( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

Größe: px
Ab Seite anzeigen:

Download "( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen"

Transkript

1 Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese gegebe errechbares Nutzeveau festgelegt (Nutzefukto festhalte!) U U ( (,.., ),... (,,..., )) ( ) V,...,,, V(.) wrd drekte Nutzefukto geat. geschafte: 38 Prof. Dr. Fredel Bolle Bespel: U (achreche!) ( ) / ( ) / + +, U V (,, ) ( ) ( / + / ) V / > 0, V / < 0 (klar) ( ) ( ) ) / + / + Homoge vom Grad 0 (,, K, )? V ( ) / λ [ λ ( )] / / + / ( λ, λ, λ ) ( λ ) / + ( λ ) λ V ( / + / ) (,, ) (achreche!) 39 V > 0 höhere Idfferezkurve errechbar V < 0 V st homoge vom Grad 0 (,, ), K wel de Marshallsche Nachfragefuktoe homoge vom Grad 0 (,, ) ur och edrgere Idfferezkurve errechbar, K sd.

2 Prof. Dr. Fredel Bolle 40 De zwete Fukto, de wr eführe wolle, etsprcht der Kostefukto der Produktostheore ( U, ) (, p, K ) K K, p ( U,, K ) a, a K, gbt de mmale Ausgabe a, de ötg sd, um das, Nutzeveau U (de damt bezechete Idfferezkurve) zu erreche. a(.) wrd Ausgabefukto geat. Verglech mt bsherger Aufgabestellug: bsher Prof. Dr. Fredel Bolle U V,, + Bespel vo obe: ( ) ( / / ) / / ( ) + U a U (,, ) Wetere geschafte der Ausgabefukto: a(.) st homoge vom Grad de Prese gleche Idfferezkurve gleches Presverhaelts a > 0 gleches optmales Güterbüdel otwedges komme muss um de gleche Faktor stege we de Prese 4 fest U U fest max U, NB. + L + m, NB. U U (, K, ) optmales Güterbüdel Mmalkostekombato Marshallsche Nachfragefkt. Hckssche Nachfragefuktoe drekte Nutzefukto Ausgabefukto Duale Probleme Gleche Margalbedguge glecher xpasospfad We a( U,..., ), a(.) ud V(.) stelle deselbe Bezehug zwsche U V,..., ud U dar., da ( ) Damt de alte Idfferezkurve weder errecht werde ka, muß das komme stege. (Bede geschafte am Bespel vo obe prüfe!) We berets gesagt: a(.) etsprcht der Kostefukto der Theore der Uterehmug. Also sd a(.) ud V(.) Umkehrfuktoe!

3 Prof. Dr. Fredel Bolle Shephards Lemma? (,,..., ) a U h ( U,,..., ) h etspreche de kodtoale Nachfragefuktoe der Theore der Uterehmug. h (.) gbt a, welche Mege vom Gut zu kaufe sd, damt der Haushalt das Nutzeveau U (de damt bezechete Idfferezkurve) mt gergste Ausgabe errecht. h (.) heßt Hckssche Nachfragefukto. 4 Prof. Dr. Fredel Bolle N A I stegt stegt, damt I weder errecht werde ka 43 Für de Hckssche Nachfragefuktoe glt: h (.) sd homoge vom Grad 0 de Prese h < 0 Wr kee dese geschafte berets vo de kodtoale Nachfragefuktoe der Theore der Uterehmug. Trotzdem och emal plausbel mache: We das Presverhälts glech blebt, de zu errechede Idfferezkurve glech blebt, da auch das optmale Güterbüdel. N legt otwedg "lks" vo A, d.h. be gergerem. De Zechug zegt, dass h (.) de Substtutoseffekt eer Presveräderug beschrebt!

