4.9.7 Konstruktion der Suffixbäume

Größe: px
Ab Seite anzeigen:

Download "4.9.7 Konstruktion der Suffixbäume"

Transkript

1 .9.7 Konstruktion der Suffixbäume Beipiel: xabxa (siehe Abbildung.27) Man beginnt mit der Konstruktion eines Suffixbaumes für gesamten String und schreibt eine 1 am Blatt, weil der Suffix xabxa an der Stelle 1 des Strings beginnt. So geht man Zeichen für Zeichen den String durch. Kommt jedoch ein Suffix vor, dessen Anfangssymbol(e) bereits im Suffixbaum vorkommt, so zerlegt man die bereits existierende Kante in zwei Kanten (Wörter) genau an der Stelle, wo die Gleichheit zwischen bereits existierendem und neu einzufügundem Suffix aufhört. xabxa xabxa xabxa abxa xabxa abxa xabxa abxa bxa xabxa abxa bxa xabxa abxa bxa xa xa bxa abxa bxa abxa bxa xa bxa xabxa abxa bxa xa a a bxa bxa xa a bxa bxa a bxa xa bxa 5 5 xabxa abxa bxa xa a bxa xa bxa a bxa 5 6 xabxa abxa bxa xa a $ bxa a bxa xa bxa 5 $ 6 7 Abbildung.27: Konstruktion des Suffixbaumes am Beispiel von xabxa 109

2 Naiver Algorithmus zu Konstruktion von Suffixbäumen. Konstruiere Folge T 1, T 2,..., T n von Bäumen, wobei T i alle Suffizies S[1..n], S[2..n],..., S[i..n] enthält. D.h., der Baum T 1 hat nur eine Kante und enthält nur einen Suffix S[1..n] = S (Abbildung.28), T 2 enthält Suffizies S[1..n], S[2..n] usw. T 1 : 1 Abbildung.28: Erster Schritt bei der Aufbau eines zunächst leeren Suffixbaumes T i+1 wird aus T i wie folgt konstruiert: 1: Durchlaufe T i mit dem Suffix S i+1 (= S[i + 1..n]) wie beim Matching Algorithmus bis man "stecken bleibt". Also (Abbildung.29): S i+1 = αβ, wobei α ist ein maximaler Präfix, der als Markierung eines Knotens u (d.h. Beschriftung des Weges von Wurzel bis u) plus Präfix α, der Markirung γ einer von u ausgehender Kante e = (u, v) auftritt. 2: Wir schaffen ein neues Blatt w mit dem Index i + 1 3: Falls α = ε (leeres Wort) (Abbildung.30): schaffe eine neue Kante e = (u, v) und beschrifte sie mit β Sonst (Abbildung.31): sei γ = α β, wobei α ε, δ ε schaffe neuen Knoten x spalte Kante e in e 1 = (u, x) und e 2 = (x, v) schaffe neue Kante e = (x, w) beschrifte e 1 mit α, e 2 mit δ, e mit β Wurzel α α' γ u α' γ v Abbildung.29: α ist Präfix eines existierenden Suffixes im Baum 110

3 Wurzel α α'=ε (leeres Wort) u w β i+1 γ v Abbildung.30: α = ε (Leeres Wort) Wurzel α γ=α'δ, α' ε, δ ε u γ α' w i+1 β x v δ Abbildung.31: γ = α δ, wobei α ε, δ ε 111

