonischen Körper. An die Darstellung der Platonischen Körper als Stern sei hier eine kurze Betrachtung im Hinblick auf die Elemente gewagt. Feuer Erde Luft Himmelsraum Wasser Strahlt aus dem Unendlichen ein und muss sich dauernd erneuer. Erscheint als ewig Festes und Ruhendes. Mit seinen Enden ist das Element im Unendlichen verankert. Sich ausbreitend, aufsteigend, von der Erde zurückgehalten. Sie facht das Feuer auf der Erde an (Doppeltetraeder). Stellt den unendlichen Raum zur Verfügung, in den alles eingebettet ist. Es vermittelt zwischen Himmel und Erde, bringt das Leben auf die Erde und macht es möglich. Erweiterte Sterne Oktaeder, Ikosaeder und Pentagondodekaeder sind die Platonischen Körper, welche Sternenstationen durchmachen, wenn ihre Flächen erweitert werden. Eine weitere Ausdehnung der Flächen wird so lange weitere Sternstadien ergeben, wie es Flächen gibt, die zusammenlaufen. Laufen sie parallel oder auseinander, wie beim Hexaeder oder Tetraeder, so sind keine Pyramidenbildungen mehr zu erwarten. Das Doppetetraeder (stella octangula) ist der einzige Sternzustand des Oktaeder. Am Pentagondodekaeder beobachtet man fünf interessante Zustände und das Ikosaeder soll, wie es in der Literatur heisst, 58 Stufen aufweisen. Oktaeder Die Flächen des Oktaedersterns laufen parallel oder bilden nach aussen geöffnete Tricher, laufen also ausseinander und es kommt zu keinem weiteren Sternzustand. Die Oktaederstern-Struktur spannt einen Würfelstumpf auf und zeigt damit ihre kubischen Eigenschaften. Oktaederstern-Struktur Oktaederstern Bauelement des Oktaedersterns, darunter die Erweiterung des Bauelementes Ueli Wittorf 5

6 geometricdesign Sterne des Pentagondodekaeders Der erste Dodekaederstern, d.h. der kleine Kepplerstern (in der Mitte) wird aus 12 Pentagrammen zusammengebaut. Das Sternelement, zum Fünfeck ausgedehnt, führt zur ikosaedrischen Struktur von Poinsots Sternkörper (rechts). Auch dieses Fünfeck lässt sich zum Fünfstern erweitern. Zusammengebaut erhalten wir den grossen Keplerstern mit 20 Spitzen, auch Ikosaederstern genannt. Dieser spannt mit seinen Enden wieder ein Dodekaeder auf, dessen 12 Flächen allerdings als Fünfsterne erscheinen. Man könnte ihn Pentagramm-Dodekaeder nennen. Ausgehend vom Pentagondodekaeder enthält er den Dodekaederstern, Poinsots Sternkörper (mit ikosaedrischen Umrissen), den Ikosaederstern und dieser das Pentagramm-Dodekaeder, also fünf Körper übereinander, gebaut aus 12 identischen ebenene Bauelementen. Links von oben unten: Kleiner Keplerstern, Poinsots Sternkörper, Grosser Keplerstern und Pentagrammdodekaeder. Rechts: die entsprechenden Bauelemente, von denen jeweils 12 identische zusammengebaut werden. 6 Ueli Wittorf

7 Die Schnittstrukturen von Oktaeder, Pentagondodekaeder und Ikosaeder Zum Entwerfen der Bauelemente der Sterne muss man sich die Schnittstrukturen der Flächen der Grundkörper vergegenwärtigen. Die Schnittstruktur der erweiterten Ikosaederseiten reichen wesentlich weiter in den Umraum als die diejenige des Pentagondodekaeders. Oktaeder Pentagondodekaeder Ikosaeder Schnittstrukturen von Oktaeder, Pentagondodekaeder und Ikosaeder Ueli Wittorf 7

8 geometricdesign Sterne des Ikosaeders Einige Sterne des Ikosaeders wurden, wie auch die oben beschriebenen, aus transparentem, 0.25 mm dickem Hart-PVC-Platenmaterial nach dem System der Verschränkung von geschlitzten Bauelementen angefertigt. Neben dem Bild des Modells ist jeweils das 20-fach verwendete Bauelement in der Schnittstruktur getönt eingezeichnet, beginnend beim Ikosaeder, das in allen weiteren Sternkörper als Kern vorhanden ist. Ikosaeder (Kern aller Sterngebilde) erster Ikosaederstern Pyramidenikosaeder Bindelstern Oktaederfünfling Tetraederfünfling 8 Ueli Wittorf