4 Prof. Dr. Fredel Bolle 3.. Presdces Frage: Steht sch der Haushalt ach eer Äderug aller Prese besser oder schlechter? Krterum: Ist V vor oder ach der Äderug der Prese größer. Amerkug: Nur "besser" oder "schlechter" lässt sch so etschede, cht we vel "besser/schlechter". Bespel: Haushalt mt Präfereze, de durch Nutzefukto U beschrebe werde. Gut Wohug, vorher: ( ), Gut Nahrug (9,4), achher: ( ), (5,) V (, ) ( / / ), + (sehe obe) setze V V / / (,9,4 ) ( ) / / (,5, ) ( 5 + ) 5 36 Also eues Pressstem schlechter (für dese Haushalt). 44 Prof. Dr. Fredel Bolle 45 Frage: Köte wr cht doch etwas über das Ausmaß der Verbesserug/Verschlechterug sage? Im obge Bespel: Das alte Nutzeveau (de alte Idfferezkurve) ka 36 ur weder errecht werde, we das komme auf gestegert 5 wrd. Köte ma cht dese otwedge Stegerug als Maß für de Nutzeverlust asehe? Ja, aber wr müsse us mmer bewusst se, dass wr deses Maß defert habe, ud dass hm bem Haushalt ke z. B. gefühlsmäßges Äuvalet gegeübersteht! Allgemee Defto deses Maßes: Nutze Perode st V (, ), otwedges komme Perode, um gleche Nutze zu erreche (, ) we Perode, st a V (, ), Maß a( V (,, ), ) I,, We Nutze Perode de Norm st: I a V ( (,, ), ), Lebehaltugskostedex: kommesrelato für gleche Nutze we Perode. kommesrelato, um gleche Nutze we Perode zu erreche.

5 Prof. Dr. Fredel Bolle Bespel : U V ( + ) (we obe) I ( ) a + U / / ( + ) ( / + / ) ( ) ( / / ) + / / + ( ) (9, 4), ( ), (5, ) I Prof. Dr. Fredel Bolle 47 Uterschedlche Haushalte bewerte de Presveräderug uterschedlch. Was dem ee we ee "Presstegerug" erschet 36 I >, 5 5 ka dem adere we ee Presredukto I < erschee. 6 I bede Fälle werde Mttelwerte gebldet ud durcheader dvdert. Im Fall st es das geometrsche Mttel. Aufgabe I, I I (selbst achreche) I glt be de obge Bespele. (Glt cht allgeme!) Frage: Was habe de vo us bestmmte Lebeshaltugskoste mt dee der Zetug erwähte zu tu? Bespel : U Also: V, a U 4 I 4 / / / / ( ) ( ) / I 5 6 Obge Defto: Lebeshaltugskostedex für ee Haushalt I der Zetug: Lebehaltugskostedex für vele Haushalte Utersched: Ma ka für vele Haushalte kee Nutzefukto wähle. Gemesamket: Auch der Lebeshaltugskostedex für vele Haushalte st e Quotet vo Mttelwerte der Prese. Wr köe zwar kee Nutzefukto verwede, aber weder Mttelwert der Prese blde. efachster: arthmetsches Mttel! Gewchte: achgefragte Mege [messe Bedeutug] Im Bespel: Perode

6 Prof. Dr. Fredel Bolle + Perode allgeme: deselbe Gewchte + Perode 48 Prof. Dr. Fredel Bolle Bespel vo obe U 49 och allgemeer: Güter Gewchte Mege Perode (alte Marshallsche Nachfragefuktoe sd + ( ) / + ( ) / Mege) Lasperes-Presdex L Summe alte Mege Summe alte Mege eueprese alteprese Heraus köe wr alte ud eue Mege bestmme: (,9,4) (,9,4) (,5,) (,5,) Gewchte Mege Perode (eue Mege) Paasche Presdex P Summe eue Mege eue Prese Summe eue Mege alte Prese eue Prese alte Mege L + > I P < I Sehe Tabelle Statstsches Budesamt: eue Mege alte Prese Be L wrd de Möglchket des Haushaltes zu substtuere cht berückschtgt. Deshalb überschätzt L de Presstegerug. Auch P berückschtgt de Substtuto cht. Desmal führt das zu eer Uterschätzug der Presstegerug.

7 Prof. Dr. Fredel Bolle Graphsche Aalse 50 Prof. Dr. Fredel Bolle Aggregato 5 4. otwedges komme gemäß I st glech I L a. altes Optmum 3. otwedges komme gemäß L für Perode L. Budgetgerade mt alte Prese ud. Budgetgerade mt eue Prese ud L I > I Lebesmttel Käse Brot er... 3 Prese,,, K "Mege Lebesmttel" + L + Ausgabe für Lebesmttel Warekorb für Lebesmttel 4. otwedges komme gemäß I st glech I. eues Optmum 3. otwedges komme gemäß P für Perode P. Budgetgerade mt eue Prese ud. Budgetgerade mt alte Prese ud "Pres für Lebesmttel" Presdex mt, K,, als Gewchte reale Ausgabe für Lebesmttel Ausgabe Presdex Im Iteret "Statstsches Budesamt" besuche! P < I P I

8 Prof. Dr. Fredel Bolle 3.. Kosumeterete Be Presdces habe wr a V I ( (,, ) ), als ee "wahre" Lebeshaltugskostedex bezechet. Statt des Quotete köe wr auch de Dfferez verwede. ( (,, ), ), ),, ) wobe a V, W a( V(, glt. W mßt, wevel ma eem Haushalt gebe (wegehme) müsste, damt der auf das alte Nutzeveau kommt. Halte wr jetzt de ee Pres fest, z.b. a( V(,, ), ~, ) W ~ ~ d h ( V (,, ), ~, ) wege Shephards Lemma 5 Prof. Dr. Fredel Bolle Idettät: ( V (,, ),, ) (, ) Nachfrage h, also statt h verwede?, (, ~ ), Substtutos- ud kommeseffekt uterschätzter kommesverlust Preserhöhug, superores Gut Nachfragerückgag deshalb für ~ > uter h ( ( ) ) h V, ~,,, ~ ur Substtutoseffekt 53 Nachfrage ( (, ) ) ( ) V,,,,, h ( (, ) ~ ) h V,,, De otwedge kommeskompesato be Preserhöhuge wrd be Verwedug der Marshallsche Nachfragefukto ud superore Güter uterschätzt, be Presmderuge wrd der Gew überschätzt. (Übugsaufgabe: f. Güter betrachte!) Aber: h st schwer zu beobachte, efacher! Fläche moetarserter Verlust des Haushaltes be Preserhöhug. ~

9 Prof. Dr. Fredel Bolle Iterpretato mt euem Kozept: Mege Kosumeterete 54 Prof. Dr. Fredel Bolle 55 Kosumeterete wrd oft als Wohlfahrtsmaß für ee ezele Haushalt oder für Gruppe vo Haushalte verwedet. Mege (, ~ ), (, ~, ) ~ f (, ), ~ Pres m ~ De Fläche zwsche ud st glech ( ) S( ) S Veräderug der De Fläche S( ) m (, ~, ) d~ heßt Kosumeterete. Löse wr (, ~, ) ach ~ auf, d.h. ~ f (, ) ( ) f (,, ) d { S beretscha maxmale f Zahlugs t, gezahlter Betrag, da glt Kosumeterete bem Übergag vo ach. Das vo us deferte "wahre" Maß der Presveräderug a ( V (,, ), ), beutzt als Verglechswert de Stuato (, ) Presdex). Ma ka stattdesse auch (,, ) (we be Lasperes-, als Verglechswert beutze (we bem Paasche-Presdex): das wolle wr her aber cht weter verfolge. Festhalte: Kosumeterete st das gebräuchlchste Maß, um Prese ud Presveräderuge (auf ezele Märkte!) zu bewerte!

10 Prof. Dr. Fredel Bolle 3.3. Slutsk-Glechug Zum Schluss deses Abschtts wolle wr de kommes- ud Substtutoseffekt auch formal tree.,, K, gegebe U V (,, K, ) errechbar h *,,..., detsch glech, d. h. glt s glt ( U,..., ) a( U*,,..., ), h j j j für alle U,, K, a + j a margale kommesäderug ötg für kostate Nutze ( U,..., ) (,,..., ) wege Shephards Lemma h j *, j 56 Prof. Dr. Fredel Bolle Zusammefassug, Abletug ud Zusammehag der der Haushaltstheore besprochee Fuktoe Nutzefukto (, ) U, K Optmales Güterbüdel U / p - uabhägge Glechuge (bestmme de xpasospfad) U / p + Haushaltsrestrkto + Idfferezkurve + L + U U(,, ) Marshallsche Nachfragefukto K Hckssche Nachfragefuktoe h j Ros setze h... Shepards + Theorem Nutzefuktoe + h Lemma Idrekte Nutzefukto V Shepards Lemma: h ( U, K, ) Ros Theorem: (,, K, ) Umkehr fuktoe (,, K, ) a U, j V V j Ausgabefukto a (,, K, )/ (,, K, )/ Substtutoseffekt kommeseffekt h j j j j Slutsk-Glechug j j Gesamtveräderug verlorees k. be Preserhöhug ud j cost. Nachfrage ach Gut (Amerkug: Ros Theorem st der Vorlesug cht besproche worde ud deshalb cht klausurrelevat.)

11 Prof. Dr. Fredel Bolle 58 Idettäte: a ( V (, K, ),,, ), V ( a( U, K, ),,, ) U, K (,, ) h ( V (,, K, ),, ) K,,, K ( U,, ) ( a( U,, K, ),, ) h K,., K, K De drekte Nutzefukto st homoge vom Grad 0 de Prese ud m komme, se mmt ab alle Prese. De Ausgabefukto st homoge vom Grad de Prese; se stegt alle Prese. De Marshallsche Nachfragefukto st homoge vom Grad 0 de Prese ud m komme. De Hckssche Nachfragefukto st homoge vom Grad 0 de Prese; se mmt ab m egee Pres.