4 Laufzeit Für jeden Suffix S i ( S i = n i+1) wird eine Suche durchgeführt, die O(n i+1)- Zeit kostet. Schritte ( 2 und 3 benötigen konstante Zeit, also O(1). n ) Insgesamt : O n i + 1 = O ( n 2) i=1 }{{} P n n(n+1) j=1 j= 2 n2 2 Speicherbedarf Die Größe des entstehenden Baumes (Speicherbedarf), einschließlich der Beschriftungen der Kanten ist O(n 2 ). Best case ist nur dann zu erwarten wenn alle Zeichen gleich sind (S = a n ), so liegt der Speicherbedarf bei O(n) und der Baum sieht wie auf der Abbildung.32 aus: Abbildung.32: Suffixbaum mit dem Speicherbedarf O(n) Sonst aber kommt es an Θ(n 2 ) heran, was für große Texte (Buch, DNA-Analyze) nicht akzeptabel ist. In der Praxis wird eine andere Konstruktion/Modifikation des Suffixbaumes verwendet, die in linearer Zeit konstruiert werden kann und linearer Speicherplatz benötigt. Dabei handelt es sich um das Algortihmus von Ukkonen (AU). Wir werden den Algorithmus nicht näher betrachten, da er sehr kompliziert ist..9.8 Anwendungen von Suffixbäumen 1 Stringmatching Konstuktion des Suffixbaumes mit AU mit anschließender Suche nach P liefert alternativen O(n + m)-algorithmus. 1a Finden einer Menge von Strings {P 1,.., P l } in einem Text S Zu finden sind alle Vorkommen von Mustern im Text S. Das ist machbar in Vorverarbeitungszeit O(n) mit AU. Laufzeit für eigentliche Suche beträgt O(m + k), wobei m = k i=1 P i, k ist Anzahl aller Vorkommen. 2 Datenbank von Texten S 1,..., S l Zu finden sind alle Vorkommen eines Musters P in Texten S 1,..., S l. 112

5 Dafür werden die Texte zusammengestellt getrennt durch spezielle Trennzeichen $ i die weder im Text noch im Muster vorkommen: S 1 $ 1 S 2 $ 2..$ l 1 S l. Ohne dieser Trennzeichen wäre es möglich ein Muster so zu finden, dass sein Präfix in S j und sein Suffix in S j+1 liegt. Dafür bauen wir einen Suffixbaum auf. Vorverarbeitungszeit beträgt O(n), n = l i=1 S l, Suchzeit ist O(m + k), wobei m = P und k ist Anzahl aller Vorkommen. 3 Suche nach dem längsten gemeinsamen Teilwort Gegeben sind Strings S 1 und S 2. Zu finden ist das längste gemeinsame Teilwort. Idee: - konstruiere einen Suffixbaum wie in o.a. Anwendung 2. für S 1 und S 2 - markiere jeden inneren Knoten v mit 1, falls sein Unterbaum einen Suffix von S 1 enthält und mit 2 falls einen Suffix von S 2. D. h. in v endet sich ein Teilwort von S 1 (oder S 2 ) - finde tiefsten Knoten, der mit 1 und 2 markiert ist, wobei die Tiefe = Länge der Beschriftungen von der Wurzel bis dorthin. Mit AU lässt sich das Problem in O ( S 1 + S 2 ) Zeit lösen. Ungestritten gibt es viele weitere Anwendungen. Einige der wichtigen davon finden sich in der Bioinformatik..9.9 Anwendungen in der Bioinformatik Definition.9.2 (DNA-Moleküle (deutsch: DNS - Desoxyribonukleinsäure)). Moleküle, die die Erbinformation eines Organismus enthalten und sind Doppelketten aus folgenden Bausteinen (Molekülen) {A, T, C, G} (Adenin, Thymin, Cytosin, Guanim). Einzelne Bausteine heißen Nukleotide. Ein Molekül besteht aus Nukleotiden. Dabei gibt es zwei Zuordnungen: A T und C G. Definition.9.3 (Genom). Gesamtkette der DNA-Moleküle, die gesamte Erbinformation enthält (mehr dazu kann man z.b. bei org/wiki/genom nachlesen). Definition.9. (Protein). Ein String über einem 20-elementigen Alphabet (die Zeichen des Alphabets sind die Aminosäuren). Die Länge eines solchen Strings kann mehrere Hunderte sein. (z.b.: bei Bakterien: , bei Menschen (Säugetieren) ). Definition.9.5 (Genetischer Code). Codierung eines Aminosäurenbausteins im Protein durch jeweils ein Tripel von aufeinanderfolgenden Nukleotiden. Beispiel (Genetischer Code). TTT - Phenylamin, GTT - Valin Da es um die Tripeln handelt, ist es wichtig bei der Decodierung eines DNA- Abschnittes an der richtigen Stelle anzufangen (man weiß nicht genau, am Anfang des DNA-Stücks der Tripel sauber oder innendrin getrennt wurde). Definition.9.6 (Sequenzierung). Bestimmung der Folge von Nukleotiden eines DNA-Moleküls. 113