9 Ikosaederstern mit 20 sechsflächigen Zacken Baravalle-Stern Ikosaederstern mit 12 fünfflächigen Spitzen blauer Baravalle-Stern im transparenten Dodekaederstern Ab einer bestimmten Komplexität sind durchgehende Flächenelemente nicht mehr möglich, der Kern muss weggelassen werden. Zürich, im Jahre 2012 Ueli Wittorf Ueli Wittorf 9

Sterne der Platonischen Körper

Sterne der Platonischen Körper Der Griechische Philosoph Platon (428 348 v. Chr.) ordnete die regelmässigen geometrischen Körper den Naturelementen und dem Himmelsraum zu. Feuer Luft Wasser Erde Himmelsraum Wie präsentieren sich die

Mehr

Die Platonischen Körper und ihre Sternformen im

Die Platonischen Körper und ihre Sternformen im Die Platonischen Körper und ihre Sternformen im Kemperschen Würfel Der Kempersche Würfel Umklappen, Umstülpen Für die Abwicklung der sechs Flächen eines Würfels gibt es 11 verschiedene Möglichkeiten. Wir

Mehr

Die Proportionen der regelmässigen Vielecke und die

Die Proportionen der regelmässigen Vielecke und die geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale

Mehr

Ein System zum Bau von geometrischen Körpern

Ein System zum Bau von geometrischen Körpern Die Entdeckung des Prinzips der Verschränkung von geschlitzten, ebenen Kunststoffbauelementen eröffnete die Möglichkeit fast beliebig komlizierte geometrische Modelle zu bauen. Das System verwendet keinen

Mehr

Die Platonischen Körper

Die Platonischen Körper Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur

Mehr

Das Hyperdodekaeder. Einleitung

Das Hyperdodekaeder. Einleitung geometricdesign Einleitung Die fünf Platonischen Körper können nach ihren Proportionen in zwei Gruppen eingeteilt werden: 1. Die Vertreter der mineralischen Natur sind Würfel, Oktaeder und Tetraeder. An

Mehr

Vorwort und Einführung

Vorwort und Einführung Vorwort und Einführung Geometrische Körper Die intensive Beschäftigung mit der Geometrie der Platonischen Körper verdanke ich einer Kindergärtnerin, der ich eine Schokoladekugel elegant verpackt, schenken

Mehr

Vorwort und Einführung

Vorwort und Einführung Vorwort und Einführung Geometrische Körper Die intensive Beschäftigung mit der Geometrie der Platonischen Körper verdanke ich einer Kindergärtnerin, der ich eine Schokoladekugel elegant verpackt, schenken

Mehr

Die Platonischen Körper im Sechseck

Die Platonischen Körper im Sechseck Alle Platonischen Körper weisen (auch) eine dreizählige Symmetrie auf und können deshalb in ein regelmässiges Sechseck eingezeichnet werden. In einem zweiten Schritt ist es möglich, die Durchdringungen

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre

Mehr

Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt

Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt Ueli Wittorf 101 Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt Ausgehend vom Tetraeder ist es möglich mit sieben beweglichen Torsions-Doppelpolyeder- Modellen alle Platonischen

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

Von Sternen und allerlei anderen Körpern

Von Sternen und allerlei anderen Körpern In der Mathematik ist das Fragen wichtiger als das Rechnen. Georg Cantor (1845 1918) Mathematik-Professor in Halle Von Sternen und allerlei anderen Körpern Diese drei Abbildungen stellen Modelle von Polyedern

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN. 1

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN.  1 IV. BUCH: RAUM MIT n-dimensionen 8a. Die ARCHIMEDISCHEN www.udo-rehle.de 1 Archimedische Körper Zu den archimedischen Körpern gelangt man durch diverses Abschneiden der Ecken bei den platonischen Körpern.