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Seien p 1 und p 2 die Preise für die Faktoren 1 und 2. Isoquante für Output y. Kosten

Seien p 1 und p 2 die Preise für die Faktoren 1 und 2. Isoquante für Output y. Kosten Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 II. Theore der Uterehmug/3 5 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 II. Theore der Uterehmug/3 53 8. De Mmalkostekombato Frage:

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap )

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap ) Vorkurs, Tel Lehrbuch: Sydsaeter / Hammod, Mathematk für Wrtschaftswsseschaftler, Pearso Studum, ISBN 978-3-873-73-9 Skrpt vo Sevtap Kestel Ihalt () Eführug: Zahle, Fuktoe Potezfukto, Expoetalfukto (Lehrbuch

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

D. Plappert Die Strukturgleichheit verschiedener physikalischer Gebiete gezeigt am Beispiel Hydraulik-Elektrizitätslehre

D. Plappert Die Strukturgleichheit verschiedener physikalischer Gebiete gezeigt am Beispiel Hydraulik-Elektrizitätslehre D. Plappert De Strukturglechhet verschedeer physkalscher Gebete gezegt am Bespel Hydraulk-Elektrztätslehre Erschee Kozepte ees zetgemäße Physkuterrchts, Heft 3, Schroedel Verlag 979. Eletug De megeartge

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1 Ivesttosetscheduge m Mult-Chael-Customer-Relatoshp Maagemet Has Ulrch Buhl, Na Kreyer, Na Schroeder Lehrstuhl für Betrebswrtschaftslehre, Wrtschaftsformatk & Facal Egeerg Kerkompetezzetrum Iformatostechologe

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

Ralf Korn. Elementare Finanzmathematik

Ralf Korn. Elementare Finanzmathematik Ralf Kor Elemetare Fazmathematk Ihaltsverzechs. Eletug Exkurs : Akte Begrffe, Grudlage ud Geschchte. We modellert ma Aktekurse? 4. Edlche E-Perode-Modelle 6. Edlche Mehr-Perode-Modelle 3.3 Das Black-Scholes-Modell

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

1.2.2 Prozentrechnung

1.2.2 Prozentrechnung .2. Verhältsglechuge, Produktglechuge Ee Awedug vo leare Glechuge sd Verhälts- ud Produktglechuge Be Verhältsglechuge st das Verhälts zwsche zwe Varable kostat, z.b. hergestellte Stückzahl zu beötgter

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling

Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling Aalse ud praktsche Umsetzug uterschedlcher Methode des Radomzed Brach Samplg Dssertato zur Erlagug des Doktorgrades der Fakultät für Forstwsseschafte ud Waldökologe der GeorgAugustUverstät Göttge vorgelegt

Mehr

BANK ONLINE Zentraler Bankdaten-Transfer

BANK ONLINE Zentraler Bankdaten-Transfer BANK ONLINE Zetraler Bakdate-Trasfer Ihaltsverzechs 1 Lestugsbeschrebug... 3 2 Itegrato das Ageda-System... 4 3 Hghlghts... 5 3.1 Efachste Aktverug... 5 3.2 Abruf vo Kotoauszüge... 6 3.3 Bakeübergrefede

Mehr

III. Theorie des Haushalts

III. Theorie des Haushalts Pro. Dr. Fredel Bolle Vorlesung "Mkroökonome" WS 008/009 III. Theore des Haushalts 86 Pro. Dr. Fredel Bolle Vorlesung "Mkroökonome" WS 008/009 III. Theore des Haushalts 87 III. Theore des Haushalts Unternehmung

Mehr

Skript Teil 7: Polygonzug

Skript Teil 7: Polygonzug Prof. Dr. tech. Alfred Mschke Vorlesug zur Verastaltug Vermessugskude Skrpt Tel 7: Polgozug Der Begrff Polgo letet sch aus Pol = vel ud Go = Wkel ab ud bedeutet uregelmäßges Veleck. Das Polgoere det zum

Mehr

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N . Charakterserug vo Polymere. moodsperse polydsperse cytochrom c Ege Bopolymere (Ezyme) habe ur ee ehetlche olekülgröße. moodsperse mometa st kee Polymersatosmethode verfügbar, de Polymere mt eer ehetlche

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

Zusatz zur Betriebsanleitung

Zusatz zur Betriebsanleitung Atrebstechk \ Atrebsautomatserug \ Systemtegrato \ Servces Zusatz zur Betrebsaletug Getrebe Typerehe R..7, F..7, K..7, S..7, SIROLAN W Getrebe R..7, F..7, K..7 mt Flaschkupplug Ausgabe 10/2011 19318405