6 Den ganzen Genom erhält man durch das Überlappen einzelner Stücke (Abbildung.33). Bisher (Stand: 200) ist es technisch möglich Stücke der Länge zu identifizieren. Dabei soll man bedenken in welche Richtung die Einzelstücke bei dem Überlappen gerichtet werden sollen. Abbildung.33: Rekonstruktion eines Genoms durch das Überlappen der DNA- Fragmente Es gibt also folgendes Problem (theoretisch) zu lösen: gegeben sind viele Teilworte, gesucht ist das kleinste gemeinsame Oberwort. Dieses Problem ist NP-schwer und ist ein gutes Beipiel für die o.a. Anwendung 1.a (Finden einer Menge von Mustern in einem Text).9.8. Dabei ist der Text ein bereits sequinziertes DNA-Stück. Jedes neue Fragment wird gegen den Text getestet, ob nicht bereits vorhanden. Ist es nicht der Fall, so sucht man nach einer Überlappung mit dem Ende des Textes. 11

TU München. Hauptseminar: WS 2002 / Einführung in Suffix - Bäume

TU München. Hauptseminar: WS 2002 / Einführung in Suffix - Bäume TU München Hauptseminar: WS 2002 / 2003 Einführung in Suffix - Bäume Bearbeiterin: Shasha Meng Betreuerin: Barbara König Inhalt 1. Einleitung 1.1 Motivation 1.2 Eine kurze Geschichte 2. Tries 2.1 Basisdefinition

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Kap. 19: Suffixbäume Faculty of Technology robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Sommer 2011 Bekannte Verfahren zur exakten Suche in Zeichenreihen Exakte

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Suffixbäume Ulf Leser Wissensmanagement in der Bioinformatik Ziele Perspektivenwechsel: Von Online zu Offline-Stringmatching Verständnis von Suffix-Bäumen als Datenstruktur

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

String - Matching. Kapitel Definition

String - Matching. Kapitel Definition Kapitel 1 String - Matching 1.1 Definition String - Matching ( übersetzt in etwa Zeichenkettenanpassung ) ist die Suche eines Musters ( Pattern ) in einem Text. Es findet beispielsweise Anwendung bei der

Mehr

2.2 Der Algorithmus von Knuth, Morris und Pratt

2.2 Der Algorithmus von Knuth, Morris und Pratt Suchen in Texten 2.1 Grundlagen Ein Alphabet ist eine endliche Menge von Symbolen. Bsp.: Σ a, b, c,..., z, Σ 0, 1, Σ A, C, G, T. Wörter über Σ sind endliche Folgen von Symbolen aus Σ. Wörter werden manchmal

Mehr

8.4 Suffixbäume. Anwendungen: Information Retrieval, Bioinformatik (Suche in Sequenzen) Veranschaulichung: DNA-Sequenzen

8.4 Suffixbäume. Anwendungen: Information Retrieval, Bioinformatik (Suche in Sequenzen) Veranschaulichung: DNA-Sequenzen 8.4 Suffixbäume Ziel: Datenstruktur, die effiziente Operationen auf (langen) Zeichenketten unterstützt: - Suche Teilzeichenkette (Substring) - Präfix - längste sich wiederholende Zeichenkette -... Anwendungen:

Mehr

4.4 Anwendungen von Suffixbäumen und Suffix-Arrays

4.4 Anwendungen von Suffixbäumen und Suffix-Arrays 4.4 Anwendungen von Suffixbäumen und Suffix-Arrays exakte Suche in unveränderlichen Texten (schon besprochen) inexakte Suche in unveränderlichen Texten Finden von Regelmäßigkeiten (z.b. längste Wiederholungen)

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

ADS: Algorithmen und Datenstrukturen 1

ADS: Algorithmen und Datenstrukturen 1 ADS: Algorithmen und Datenstrukturen 1 Teil 13+ɛ Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Effiziente Algorithmen 2

Effiziente Algorithmen 2 Effiziente Algorithmen 2 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Algorithmen und Datenstrukturen II. Suchen in Texten. Prof. Dr. Oliver Braun. Fakultät für Informatik und Mathematik Hochschule München

Algorithmen und Datenstrukturen II. Suchen in Texten. Prof. Dr. Oliver Braun. Fakultät für Informatik und Mathematik Hochschule München Algorithmen und Datenstrukturen II Suchen in Texten Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 27.03.2018 06:32 Inhaltsverzeichnis Ein Text.......................................