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Platonische Körper. 1 Die fünf platonischen Körper

Platonische Körper. 1 Die fünf platonischen Körper Platonische Körper Vortrag von Annamaria Jahn Im Proseminar Lehramt am 11.1.006 Kontakt: annamaria.jahn@online.de 1 Die fünf platonischen Körper Ein platonischer Körper ist ein Polyeder mit zueinander

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge!

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge! Eine Pyramide aus Kugeln Eine Pyramide aus übereinander gelegten Kugeln das ist sehr einfach und kompliziert zugleich! In der Draufsicht So wie in den Abbildungen links wurden damals im Mittelalter Kanonenkugeln

Mehr

Gegenstände der Geometrie

Gegenstände der Geometrie Gegenstände der Geometrie Inhalt Quadrat Kreis Würfel Das Das Pentagramm Parkette --- --- Seite 2 1. 1. Das Quadrat Gerade Linien in in der der Natur? Lichtstrahlen, fallende Körper, Wasseroberfläche,

Mehr

Die historische Betrachtung der Platonischen Körper

Die historische Betrachtung der Platonischen Körper Die historische Betrachtung der Platonischen Körper Christian Hartfeldt Otto-von-Guericke Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie christian.hartfeldt@t-online.de

Mehr

Dodekaeder Simum als Sphäre

Dodekaeder Simum als Sphäre Eine Gemeinschaftsarbeit von Schülerinnen und Schülern der 12. und 11. Klassen der Atelierschule Zürich im September 2009 Im Grundlagen-Wahlfach haben wir mit 11.- und 12.-KlässlerInnen einen luftigen,

Mehr

Symmetrie im Raum An Hand der platonischen Körper

Symmetrie im Raum An Hand der platonischen Körper Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

Hans Walser, [ ] Dodekaeder-Würfel 1 About Ein Papiermodell (Abb. 1) eines Würfels hat enge Beziehungen zu Dodekaeder und Ikosaeder.

Hans Walser, [ ] Dodekaeder-Würfel 1 About Ein Papiermodell (Abb. 1) eines Würfels hat enge Beziehungen zu Dodekaeder und Ikosaeder. Hans Walser, [20161008] Dodekaeder-Würfel 1 About Ein Papiermodell (Abb. 1) eines Würfels hat enge Beziehungen zu Dodekaeder und Ikosaeder. Abb. 1: Dodekaeder-Würfel 2 Bauteile Das Modell besteht aus sechs

Mehr

Der umstülpbare Würfel von Paul Schatz

Der umstülpbare Würfel von Paul Schatz geometric design I. Das Pentagondodekaeder als kosmische Sphäre Paul Schatz beschäftigte sich mit den Platonischen Körpern, welche Plato die kosmischen Körper nannte. Im Dialog Timaios ordnete Plato die

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Grundlagen Geometrie. Einsichten in die platonischen Körper. zusätzliche Zeichnungen 3

Grundlagen Geometrie. Einsichten in die platonischen Körper. zusätzliche Zeichnungen 3 Grundlagen Geometrie zusätzliche Zeichnungen 3 in die platonischen Körper Raumanordnung 3 Einsicht in den Tetraeder 4 Zweifache Einsicht in den Tetraeder 5 Einsicht in den Hexaeder 6 Zweifache Einsicht

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

Der Eulersche Polyedersatz

Der Eulersche Polyedersatz Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen)

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

REGULÄRE UND SEMIREGULÄRE POLYTOPE

REGULÄRE UND SEMIREGULÄRE POLYTOPE REGULÄRE UND SEMIREGULÄRE POLYTOPE regulare und semireguläre polytope ANDREAS PAFFENHOLZ FU Berlin Germany Eulersche Polyederformel Theorem Für ein Polytop mit Ecken Eulersche Polyederformel Kanten und

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Der Goldene Schnitt! Hans Walser!

Der Goldene Schnitt! Hans Walser! Der Goldene Schnitt! Hans Walser! www.walser-h-m.ch/hans! 1! Drohne:!! Mutti, wie bin ich auf die Welt gekommen?! 1 1 2! Eine männliche Biene (Drohne)! hat nur eine Mutter (Königin)!! Unbefruchtetes Ei!