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

8. Mehrdimensionale Funktionen

8. Mehrdimensionale Funktionen Prof. Dr. Wolfgag Koe Mathematk, SS05.05.05 8. Mehrdmesoale Fuktoe Wer Greze überschretet, versucht, ee eue Dmeso vorzustoße. [Dael Mühlema, (*959), Übersetzer ud Aphorstker] Ege Leute sollte cht dü werde,

Mehr

Ermittlung der Höhe der Förderung für Einnahmen schaffende Projekte, deren Gesamtkosten 1 Million EUR übersteigen, die Nettoeinnahmen erzeugen

Ermittlung der Höhe der Förderung für Einnahmen schaffende Projekte, deren Gesamtkosten 1 Million EUR übersteigen, die Nettoeinnahmen erzeugen Ermttlug der Höhe der Förderug für Eahme schaffede Projekte, dere Gesamtkoste 1 Mllo EUR überstege, de Nettoeahme erzeuge 1. Erklärug des Verfahres Auf Grudlage der Ermttlug des sog. Fazerugsdefzt ud der

Mehr

Roy, Shepard, Marshall, Hicks und Slutsky Dualität von Ausgabenminimierung und Nutzenmaximierung

Roy, Shepard, Marshall, Hicks und Slutsky Dualität von Ausgabenminimierung und Nutzenmaximierung Roy, Sheard, Marshall, Hcks und Slutsky Dualtät von Ausgabenmnmerung und Nutzenmamerung Anwendung n der Konsumententheore Indrekte Nutzenfunkton Ausgabefunkton: Indrekte Nutzenfunkton und Ausgabefunkton

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß Thema Zetrehe Statstk - Neff INHALT. Zetreheaalyse, Tred Leare Regressosaalyse mt eem Eflussfaktor X = "Zet" De tredberegte Sasoschwakuge e = s = y ŷ De mttlere Sasoschwakuge s j k k = = s De rreguläre

Mehr

6.3.4 Rechenschema "Symbolische Methode"

6.3.4 Rechenschema Symbolische Methode 6.3 Netzwerkberechg mttels komplexer echg 55 Der Verglech führt z C U I C 90 wege j e j π j (6.03) d: Z j Z Z 90 jc C C (6.04) Y j C; Y C 90 (6.05) Y De Mltplkato des Stromzegers mt dem Wderstadsoperator

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar.

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar. Hochschle Frtwage Uversty Sommersemester 0 Fakltät Dgtale Mede Mathematk Prof. Dr. Thomas Scheder Mede d Iformatk Übgsblatt. Elemetares Reche mt komplexe Zahle Es se w= +. a) Blde Se de komplex Kojgerte

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

Investition und Finanzierung Skript III

Investition und Finanzierung Skript III Ivestto ud Fazerug Skrpt III zuletzt geädert am: 05.05.03 Ivestto ud Fazerug Skrpt III Quelle: Vorlesug Ivestto ud Fazerug 6. Semester, FH Erfurt, Prof. Dr. Waldhelm Copyrght 2003 BSTM Sete Alle Agabe

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

IV. VERSICHERUNGSUNTERNEHMUNG

IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG Vers.-Oek.Tel-I-Ka-IV--5 Dr. Rurecht Wtzel; HS 09.0.009 IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG. Überblck ) I desem Katel wede wr us der Aalyse der Verscherugsuterehmug

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen We gelgt es de Buchacher (oder FdJ IMMER zu gewe Eletug Schrebwese ud Varable Erwarteter Gew des Buchachers 4 4 De Stratege der Buchacher 5 4 Der ehrlche Buchacher 6 4 "real lfe" Buchacher6 4 La FdJ 9

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

Eine einfache Formel für den Flächeninhalt von Polygonen

Eine einfache Formel für den Flächeninhalt von Polygonen Ee efache Formel für de Flächehalt vo Polygoe Peter Beder Set ege Jahre hat der Mathematkddaktk de sogeate emprsche Uterrchtsforschug mt quattatve ud qualtatve Methode Kojuktur, währed stoffddaktsche Arbete

Mehr

Innovative Information Retrieval Verfahren

Innovative Information Retrieval Verfahren Thomas Madl Iovatve Iformato Retreval Verfahre Hauptsemar Wtersemester 004/005 Überblc Formales Vortrag Ausarbetug Scheerwerb Termplaug Kurzvorstellug Theme Themevergabe Wederholug Grudlage Gewchtug ud

Mehr