Mehr

Proseminar String Matching

Proseminar String Matching Proseminar Textsuche Proseminar String Matching PD Dr. habil. Hanjo Täubig Lehrstuhl für Theoretische Informatik (Prof. Dr. Susanne Albers) Institut für Informatik Technische Universität München Wintersemester

Mehr

Strings. Stringsuche, Boyer-Moore, Textkompression, Huffman Codes.

Strings. Stringsuche, Boyer-Moore, Textkompression, Huffman Codes. Strings Stringsuche, Boyer-Moore, Textkompression, Huffman Codes. Suche Substring Häufiges Problem Relevante Beispiele: Suche ein Schlagwort in einem Buch Alphabet: A-Za-z0-9 Suche Virussignatur auf der

Mehr

Text Analytics. Referat: Improving Suffix Array Locality for Fast Pattern Matching on Disk

Text Analytics. Referat: Improving Suffix Array Locality for Fast Pattern Matching on Disk Text Analytics Referat: Improving Suffix Array Locality for Fast Pattern Matching on Disk Nils Alberti & Jürgen Eicher, 12. Juni 2008 Einführung Stringmatching bisher: Analyse des Patterns zum schnellen

Mehr

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Suchen in Texten Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Textsuche Gegeben ist ein Zeichensatz (Alphabet) Σ. Für einen Text T Σ n und

Mehr

Einleitung. Kapitel 1

Einleitung. Kapitel 1 Kapitel 1 Einleitung In diesem Abschnitt geben wir einen kurzen Überblick über den Inhalt der Vorlesung. Wir werden kurz die wesentlichen Probleme erläutern, die wir ansprechen wollen. Wir werden auch

Mehr

Kapitel 2. Suche nach endlich vielen Wörtern. R. Stiebe: Textalgorithmen, Winter 2005/06 113

Kapitel 2. Suche nach endlich vielen Wörtern. R. Stiebe: Textalgorithmen, Winter 2005/06 113 Kapitel 2 Suche nach endlich vielen Wörtern R. Stiebe: Textalgorithmen, Winter 2005/06 113 Übersicht Aufgabenstellung Gegeben: Text T und eine endliche Menge von Wörtern P = {P 1,..., P r }; Gesucht: alle

Mehr

1.8 Shift-And-Algorithmus

1.8 Shift-And-Algorithmus .8 Shift-And-Algorithmus nutzt durch Bitoperationen mögliche Parallelisierung Theoretischer Hintergrund: Nichtdeterministischer endlicher Automat Laufzeit: Θ(n), falls die Länge des Suchwortes nicht größer

Mehr

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11 Kapitel 1 Exakte Suche nach einem Wort R. Stiebe: Textalgorithmen, WS 2003/04 11 Überblick Aufgabenstellung Gegeben: Text T Σ, Suchwort Σ mit T = n, = m, Σ = σ Gesucht: alle Vorkommen von in T Es gibt

Mehr

Zeichenketten. 29. April 2015 Benedikt Lorch. Benedikt Lorch Zeichenketten April

Zeichenketten. 29. April 2015 Benedikt Lorch. Benedikt Lorch Zeichenketten April Vorlage Zeichenketten 29. April 2015 Benedikt Lorch Benedikt Lorch Zeichenketten 17. 29. April 2015 1 Motivation String Matching in the DNA Alphabet 1 Σ DNA = {A, G, C, T} DNA Text: 1 982 672 Zeichen Suchstring:

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Repetitive Strukturen

Repetitive Strukturen Repetitive Strukturen Andreas Liebig Philipp Muigg ökhan Ibis Repetitive Strukturen, (z.b. sich wiederholende Strings), haben eine große Bedeutung in verschiedenen Anwendungen, wie z.b. Molekularbiologie,

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie 1 Effiziente lgorithmen und Komplexitätstheorie Vorlesung Thomas Jansen 29.06.2006 2 Burrows-Wheeler-Kompression: Verbesserungen dreischrittiges Kompressionsverfahren Burrows- Wheeler- Transformation Globale