Mehr

Erforschen Polydron und Polydron Frameworks

Erforschen Polydron und Polydron Frameworks Erforschen Polydron und Polydron Frameworks Geschrieben von Bob Ansell Kontaktinformationen Polydron Site E,Lakeside Business Park Broadway Lane South Cerney Cirencester Gloucestershire GL7 5XL Tel: +44

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

Der Stammbaum der Platonischen und Archimedischen

Der Stammbaum der Platonischen und Archimedischen Der Stammbaum der Platonischen und Archimedischen Körper Die Platonischen und Archimedischen Körper aus dem Tetraeder entwickelt Ausgehend vom Tetraeder ist es möglich mit sieben beweglichen Torsions-Doppelpolyeder-

Mehr

Abb. 1: Einfalten der Kantenmitten. Abb. 2: Ecken einfalten

Abb. 1: Einfalten der Kantenmitten. Abb. 2: Ecken einfalten Hans Walser, [20140901] Origami im Raum Anregung: G. G., B. 1 Worum geht es? Statt mit einem quadratischen Origami-Papier arbeiten wir mit entsprechenden Analoga im Raum. 2 Klassisches Origami und einige

Mehr

Geometrie der Polygone Platonische Körper Markus Wurster 1

Geometrie der Polygone Platonische Körper Markus Wurster 1 Geometrie der Polygone Teil 7 Platonische Körper Geometrie der Polygone Platonische Körper Markus Wurster 1 Vom Polygon zum Polyeder Körper aus Polygonen Körper, die von geraden (ebenen) Flächen begrenzt

Mehr

Die Platonischen Körper

Die Platonischen Körper Die Platonischen Körper Ablauf: 1. Die Studenten erklären den Schülern kurz, wer Platon war, wann und wo er gelebt hat und womit er sich beschäftigt hat. 2. Anschließend wird den Schülern erklärt was Platonische

Mehr

Hans Walser, [ a] Polyedermodelle aus rechteckigen Karten

Hans Walser, [ a] Polyedermodelle aus rechteckigen Karten Hans Walser, [20090829a] Polyedermodelle aus rechteckigen Karten 1 Die Idee Wir schrägen bei einem Polyeder die Ecken ab und anschließend die ursprünglichen Kanten. Dadurch entsteht aus jeder ursprünglichen

Mehr

Euklides: Stoicheia. (Die Elemente des Euklid) Buch XV. XV.1. Einem gegebenen Würfel ein Tetraeder einbeschreiben.

Euklides: Stoicheia. (Die Elemente des Euklid) Buch XV. XV.1. Einem gegebenen Würfel ein Tetraeder einbeschreiben. Euklides: Stoicheia (Die Elemente des Euklid) Buch XV. XV.1. Einem gegebenen Würfel ein Tetraeder einbeschreiben. Dem gegebenen Würfel ABCDEFGH ist ein Tetraeder einzubeschreiben. Es sind AC, AE, CE, AG,

Mehr

Lösungsskizzen zur Präsenzübung 08

Lösungsskizzen zur Präsenzübung 08 Lösungsskizzen zur Präsenzübung 08 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 015/016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 016 von:

Mehr

Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W.

Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W. Hans Walser, [011087b], [0150110] Modell der Minimalfläche im Oktaeder Anregung: [Limperg 011] sowie eine private Mitteilung von G. L., W. 1 Worum geht es? Wir tauchen ein Kantenmodell eines Oktaeders

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Mathematik 31 Wahrscheinlichkeit 01 Name: Vorname: Datum:

Mathematik 31 Wahrscheinlichkeit 01 Name: Vorname: Datum: Mathematik Wahrscheinlichkeit 0 Name: Vorname: Datum: Aufgabe : In einer Urne liegen Kugeln mit den Nummern,,,,. Für den Einsatz von Fr. kann man zwei Zahlen nennen und danach zwei Kugeln ziehen. Zieht

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper.

Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper. Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper. Würfelmodell 1 Würfelmodell 1.1 Bauteil Wir bauen ein Kantenmodell mit einem Bauteil pro Kante, insgesamt also 12 Bauteilen. In der folgenden

Mehr

Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45.

Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45. Hans Walser, [20180201] Mehrfarbige Packungen 1 Worum geht es? Die gängigen räumlichen Packungen werden bezüglich der Minimalzahl der benötigten Farben untersucht. Wenn zwei Füller-Elemente eine Fläche

Mehr

Generelle Definition. Kristallklassen im kubischen Kristallsystem. Kristallformen im kubischen Kristallsystem

Generelle Definition. Kristallklassen im kubischen Kristallsystem. Kristallformen im kubischen Kristallsystem Generelle Definition Seite 1 von Alle Kristalle des kubischen Systems lassen sich auf ein Achsenkreuz beziehen mit drei senkrecht aufeinanderstehenden Achsen und gleichlangen Achsenabschnitten. Also: Alpha

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Der Goldene Schnitt! Hans Walser!

Der Goldene Schnitt! Hans Walser! Der Goldene Schnitt Hans Walser www.walser-h-m.ch/hans 1 Der Goldene Schnitt Wo steckt der Goldene Schnitt? 2 Der Goldene Schnitt 3 Der Goldene Schnitt Stetige Teilung (Euklid, 3. Jh. v. Chr.) 4 Der Goldene

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 207 Die fünf platonischen Körper Hans Walser: Modul 207, Die fünf platonischen Körper ii Inhalt 1 Definition der fünf platonischen Körper... 1 2 Tabelle...

Mehr

11b. Die

11b. Die IV. BUCH RAUM MIT n-dimensionen 11b. Die www.udo-rehle.de 1 29.10.12 Auf einen Oktaeder kann man ein bis acht Tetraeder aufsetzen Eine Raumfüllung ist mit Tetra- und Oktaedern möglich www.udo-rehle.de

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: convex.tex,v /05/24 15:01:13 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: convex.tex,v /05/24 15:01:13 hk Exp $ $Id: convex.tex,v 1.29 2016/05/24 15:01:13 hk Exp $ 3 Konvexgeometrie 3.2 Die platonischen Körper Am Ende der letzten Sitzung hatten wir die sogenannten platonische Körper eingeführt, ein platonischer

Mehr

Reguläre Polyeder. im Wissenschaftssommer Leipzig, 1. Juli

Reguläre Polyeder. im Wissenschaftssommer Leipzig, 1. Juli Reguläre Polyeder Vortrag von Dr. Hans-Gert Gräbe, apl. Professor für Informatik, Univ. Leipzig, und Leipziger Schülergesellschaft für Mathematik (LSGM) e.v. im Wissenschaftssommer Leipzig, 1. Juli 2008

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Platonische Körper oder das Geheimnis der A5. Peter Maaß, Uttendorf 2005

Platonische Körper oder das Geheimnis der A5. Peter Maaß, Uttendorf 2005 Platonische Körper oder das Geheimnis der A5 Peter Maaß, Uttendorf 2005 Konstruktion platonischer Körper Symmetriegruppen der platonischen Körper Die Primzahlen der Gruppentheorie Das Geheimnis der A5

Mehr

Das Innere eines Oktaeders. Michael Hofer, Workshop: Origami im Geometrieunterricht

Das Innere eines Oktaeders. Michael Hofer, Workshop: Origami im Geometrieunterricht Das Innere eines Oktaeders Michael Hofer, Workshop: Origami im Geometrieunterricht Schritt 1 Halbiere das Quadrat über die Seiten (2x) und öffne die Faltungen wieder. Schritt 2 Drehe das Blatt um und halbiere

Mehr

Verknüpfung zweier C 2 Drehachsen

Verknüpfung zweier C 2 Drehachsen Phsikalische und Theoretische Methoden der Anorganischen Chemie, WS 2009/10 Verknüpfung zweier Drehachsen 2 C (360 /2) = C 360 /2 D (360 /2) Phsikalische und Theoretische Methoden der Anorganischen Chemie,

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Die historische Betrachtung der Platonischen Körper

Die historische Betrachtung der Platonischen Körper Die historische Betrachtung der Platonischen Körper Prof. Dr. Herbert Henning, Christian Hartfeldt Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie email:

Mehr

Der Bewegungsweg des Vector equilibrium (Jitterbug)

Der Bewegungsweg des Vector equilibrium (Jitterbug) Der Bewegungsweg des Vector equilibrium (Jitterbug) D. Junker im März 2009 1 Im Folgenden soll versucht werden, die Konstruktion des Bewegungs-Wegs des Vector equilibrium (VE) von Oktaeder zu Kuboktaeder

Mehr

Übungen zum Verbessern der Raumvorstellung. Josef Molnár

Übungen zum Verbessern der Raumvorstellung. Josef Molnár ROMOTE MSc UIT DESCRITOR MATHEMATIK 3 Titel der Einheit Stoffgebiet ame und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Übungen zum Verbessern der Raumvorstellung Geometrie Josef Molnár

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.

