( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen"

Transkript

1 Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese gegebe errechbares Nutzeveau festgelegt (Nutzefukto festhalte!) U U ( (,.., ),... (,,..., )) ( ) V,...,,, V(.) wrd drekte Nutzefukto geat. geschafte: 38 Prof. Dr. Fredel Bolle Bespel: U (achreche!) ( ) / ( ) / + +, U V (,, ) ( ) ( / + / ) V / > 0, V / < 0 (klar) ( ) ( ) ) / + / + Homoge vom Grad 0 (,, K, )? V ( ) / λ [ λ ( )] / / + / ( λ, λ, λ ) ( λ ) / + ( λ ) λ V ( / + / ) (,, ) (achreche!) 39 V > 0 höhere Idfferezkurve errechbar V < 0 V st homoge vom Grad 0 (,, ), K wel de Marshallsche Nachfragefuktoe homoge vom Grad 0 (,, ) ur och edrgere Idfferezkurve errechbar, K sd.

2 Prof. Dr. Fredel Bolle 40 De zwete Fukto, de wr eführe wolle, etsprcht der Kostefukto der Produktostheore ( U, ) (, p, K ) K K, p ( U,, K ) a, a K, gbt de mmale Ausgabe a, de ötg sd, um das, Nutzeveau U (de damt bezechete Idfferezkurve) zu erreche. a(.) wrd Ausgabefukto geat. Verglech mt bsherger Aufgabestellug: bsher Prof. Dr. Fredel Bolle U V,, + Bespel vo obe: ( ) ( / / ) / / ( ) + U a U (,, ) Wetere geschafte der Ausgabefukto: a(.) st homoge vom Grad de Prese gleche Idfferezkurve gleches Presverhaelts a > 0 gleches optmales Güterbüdel otwedges komme muss um de gleche Faktor stege we de Prese 4 fest U U fest max U, NB. + L + m, NB. U U (, K, ) optmales Güterbüdel Mmalkostekombato Marshallsche Nachfragefkt. Hckssche Nachfragefuktoe drekte Nutzefukto Ausgabefukto Duale Probleme Gleche Margalbedguge glecher xpasospfad We a( U,..., ), a(.) ud V(.) stelle deselbe Bezehug zwsche U V,..., ud U dar., da ( ) Damt de alte Idfferezkurve weder errecht werde ka, muß das komme stege. (Bede geschafte am Bespel vo obe prüfe!) We berets gesagt: a(.) etsprcht der Kostefukto der Theore der Uterehmug. Also sd a(.) ud V(.) Umkehrfuktoe!

3 Prof. Dr. Fredel Bolle Shephards Lemma? (,,..., ) a U h ( U,,..., ) h etspreche de kodtoale Nachfragefuktoe der Theore der Uterehmug. h (.) gbt a, welche Mege vom Gut zu kaufe sd, damt der Haushalt das Nutzeveau U (de damt bezechete Idfferezkurve) mt gergste Ausgabe errecht. h (.) heßt Hckssche Nachfragefukto. 4 Prof. Dr. Fredel Bolle N A I stegt stegt, damt I weder errecht werde ka 43 Für de Hckssche Nachfragefuktoe glt: h (.) sd homoge vom Grad 0 de Prese h < 0 Wr kee dese geschafte berets vo de kodtoale Nachfragefuktoe der Theore der Uterehmug. Trotzdem och emal plausbel mache: We das Presverhälts glech blebt, de zu errechede Idfferezkurve glech blebt, da auch das optmale Güterbüdel. N legt otwedg "lks" vo A, d.h. be gergerem. De Zechug zegt, dass h (.) de Substtutoseffekt eer Presveräderug beschrebt!

4 Prof. Dr. Fredel Bolle 3.. Presdces Frage: Steht sch der Haushalt ach eer Äderug aller Prese besser oder schlechter? Krterum: Ist V vor oder ach der Äderug der Prese größer. Amerkug: Nur "besser" oder "schlechter" lässt sch so etschede, cht we vel "besser/schlechter". Bespel: Haushalt mt Präfereze, de durch Nutzefukto U beschrebe werde. Gut Wohug, vorher: ( ), Gut Nahrug (9,4), achher: ( ), (5,) V (, ) ( / / ), + (sehe obe) setze V V / / (,9,4 ) ( ) / / (,5, ) ( 5 + ) 5 36 Also eues Pressstem schlechter (für dese Haushalt). 44 Prof. Dr. Fredel Bolle 45 Frage: Köte wr cht doch etwas über das Ausmaß der Verbesserug/Verschlechterug sage? Im obge Bespel: Das alte Nutzeveau (de alte Idfferezkurve) ka 36 ur weder errecht werde, we das komme auf gestegert 5 wrd. Köte ma cht dese otwedge Stegerug als Maß für de Nutzeverlust asehe? Ja, aber wr müsse us mmer bewusst se, dass wr deses Maß defert habe, ud dass hm bem Haushalt ke z. B. gefühlsmäßges Äuvalet gegeübersteht! Allgemee Defto deses Maßes: Nutze Perode st V (, ), otwedges komme Perode, um gleche Nutze zu erreche (, ) we Perode, st a V (, ), Maß a( V (,, ), ) I,, We Nutze Perode de Norm st: I a V ( (,, ), ), Lebehaltugskostedex: kommesrelato für gleche Nutze we Perode. kommesrelato, um gleche Nutze we Perode zu erreche.

5 Prof. Dr. Fredel Bolle Bespel : U V ( + ) (we obe) I ( ) a + U / / ( + ) ( / + / ) ( ) ( / / ) + / / + ( ) (9, 4), ( ), (5, ) I Prof. Dr. Fredel Bolle 47 Uterschedlche Haushalte bewerte de Presveräderug uterschedlch. Was dem ee we ee "Presstegerug" erschet 36 I >, 5 5 ka dem adere we ee Presredukto I < erschee. 6 I bede Fälle werde Mttelwerte gebldet ud durcheader dvdert. Im Fall st es das geometrsche Mttel. Aufgabe I, I I (selbst achreche) I glt be de obge Bespele. (Glt cht allgeme!) Frage: Was habe de vo us bestmmte Lebeshaltugskoste mt dee der Zetug erwähte zu tu? Bespel : U Also: V, a U 4 I 4 / / / / ( ) ( ) / I 5 6 Obge Defto: Lebeshaltugskostedex für ee Haushalt I der Zetug: Lebehaltugskostedex für vele Haushalte Utersched: Ma ka für vele Haushalte kee Nutzefukto wähle. Gemesamket: Auch der Lebeshaltugskostedex für vele Haushalte st e Quotet vo Mttelwerte der Prese. Wr köe zwar kee Nutzefukto verwede, aber weder Mttelwert der Prese blde. efachster: arthmetsches Mttel! Gewchte: achgefragte Mege [messe Bedeutug] Im Bespel: Perode

6 Prof. Dr. Fredel Bolle + Perode allgeme: deselbe Gewchte + Perode 48 Prof. Dr. Fredel Bolle Bespel vo obe U 49 och allgemeer: Güter Gewchte Mege Perode (alte Marshallsche Nachfragefuktoe sd + ( ) / + ( ) / Mege) Lasperes-Presdex L Summe alte Mege Summe alte Mege eueprese alteprese Heraus köe wr alte ud eue Mege bestmme: (,9,4) (,9,4) (,5,) (,5,) Gewchte Mege Perode (eue Mege) Paasche Presdex P Summe eue Mege eue Prese Summe eue Mege alte Prese eue Prese alte Mege L + > I P < I Sehe Tabelle Statstsches Budesamt: eue Mege alte Prese Be L wrd de Möglchket des Haushaltes zu substtuere cht berückschtgt. Deshalb überschätzt L de Presstegerug. Auch P berückschtgt de Substtuto cht. Desmal führt das zu eer Uterschätzug der Presstegerug.

7 Prof. Dr. Fredel Bolle Graphsche Aalse 50 Prof. Dr. Fredel Bolle Aggregato 5 4. otwedges komme gemäß I st glech I L a. altes Optmum 3. otwedges komme gemäß L für Perode L. Budgetgerade mt alte Prese ud. Budgetgerade mt eue Prese ud L I > I Lebesmttel Käse Brot er... 3 Prese,,, K "Mege Lebesmttel" + L + Ausgabe für Lebesmttel Warekorb für Lebesmttel 4. otwedges komme gemäß I st glech I. eues Optmum 3. otwedges komme gemäß P für Perode P. Budgetgerade mt eue Prese ud. Budgetgerade mt alte Prese ud "Pres für Lebesmttel" Presdex mt, K,, als Gewchte reale Ausgabe für Lebesmttel Ausgabe Presdex Im Iteret "Statstsches Budesamt" besuche! P < I P I

8 Prof. Dr. Fredel Bolle 3.. Kosumeterete Be Presdces habe wr a V I ( (,, ) ), als ee "wahre" Lebeshaltugskostedex bezechet. Statt des Quotete köe wr auch de Dfferez verwede. ( (,, ), ), ),, ) wobe a V, W a( V(, glt. W mßt, wevel ma eem Haushalt gebe (wegehme) müsste, damt der auf das alte Nutzeveau kommt. Halte wr jetzt de ee Pres fest, z.b. a( V(,, ), ~, ) W ~ ~ d h ( V (,, ), ~, ) wege Shephards Lemma 5 Prof. Dr. Fredel Bolle Idettät: ( V (,, ),, ) (, ) Nachfrage h, also statt h verwede?, (, ~ ), Substtutos- ud kommeseffekt uterschätzter kommesverlust Preserhöhug, superores Gut Nachfragerückgag deshalb für ~ > uter h ( ( ) ) h V, ~,,, ~ ur Substtutoseffekt 53 Nachfrage ( (, ) ) ( ) V,,,,, h ( (, ) ~ ) h V,,, De otwedge kommeskompesato be Preserhöhuge wrd be Verwedug der Marshallsche Nachfragefukto ud superore Güter uterschätzt, be Presmderuge wrd der Gew überschätzt. (Übugsaufgabe: f. Güter betrachte!) Aber: h st schwer zu beobachte, efacher! Fläche moetarserter Verlust des Haushaltes be Preserhöhug. ~

9 Prof. Dr. Fredel Bolle Iterpretato mt euem Kozept: Mege Kosumeterete 54 Prof. Dr. Fredel Bolle 55 Kosumeterete wrd oft als Wohlfahrtsmaß für ee ezele Haushalt oder für Gruppe vo Haushalte verwedet. Mege (, ~ ), (, ~, ) ~ f (, ), ~ Pres m ~ De Fläche zwsche ud st glech ( ) S( ) S Veräderug der De Fläche S( ) m (, ~, ) d~ heßt Kosumeterete. Löse wr (, ~, ) ach ~ auf, d.h. ~ f (, ) ( ) f (,, ) d { S beretscha maxmale f Zahlugs t, gezahlter Betrag, da glt Kosumeterete bem Übergag vo ach. Das vo us deferte "wahre" Maß der Presveräderug a ( V (,, ), ), beutzt als Verglechswert de Stuato (, ) Presdex). Ma ka stattdesse auch (,, ) (we be Lasperes-, als Verglechswert beutze (we bem Paasche-Presdex): das wolle wr her aber cht weter verfolge. Festhalte: Kosumeterete st das gebräuchlchste Maß, um Prese ud Presveräderuge (auf ezele Märkte!) zu bewerte!

10 Prof. Dr. Fredel Bolle 3.3. Slutsk-Glechug Zum Schluss deses Abschtts wolle wr de kommes- ud Substtutoseffekt auch formal tree.,, K, gegebe U V (,, K, ) errechbar h *,,..., detsch glech, d. h. glt s glt ( U,..., ) a( U*,,..., ), h j j j für alle U,, K, a + j a margale kommesäderug ötg für kostate Nutze ( U,..., ) (,,..., ) wege Shephards Lemma h j *, j 56 Prof. Dr. Fredel Bolle Zusammefassug, Abletug ud Zusammehag der der Haushaltstheore besprochee Fuktoe Nutzefukto (, ) U, K Optmales Güterbüdel U / p - uabhägge Glechuge (bestmme de xpasospfad) U / p + Haushaltsrestrkto + Idfferezkurve + L + U U(,, ) Marshallsche Nachfragefukto K Hckssche Nachfragefuktoe h j Ros setze h... Shepards + Theorem Nutzefuktoe + h Lemma Idrekte Nutzefukto V Shepards Lemma: h ( U, K, ) Ros Theorem: (,, K, ) Umkehr fuktoe (,, K, ) a U, j V V j Ausgabefukto a (,, K, )/ (,, K, )/ Substtutoseffekt kommeseffekt h j j j j Slutsk-Glechug j j Gesamtveräderug verlorees k. be Preserhöhug ud j cost. Nachfrage ach Gut (Amerkug: Ros Theorem st der Vorlesug cht besproche worde ud deshalb cht klausurrelevat.)

11 Prof. Dr. Fredel Bolle 58 Idettäte: a ( V (, K, ),,, ), V ( a( U, K, ),,, ) U, K (,, ) h ( V (,, K, ),, ) K,,, K ( U,, ) ( a( U,, K, ),, ) h K,., K, K De drekte Nutzefukto st homoge vom Grad 0 de Prese ud m komme, se mmt ab alle Prese. De Ausgabefukto st homoge vom Grad de Prese; se stegt alle Prese. De Marshallsche Nachfragefukto st homoge vom Grad 0 de Prese ud m komme. De Hckssche Nachfragefukto st homoge vom Grad 0 de Prese; se mmt ab m egee Pres.

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt?

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt? Klausur Wrtschaftsstatstk. [ Pukte] E Uterehme hat folgede Date ermttelt: Moat Gelestete Arbetsstude Lohkoste pro Arbetsstude Jauar 86.400 0,06 Februar 75.000 3,0 März 756.000 4,47 Aprl 768.000,53 Ma 638.400

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen. Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date

Mehr

Seien p 1 und p 2 die Preise für die Faktoren 1 und 2. Isoquante für Output y. Kosten

Seien p 1 und p 2 die Preise für die Faktoren 1 und 2. Isoquante für Output y. Kosten Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 II. Theore der Uterehmug/3 5 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 II. Theore der Uterehmug/3 53 8. De Mmalkostekombato Frage:

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Versuch Dichte- und Dickenmessung

Versuch Dichte- und Dickenmessung Rcklger Stadtweg, D-3459 Haover Tel.: 5/ 996-359 Versuch 3.3 - Dchte- ud Dckemessug U. J. Schrewe, Ma 7. Grudlage Bem Durchgag vo mooeergetscher Rötge- ud -Strahlug durch ee Matereschcht der Dcke glt das

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Fehlerrechnung im Praktikum

Fehlerrechnung im Praktikum Fehlerrechug m Pratum Pratum Phsalsche Cheme (A. Dael Boese) I chts zegt sch der Magel a mathematscher Bldug mehr, als eer überbertrebe geaue Rechug. Carl Fredrch Gauß, 777-855 Themegebete Utertelug vo

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt.

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt. III Zufallsgröße Bespel ud Defto Bespel: Dremal Müzwurf Spel: Esatz, we cht zwe gleche htereader 3 Auszahlug. Ω = {(x x x3) x,x,x3 {Z,K}} Retert sch deses Spel? Dabe geht es ur um de Gew! Also: Defto Gew:

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf.

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf. Rekurrez Rekurso: Algorthme rue sch selst rekursv u. Rekurrez: Ds Luzetverhlte zw. der Specherpltzedr vo rekursve Algorthme k der Regel durch ee Rekursosormel recurrece, RF eschree werde. Rekurrez Bespel:

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1 Ivesttosetscheduge m Mult-Chael-Customer-Relatoshp Maagemet Has Ulrch Buhl, Na Kreyer, Na Schroeder Lehrstuhl für Betrebswrtschaftslehre, Wrtschaftsformatk & Facal Egeerg Kerkompetezzetrum Iformatostechologe

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Progrmmerug ud Agewdte Mthemtk C++ /Sclb Progrmmerug ud Eführug ds Kozept der objektoreterte Aweduge zu wsseschftlche Reches SS Ihlt Folge Rehe Verfhre zur Kovergez Bestmmug Progrmmerug ud Agewdte Mthemtk

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

$Id: reihen.tex,v /12/11 13:20:28 hk Exp $

$Id: reihen.tex,v /12/11 13:20:28 hk Exp $ Mathemat für de Phys I, WS 2017/2018 Motag 11.12 $Id: rehe.tex,v 1.36 2017/12/11 13:20:28 h Exp $ 5 Rehe 5.2 Grudegeschafte vo Rehe Wr wolle desem Abschtt och ee letzte allgemee Aussage festhalte. Wr wsse

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra Grudlage der Iormatk Grudlage der Dgtaltechk 3. Etwcklugssatz der Schaltalgebra Pro. Dr.-Ig. Jürge Tech Dr.-Ig. Chrsta Haubelt Lehrstuhl ür Hardware-Sotware Sotware-Co-Desg Grudlage der Dgtaltechk Etwcklugssatz

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

D. Plappert Die Strukturgleichheit verschiedener physikalischer Gebiete gezeigt am Beispiel Hydraulik-Elektrizitätslehre

D. Plappert Die Strukturgleichheit verschiedener physikalischer Gebiete gezeigt am Beispiel Hydraulik-Elektrizitätslehre D. Plappert De Strukturglechhet verschedeer physkalscher Gebete gezegt am Bespel Hydraulk-Elektrztätslehre Erschee Kozepte ees zetgemäße Physkuterrchts, Heft 3, Schroedel Verlag 979. Eletug De megeartge

Mehr

Eigenschaften der arithmetischen Mittel. Schätzer für die Varianz. Allgeimeines Method: Likelihood Funktion. Schätzer für die Wahrscheinlichkeit

Eigenschaften der arithmetischen Mittel. Schätzer für die Varianz. Allgeimeines Method: Likelihood Funktion. Schätzer für die Wahrscheinlichkeit Statstk. Vorlesug, September 6, 009 Egeschafte er arthmetsche Mttel für alle Fälle wo e Stchprobeelemete habe e selbe Vertelug u s uabhägg: E ( = mvar, ( = / Staarabwechug (Staarfehler: D ( = / Korrektur

Mehr

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap )

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap ) Vorkurs, Tel Lehrbuch: Sydsaeter / Hammod, Mathematk für Wrtschaftswsseschaftler, Pearso Studum, ISBN 978-3-873-73-9 Skrpt vo Sevtap Kestel Ihalt () Eführug: Zahle, Fuktoe Potezfukto, Expoetalfukto (Lehrbuch

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Ralf Korn. Elementare Finanzmathematik

Ralf Korn. Elementare Finanzmathematik Ralf Kor Elemetare Fazmathematk Ihaltsverzechs. Eletug Exkurs : Akte Begrffe, Grudlage ud Geschchte. We modellert ma Aktekurse? 4. Edlche E-Perode-Modelle 6. Edlche Mehr-Perode-Modelle 3.3 Das Black-Scholes-Modell

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

3 Allgemeine lineare Gleichungssysteme über R. Superposition

3 Allgemeine lineare Gleichungssysteme über R. Superposition Fole 3 Allgeee lere Glechugssystee üer R. Superposto (3.) Defto: E leres Glechugssyste Uestte ud Glechuge st: De sd de Koeffzete us R. De sd wetere Zhle, uch de Kostte get, ud de sd de Uestte, zw. de Uekte,

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Frequently Asked Questions FAQ. Stand: 1. Januar KGAST Immo-Index

Frequently Asked Questions FAQ. Stand: 1. Januar KGAST Immo-Index Stad: 1. Jauar 217 KGAST Immo-Idex KGAST Immo-Idex-Famle FREQUENTLY ASKED QUESTIONS Was behaltet der KGAST Immo-Idex? De KGAST Immo-Idex-Famle umfasst ee Hauptdex ud dre Subdzes. Der KGAST Immo- Idex als

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,,

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,, Matheatk ür VIW - Pro. Dr. M. Ludwg 8. Deretato reeller Fuktoe ehrerer Varabler 8. Skalare Felder Vektorelder Koordatesystee Bsher wurde reelle Fuktoe ür ee Varable utersucht: : D t der egeührte Schrebwese

Mehr

1.2.2 Prozentrechnung

1.2.2 Prozentrechnung .2. Verhältsglechuge, Produktglechuge Ee Awedug vo leare Glechuge sd Verhälts- ud Produktglechuge Be Verhältsglechuge st das Verhälts zwsche zwe Varable kostat, z.b. hergestellte Stückzahl zu beötgter

Mehr

Klausur Statistik IV Sommersemester 2009

Klausur Statistik IV Sommersemester 2009 Klausur Statstk IV (Lösug) Name, Vorame 013456 Klausur Statstk IV Sommersemester 009 Prof. Dr. Torste Hothor Isttut für Statstk Name: Name, Vorame Matrkelummer: 013456 Wchtg: ˆ Überprüfe Se, ob Ihr Klausurexemplar

Mehr