Mehr

Zeichenketten. Michael Fularczyk Michael Fularczyk Zeichenketten / 41

Zeichenketten. Michael Fularczyk Michael Fularczyk Zeichenketten / 41 Zeichenketten Michael Fularczyk 17.05.2011 Michael Fularczyk Zeichenketten 17.05.2011 1 / 41 Inhalt Zeichenketten Zeichensätze Darstellung Suchverfahren naive Stringsuche Knuth-Morris-Pratt Boyer-Moore

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 02. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 02. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik Vorlesung am 2. November 27 2..27 Dorothea Wagner - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Vorlesung am 2. November 27 Helmholtz-Gemeinschaft

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Algorithmentheorie. 15 Suchen in Texten (1)

Algorithmentheorie. 15 Suchen in Texten (1) Algorithmentheorie 15 Suhen in Texten (1) Prof. Dr. S. Alers Suhe in Texten Vershiedene Szenrien: Sttishe Texte Literturdtennken Biliothekssysteme Gen-Dtennken WWW-Verzeihnisse Dynmishe Texte Texteditoren

Mehr

Kapitel 7: Sequenzen- Alignierung in der Bioinformatik

Kapitel 7: Sequenzen- Alignierung in der Bioinformatik Kapitel 7: Sequenzen- Alignierung in der Bioinformatik VO Algorithm Engineering Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 19. VO 14. Juni 2007 1 Literatur für diese VO Volker

Mehr

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y Die AVL-Eigenschaft soll bei Einfügungen und Streichungen erhalten bleiben. Dafür gibt es zwei mögliche Operationen: -1-2 Rotation Abbildung 3.1: Rotation nach rechts (analog links) -2 +1 z ±1 T 4 Doppelrotation

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Kapitel 5. Textalgorithmen. 5.1 Grundbegriffe

Kapitel 5. Textalgorithmen. 5.1 Grundbegriffe Kapitel 5 Textalgorithmen 5.1 Grundbegriffe Wir beschäftigen uns hauptsächlich mit Textsuche (und Varianten). Gegeben: Alphabet Σ (mindestens zwei Buchstaben). Text S = s 1... s n Σ in Array S[1..n]. Muster

Mehr

Algorithmen und Datenstrukturen II

Algorithmen und Datenstrukturen II Algorithmen und Datenstrukturen II Algorithmen zur Textverarbeitung III: D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Sommer 2009,

Mehr

Die Nerode-Relation und der Index einer Sprache L

Die Nerode-Relation und der Index einer Sprache L Die Nerode-Relation und der Index einer Sprache L Eine zweite zentrale Idee: Sei A ein vollständiger DFA für die Sprache L. Repäsentiere einen beliebigen Zustand p von A durch die Worte in Σ, die zu p

Mehr

Übersicht. Aktivitäten-Auswahl-Problem. Greedy Algorithmen. Aktivitäten-Auswahl-Problem. Aktivitäten-Auswahl-Problem. Datenstrukturen & Algorithmen

Übersicht. Aktivitäten-Auswahl-Problem. Greedy Algorithmen. Aktivitäten-Auswahl-Problem. Aktivitäten-Auswahl-Problem. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Übersicht Greedy Algorithmen Einführung Aktivitäten-Auswahl-Problem Huffman Codierung Matthias Zwicker Universität Bern Frühling 2009 2 Greedy Algorithmen Entwurfsstrategie

Mehr

In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit

In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit in der Nucleotidsequenz der DNA verschlüsselt (codiert)

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 2 3. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen

Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung. Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen (noch weiter) 2.3. Kontextfreie Sprachen 2/4,

Mehr

Algorithmen für paarweise Sequenz-Alignments. Katharina Hembach

Algorithmen für paarweise Sequenz-Alignments. Katharina Hembach Proseminar Bioinformatik WS 2010/11 Algorithmen für paarweise Sequenz-Alignments Katharina Hembach 06.12.2010 1 Einleitung Paarweise Sequenz-Alignments spielen in der Bioinformatik eine wichtige Rolle.