A B. Geometrische Grundbegriffe zuordnen.  Geometrische Grundbegriffe zuordnen. Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das

Mehr

Technische Darstellung

Technische Darstellung Fakultät Maschinenwesen Institut für Festkörpermechanik Professur für Getriebelehre Prof. Dr. rer. nat. habil. Dr. h. c. Karl-Heinz Modler Bearbeiter: Dr.-Ing. Kerstin Becker Telefon: +49 351 463-32732

Mehr

Die Formel von Descartes ist äquivalent zur Polyederformel von Euler ( ).

Die Formel von Descartes ist äquivalent zur Polyederformel von Euler ( ). Hans Walser, [20090304a], [20131023] Winkeldefizite bei konvexen Polyedern Anregung: [Heinrich 2009], J. P. und P. H. 1 Worum es geht Die Summe der ebenen Winkel in einer konvexen Polyederecke ist kleiner

Mehr

Was ist ein Kaleidozyklus?

Was ist ein Kaleidozyklus? Polyeder und ihre Euler-Charakteristik Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten

Mehr

Sicheres, vernetztes Wissen zu geometrischen Formen

Sicheres, vernetztes Wissen zu geometrischen Formen Sicheres, vernetztes Wissen zu geometrischen Formen SINUS Veranstaltung Grundschule Egelsbach 08.12. 2011, 14:30-17:30 Uhr Renate Rasch, Universität Koblenz-Landau, Campus Landau r-rasch@uni-landau.de

Mehr

Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =

Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f = Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2

Mehr

Archimedische und Platonische Körper

Archimedische und Platonische Körper Archimedische und Platonische Körper Eine Bauanleitung für den Einsatz in der Lehre Mai 2016 Julia Bienert Inhalt 1 Einleitung... 1 2 Konstruktion... 1 2.1 Idee und Material... 1 2.2 Grundkörper (Archimedischer

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

100 % Mathematik - Lösungen

100 % Mathematik - Lösungen 100 % Mathematik: Aus der Geometrie Name: Klasse: Datum: 1 Ordne die gemessenen Längenangaben den beschriebenen Objekten zu. 22 m 37 cm Tischdicke 22 mm Breite eines Turnsaals 2 m 45 cm Sitzhöhe 258 mm

Mehr

Polyeder in der Anorganischen Chemie

Polyeder in der Anorganischen Chemie Polyeder in der Anorganischen Chemie Melanie Koschinat AC-F Seminar 28.11.2005 Gliederung Einleitung: Geschichtliches Größendimensionen Allgemein Polyeder Dualitätsprinzip Abstumpfen von Polyedern Beispiele

Mehr

Handeln und Denken im Raum

Handeln und Denken im Raum Handeln und Denken im Raum Vom Quadrat zur Dreieckspyramide Man nehme ein Quadrat (15cm x 15cm), zeichne die Diagonalen ein und schneide von einem Eckpunkt des Quadrates bis zum Schnittpunkt der Diagonalen

Mehr

Hans Walser. Raumgeometrie. Modul 1 Der Würfel Lernumgebung, Teil 2

Hans Walser. Raumgeometrie. Modul 1 Der Würfel Lernumgebung, Teil 2 Hans Walser Raumgeometrie Modul 1 Der Würfel Lernumgebung, Teil 2 Hans Walser: Modul 1, Der Würfel. Lernumgebung, Teil 2 ii Inhalt 1 Symmetrieebenen in isometrischer Darstellung... 1 2 Symmetrieebenen

Mehr

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und

Mehr

Aufgabe S1 (4 Punkte)

Aufgabe S1 (4 Punkte) Aufgabe S1 (4 Punkte) Gegeben sei die Folge a 1 = 3, a 2 = 5, die für n 3 durch fortgesetzt wird Berechnen Sie a 2014 Wir setzen die Folge fort: a n = a n 1 a n 2 n = 1 2 3 4 5 6 7 8 9 a n = 3 5 2 3 5

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

B l u m e d e s L e b e n s

B l u m e d e s L e b e n s Home Präsentation entdecken ф 3 Ф d r e i d i m e n s i o n a l e B l u m e d e s L e b e n s Andreas OttigerAmmann Bewusstseinstrotter, Forscher, Gestalter, Gartenpfleger, Autor Diese Home-Präsentation

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

Vorwort des Herausgebers

Vorwort des Herausgebers Vorwort des Herausgebers D ie Heisenberg-Gesellschaft legt hier den zweiten Band ihrer Schriftenreihe vor. Bei der Jahresversammlung im Oktober 2013 sprachen Jürgen Audretsch über das Verständnis der Heisenbergschen

Mehr

Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11

Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11 Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11 1 Das Quadrat mit der Rückseite nach oben auflegen und einmal vertikal und einmal horizontal falten. 2 Alle vier Ecken des Quadrates

Mehr

Geometrische Körper bauen

Geometrische Körper bauen www.erfolgreicheslernen.de April 2009 Geometrische Körper bauen Michael Schmitz Zusammenfassung Aus dünner Pappe oder stabilem Kopierpapier (z.b. 200 g/m 2 ) und Gummiringen kann man ebenflächig begrenzte

Mehr

Wenn wir die vorstehenden Kugelteile abschruppen, erhalten wir einen Würfel.

Wenn wir die vorstehenden Kugelteile abschruppen, erhalten wir einen Würfel. Hans Walser, [20110903a] Kugeln als Baumaterial 1 Worum geht es? Es werden einige bekannte Figuren als Kugelpackungen dargestellt. Dabei wird die dichteste Kugelpackung verwendet. Statt Kugeln können auch

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Digitale Bibliothek Braunschweig. Das Ikosaeder. Hulek, Klaus Wolfgang

Digitale Bibliothek Braunschweig. Das Ikosaeder. Hulek, Klaus Wolfgang Hulek, Klaus Wolfgang Veröffentlicht in: Jahrbuch 1999 der Braunschweigischen Wissenschaftlichen Gesellschaft, S.29-33 J. Cramer Verlag, Braunschweig 29 K. HULEK, Hannover Braunschweig, 16.04.1999* 1.

Mehr

Leseprobe aus: Die Matrix unserer Welt von Dr. Diethard Stelzl. Abdruck erfolgt mit freundlicher Genehmigung des Verlages. Alle Rechte vorbehalten.

Leseprobe aus: Die Matrix unserer Welt von Dr. Diethard Stelzl. Abdruck erfolgt mit freundlicher Genehmigung des Verlages. Alle Rechte vorbehalten. Leseprobe aus: Die Matrix unserer Welt von Dr. Diethard Stelzl. Abdruck erfolgt mit freundlicher Genehmigung des Verlages. Alle Rechte vorbehalten. Hier geht s zum Buch >> Die Matrix unserer Welt ISBN

Mehr

IV. BUCH: RAUM MIT. 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE.

IV. BUCH: RAUM MIT. 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE. IV. BUCH: RAUM MIT n-dimensionen 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE http://www.polytope.de/ Übersicht mit Eckcharakterisierung 1 {4, 6, 10} beim Riesen bedeutet beispielsweise an jeder Ecke trifft ein

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Winkeldefizite bei konvexen Polyedern

Winkeldefizite bei konvexen Polyedern 44 Hans Walser Winkeldefizite bei konvexen Polyedern Die Summe der ebenen Winkel an einer konvexen Polyederecke ist kleiner als 360. Zu jeder Polyederecke gibt es also ein Winkeldefizit als Ergänzung auf

Mehr

II Geometrie im Raum. II.1 Polyeder

II Geometrie im Raum. II.1 Polyeder II Geometrie im Raum II1 Polyeder Eine begrenzte (beschränkte, endliche) Fläche nennt man ein Flächenstück Ein begrenztes (beschränktes, endliches) Stück des Raumes nennt man einen Körper Ein ebenes Flächenstück

Mehr

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben Aufgaben zu Merkmalen und Eigenschaften von Körpern 1 Sicheres Wissen und Können am Ende der Klasse 6 1 Allgemeine Merkmale vergleichen und beschreiben 1. Die folgenden Zeichnungen zeigen Körper. Fülle

Mehr