Mehr

Dies bewirkt einen höheren Verzweigungsgrad und somit eine niedrigere Höhe des Baumes. Schnelleres Suchen und Manipulieren

Dies bewirkt einen höheren Verzweigungsgrad und somit eine niedrigere Höhe des Baumes. Schnelleres Suchen und Manipulieren 5.2 B*-Bäume In B-Bäumen spielen die Indexelemente (x; ) zwei ganz verschiedene Rollen: (i) Der Schlüssel x wird zusammen mit der assoziierten Information gespeichert. (ii) Der Schlüssel x wird zur Navigation

Mehr

Mehrband-Turingmaschinen und die universelle Turingmaschine

Mehrband-Turingmaschinen und die universelle Turingmaschine Mehrband-Turingmaschinen und die universelle Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 15 Turingmaschinen mit mehreren Bändern k-band

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

2.2 Reguläre Sprachen Endliche Automaten

2.2 Reguläre Sprachen Endliche Automaten 2.2.1 Endliche Automaten E I N G A B E Lesekopf endliche Kontrolle Signal für Endzustand Ein endlicher Automat liest ein Wort zeichenweise und akzeptiert oder verwirft. endlicher Automat Sprache der akzeptierten

Mehr

Kapitel 12: Induktive

Kapitel 12: Induktive Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Maximilians-Universität Münhen Institut für Informatik Prof. Dr. Volker Heun Sommersemester 2016 Wiederholungsklausur 19. Oktoer 2016 Algorithmishe Bioinformatik I Vorname Name Matrikelnummer Reihe

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 2 Sprache als Symbolketten Wir knüpfen an die Überlegungen der ersten Vorlesung an, ob es eine Maschine (einen Computer,

Mehr

Praktikum Algorithmische Anwendungen WS 2006/07 Ausarbeitung: Schnelle Stringsuchalgorithmen Boyer-Moore und Knuth-Morris-Pratt

Praktikum Algorithmische Anwendungen WS 2006/07 Ausarbeitung: Schnelle Stringsuchalgorithmen Boyer-Moore und Knuth-Morris-Pratt Praktikum Algorithmische Anwendungen WS 2006/07 Ausarbeitung: Schnelle Stringsuchalgorithmen Boyer-Moore und Knuth-Morris-Pratt Team A Rot Daniel Baldes (Nr. 11041002, ai688@gm.fh-koeln.de) Holger Pontius

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Einführung in die Informatik II Aus der Informationstheorie: Datenkompression

Einführung in die Informatik II Aus der Informationstheorie: Datenkompression Einführung in die Informatik II Aus der Informationstheorie: Datenkompression Prof. Bernd Brügge, Ph.D Institut für Informatik Technische Universität München Sommersemester 2 2. Juli 2 Copyright 2 Bernd

Mehr

Wann sind Codes eindeutig entschlüsselbar?

Wann sind Codes eindeutig entschlüsselbar? Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C

Mehr

Sequence Assembly. Nicola Palandt

Sequence Assembly. Nicola Palandt Sequence Assembly Nicola Palandt 1 Einleitung Das Genom eines Lebewesens ist der Träger aller Informationen, die eine Zelle weitergeben kann. Es besteht aus Sequenzen, die mehrere Milliarden Basen lang

Mehr

Diskrete Strukturen Wiederholungsklausur

Diskrete Strukturen Wiederholungsklausur Technische Universität München (I7) Winter 2013/14 Prof. J. Esparza / Dr. M. Luttenberger LÖSUNG Diskrete Strukturen Wiederholungsklausur Beachten Sie: Soweit nicht anders angegeben, ist stets eine Begründung

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Satz (Abschluß unter der Stern-Operation)

Satz (Abschluß unter der Stern-Operation) Satz (Abschluß unter der Stern-Operation) Wenn L eine reguläre Sprache ist, dann ist auch L regulär. Beweis: Es gibt einen NFA M = (Z, Σ, S, δ, S, E) mit L(M) = L. Wir bauen aus diesem NFA nun wie folgt

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Suffixbäume Ulf Leser Wissensmanagement in der Bioinformatik Failure Links P={banane, nabe, abnahme, na, abgabe} banane banan 1 bana ban b ba ab abn abna abnah a n na abg 4

Mehr

Grundbegriffe der Informatik Tutorium 3

Grundbegriffe der Informatik Tutorium 3 Grundbegriffe der Informatik Tutorium 3 Tutorium Nr. 16 Philipp Oppermann 18. November 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 ETH Zürich Institut für Theoretische Informatik Prof. Dr. Angelika Steger Florian Meier, Ralph Keusch HS 2017 Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 Lösungsvorschlag zu Aufgabe 1

Mehr

Theoretische Informatik. Alphabete, Worte, Sprachen

Theoretische Informatik. Alphabete, Worte, Sprachen Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele

Mehr

Einführung in die Bioinformatik

Einführung in die Bioinformatik Einführung in die Bioinformatik Ringvorlesung Biologie Sommer 07 Burkhard Morgenstern Institut für Mikrobiologie und Genetik Abteilung für Bioinformatik Goldschmidtstr. 1 Online Materialien zur Ringvorlesung:

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 4 Reguläre Ausdrücke Webseite zur Vorlesung http://ls11-www.cs.tu-dortmund.de/people/rahmann/teaching/ss2008/algorithmenaufsequenzen

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 9 2. Juli 2010 Einführung in die Theoretische

Mehr

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016 Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016 Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI

Mehr

Referat zum Thema Huffman-Codes

Referat zum Thema Huffman-Codes Referat zum Thema Huffman-Codes Darko Ostricki Yüksel Kahraman 05.02.2004 1 Huffman-Codes Huffman-Codes ( David A. Huffman, 1951) sind Präfix-Codes und das beste - optimale - Verfahren für die Codierung

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,

Mehr

Vorlesung Theoretische Grundlagen

Vorlesung Theoretische Grundlagen Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 4. Februar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Algorithmen auf Sequenzen Paarweiser Sequenzvergleich: Alignments

Algorithmen auf Sequenzen Paarweiser Sequenzvergleich: Alignments Algorithmen auf Sequenzen Paarweiser Sequenzvergleich: Alignments Sven Rahmann Genominformatik Universitätsklinikum Essen Universität Duisburg-Essen Universitätsallianz Ruhr Einführung Bisher: Berechnung

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

3 Terme und Algebren 3.1 Terme

3 Terme und Algebren 3.1 Terme 3 Terme und Algebren 3.1 Terme Mod - 3.1 In allen formalen Kalkülen benutzt man Formeln als Ausdrucksmittel. Hier betrachten wir nur ihre Struktur - nicht ihre Bedeutung. Wir nennen sie Terme. Terme bestehen

Mehr

Pattern Matching. Maik Windhorst Universität Bremen Abstract. 1. Pattern Matching Was ist das?

Pattern Matching. Maik Windhorst Universität Bremen Abstract. 1. Pattern Matching Was ist das? Pattern Matching Maik Windhorst Universität Bremen winne@tzi.de Abstract In diesem Dokument soll das Thema Pattern Matching betrachtet werden, insbesondere die Anwendungen im Bereich der Informatik. Dafür

Mehr

Punkt-in-Polygon-Suche Übersicht

Punkt-in-Polygon-Suche Übersicht Folie 1 von 19 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der Masche Aufwandsbetrachtung Streifenkarte Vorgehen und Eigenschaften

Mehr

Indexieren und Suchen

Indexieren und Suchen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Indexieren und Suchen Tobias Scheffer Index-Datenstrukturen, Suchalgorithmen Invertierte Indizes Suffix-Bäume und -Arrays Signaturdateien

Mehr

Bioinformatik Für Biophysiker

Bioinformatik Für Biophysiker Bioinformatik Für Biophysiker Wintersemester 2005 / 2006 Ulf Leser Wissensmanagement in der Bioinformatik Wissensmanagement in der Bioinformatik Lehrstuhl seit 10/2002 Schwerpunkte Algorithmen der Bioinformatik

Mehr

Kurz-Skript zur Theoretischen Informatik I

Kurz-Skript zur Theoretischen Informatik I Kurz-Skript zur Theoretischen Informatik I Inhaltsverzeichnis 1 Grundlagen 2 2 Reguläre Ausdrücke 4 3 Endliche Automaten 5 3.1 Vollständige endliche Automaten................................... 6 3.2 ε

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Suffixarrays Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Suffixarrays Suche Konstruktionsalgorithmus nach Manber / Myers Enhanced Suffix Arrays

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung Technische Universität München Sommer 26 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Juli 26 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 3 Beachten Sie: Soweit nicht

Mehr

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 13 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Sortieren II / HeapSort Heaps

Sortieren II / HeapSort Heaps Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: dsal-i1@algo.rwth-aachen.de Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr