A 2. Abb. 1: Analogon zum rechtwinkligen Dreieck

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "A 2. Abb. 1: Analogon zum rechtwinkligen Dreieck"

Transkript

1 Has Walser, [0076], [0080] Verallgemeierug des Satzes vo Pythagoras Hiweis: H. Sch., W. Im Raum. Aalogo zum rechtwiklige Dreieck Wir ersetze de zweidimesioale rechte Wikel durch eie Raumecke, wie sie bei Quader ud isbesodere Würfel erscheie. Ud u scheide wir eie solche Ecke schräg ab. Es etsteht ei uregelmäßiges Tetraeder A A (Abb. ). Dabei stehe die drei Kate A, A ud paarweise orthogoal aufeiader. Der Pukt liegt i der rechte Raumecke. A A Abb. : Aalogo zum rechtwiklige Dreieck Drei der vier Seitefläche des Tetraeders sid rechtwiklige Dreiecke. Diese drei Seitefläche überehme die Rolle der Kathete (Abb. ). Sie liege de drei Ecke A, A ud gegeüber. A A A A A A Abb. : Kathetefläche

2 Has Walser: Verallgemeierug des Satzes vo Pythagoras / 7 Die vierte Seitefläche, ei spitzwikliges Dreieck, überimmt die Rolle der Hypoteuse (Abb. 3). Sie liegt der Ecke gegeüber. A A Abb. 3: Hypoteusefläche. Aalogo zum Satz des Pythagoras Es gilt das Theorem: I eiem Tetraeder mit drei rechte Wikel a eier Ecke ist die Summe der Quadrate der Katheteflächeihalte gleich dem Quadrat des Hypoteuseflächeihaltes. Durch das Quadriere der Flächeihalte etstehe Gebilde im vierdimesioale Raum. Wir köe also icht wie beim Satz des Pythagoras i der Ebee das Theorem mit agesetzte geometrische Quadrate illustriere..3 Beispiel Im eifachste Beispiel habe die drei vo ausgehede Tetraederkate die Läge. Die drei übrige Kate habe da die Läge. Die drei Kathetefläche sid je. Die Hypoteusefläche ist ( ) 3 = Es ist: 3. ( ) + ( ) + ( ) = ( 3 )

3 Has Walser: Verallgemeierug des Satzes vo Pythagoras 3 / 7. Beweis des Theorems Wir verwede die Bezeichuge der Abbildug ud passe die Figur i ei kartesisches Koordiatesystem mit dem Ursprug i ei. x a 3 A x a a A x Abb. : Bezeichuge. Kartesisches Koordiatesystem Für die Kathetefläche K k erhalte wir der Reihe ach: Somit ist: K = a a 3, K = a a 3, K 3 = a a K + K + K3 = a a 3 (( ) + ( a a ) 3 + ( a a ) ) Für die Berechug der Hypoteusefläche verfahre wir wie folgt: Die Ebee durch die drei Pukte A, A ud hat die Gleichug: x a + x a + x 3 a 3 = Diese Gleichug forme wir zur Hessesche Normalform um: a a 3 x + a a 3 x + a a x 3 a a a 3 = 0 Damit hat de Abstad a a 3 x +a a 3 x +a a x 3 a a a 3 = 0 ( a a ) + ( a a 3 ) + ( a a 3 ) a a a 3 ( a a ) + ( a a 3 ) + ( a a 3 ) = a a a 3 ( a a ) + ( a a 3 ) + ( a a 3 ) vo der Ebee. Das ist aber auch die Höhe des Tetraeders bezoge auf die Hypoteusefläche H. Das Tetraeder hat das Volume:

4 Has Walser: Verallgemeierug des Satzes vo Pythagoras / 7 Adererseits ist: V Tetraeder = 6 a a a 3 V Tetraeder = 3 Hh = 3 H a a a 3 ( a a ) + ( a a 3 ) + ( a a 3 ) Vergleich ergibt für die Hypoteusefläche H: Somit ist: 3 H a a a 3 ( a a ) + ( a a 3 ) + ( a a 3 ) = 6 a a a 3 ( a a ) + ( a a 3 ) + ( a a 3 ) H = H = a ( ( a ) + ( a a ) 3 + ( a a ) ) 3 K + K + K3 = H.5 Frage der Umkehrug I der ebee Geometrie gilt der Satz des Pythagoras i beide Richtuge: γ = 90 a + b = c User räumliches Aalogo gilt ur i eier Richtug: Drei rechte Wikel a eier Ecke K + K + K3 = H Im Folgede ei Gegebeispiel für die Ugültigkeit der Umkehrug. Es sei zuächst 0,0,0 ( ), A (,0,0), A ( 0,,0) ud ( 0,0,). ( Da ist K = K = K 3 = ud H = ) Wikel ud es ist K + K + K3 = H =. 3 = 3. Wir habe bei drei rechte Zwischebemerkug: Für de Raumwikel (Aalogo zum Bogemaß) erhalte wir π Nu äder wir de Pukt ab i: (,, 7 ) Dadurch ist die Orthogoalität a der Ecke zerstört. Zwischebemerkug: Für de Raumwikel (Aalogo zum Bogemaß) erhalte wir Die Hypoteusefläche H bleibt uverädert. Für die Kathetefläche erhalte wir: K = + 7, K = + 7, K 3 = 7 Die Bedigug K + K + K3 = H ist also ach wie vor erfüllt, trotz fehleder Orthogoalität.

5 Has Walser: Verallgemeierug des Satzes vo Pythagoras 5 / 7 Im vierdimesioale Raum Das Theorem lässt sich i höhere Dimesioe verallgemeier. ( ). ( ) ud A ( 0,0,0,a ). Dies ist ei -Simplex. Wir arbeite im! mit der kovexe Hülle der füf Pukte 0,0,0,0 A ( a,0,0,0), A ( 0,a,0,0), 0,0,a 3 0, Die vier Kathetetetraeder etstehe als kovexe Hülle vo ud drei der vier Pukte A k,k,,3, { }. Sie habe der Reihe ach die Volumia: K = 3! a a 3 a, K = 3! a a 3 a, K 3 = 3! a a a, K = 3! a a a 3 { }. Das Hypoteusetetraeder ist die kovexe Hülle der vier Pukte A k,k,,3, Die Hyperebee durch die vier Pukte A k,k {,,3, } hat die Gleichug: x a + x a + x 3 a 3 + x a = Für de Abstad des Ursprugs vo dieser Hyperebee erhalte wir: a a a 3 a ( a a a 3 ) + ( a a a ) + ( a a 3 a ) + ( a a 3 a ) Nu gilt für das d-volume des -Simplexes eierseits: Adererseits ist: V -Simplex =! a a a 3 a V -Simplex = V Hypoteusetetraeder Vergleich ergibt: H = V Hypoteusetetraeder = 3! Daraus folgt: a a a 3 a ( a a a 3 ) + ( a a a ) + ( a a 3 a ) + ( a a 3 a ) ( a a a 3 ) + ( a a a ) + ( a a 3 a ) + ( a a 3 a ) K + K + K3 + K = H

6 Has Walser: Verallgemeierug des Satzes vo Pythagoras 6 / 7 3 Allgemei Für de -dimesioale Fall ist das jetzt ur och eie lagweilige Schreibübug. ( ), Wir arbeite im! mit der kovexe Hülle der + Pukte 0,...,0 A ( a,0,...,0), A 0,a,0,...,0 ( ). Dies ist ei -Simplex. ( ),..., A 0,...,0,a Die Kathete-( )-Simplexe sid die kovexe Hülle vo ud der Pukte A k,k,..., { }. Sie habe die ( )-d-volumia K k : K k = a ( )! i i=, i k Das Hypoteuse-( )-Simplex ist die kovexe Hülle der Pukte A k,k {,...,}. Die Hyperebee durch die Pukte A k,k {,...,} hat vom Ursprug de Abstad: a k k= a i k= i=, i k Für das -d-volume des -Simplexes erhalte wir eierseits: Adererseits ist: Vergleich ergibt: Daraus folgt: V -Simplex =! a k k= V -Simplex = V Hypoteuse-( )-Simplex H = V Hypoteuse-( )-Simplex = K k k= = H ( )! k= a k k= a i k= i=, i k a i i=, i k

7 Has Walser: Verallgemeierug des Satzes vo Pythagoras 7 / 7 Regelmäßige Simplexe, k {,..., +} wähle, erhalte wir ei regel- We wir im! + sämtliche a k = mäßiges Hypoteuse--Simplex der Kateläge. Sei -d-volume H ka u mit dem verallgemeierte Theorem des Pythagoras berechet werde. Zuächst ist K k =!, k {,..., +}. Somit ist: + H = K k = + k= ( )! ( ) ( ) H =! Die Tabelle zeigt eiige Resultate. + H Strecke 3 3 Gleichseitiges Dreieck Regelmäßiges Tetraeder ratioal 500 ratioal Tab. : Volumia regelmäßiger -Simplexe Die -d-volumia der -Simplexe tediere gege ull.

Abb. 1: Woher kommen die schwarzen Quadrate?

Abb. 1: Woher kommen die schwarzen Quadrate? Has Walser, [0160916], [0161009] Umögliche pythagoreische Dreiecke Idee: Chr. Z., B. 1 Schwarze Quadrate Woher komme die beide schwarze Quadrate? Abb. 1: Woher komme die schwarze Quadrate? Sachverhalt

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $ $Id: covex.tex,v 1.18 2015/05/21 18:28:20 hk Exp $ 3 Kovexgeometrie 3.2 Die platoische Körper Ei platoischer Körper vo Typ (, m) ist ei kovexer Polyeder desse Seitefläche alle gleichseitige -Ecke ud i

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

suw m3 = abc. Quadervolumen: abh; Prismenvolumen 1/2abh = Gh.

suw m3 = abc. Quadervolumen: abh; Prismenvolumen 1/2abh = Gh. Volumeberechug Allgemei: Zerlegt ma eie Körper i Teilkörper, so ist sei Volume gleich der Summe der Volumia der Teilkörper. Volume des Quaders Das Volume des Quaders errechet sich als Produkt seier Kateläge.

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Beispiellösungen zu Blatt 105

Beispiellösungen zu Blatt 105 µ κ Mathematisches Istitut Georg-August-Uiversität Göttige Aufgabe 1 Beispiellösuge zu Blatt 105 Alva liebt Advetskaleder. Aber sie hat keie Lust, die Türe vo 1 bis i der ormale Reihefolge zu öffe. Daher

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte:

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: Prüfugsdauer: Abschlussprüfug 2008 150 Miute a de Realschule i Bayer R4/R6 Mathematik I Nachtermi Aufgabe P 1 Name: Vorame: Klasse: Platzziffer: Pukte: P 1.0 Die ebestehede Tabelle zeigt die Azahl der

Mehr

α β Ein sphärisches Dreieck ist durch drei Großkreise begrenzt (Abb. 2).

α β Ein sphärisches Dreieck ist durch drei Großkreise begrenzt (Abb. 2). Has Walser, [20150801] Sphärische Vielecke Aregug: H. E., P. 1 Worum geht es? Die Flächeformel für sphärische Vielecke, isbesodere sphärische Dreiecke, lässt sich eifach ud kosistet mit Hilfe der Außewikel

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Computergrafik Ihalt Achtug! Kapitel ist relevat für CG-2! 0 1 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe ud Grudlage Objekttrasformatioe Objektrepräsetatio ud -Modellierug Sichttrasformatioe

Mehr

Einige wichtige Ungleichungen

Einige wichtige Ungleichungen Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe

Mehr

Rotationsvolumina Auf den Spuren von Pappus und Guldin

Rotationsvolumina Auf den Spuren von Pappus und Guldin Rotatiosvolumia Auf de Spure vo Pappus ud Guldi Gegebe sei ei Kreis mit Radius r, desse Mittelpukt um a aus dem Ursprug eies kartesische Koordiatesystems i Richtug der Ordiate verschobe sei. Die Kreisfläche

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 0 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Pukte ( ) auf der Gerade g mit der Gleichug y (GI IRIR) ud

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

SPIRALE AUS RECHTECKEN

SPIRALE AUS RECHTECKEN SPIRALE AUS RECHTECKEN Die Rechtecke sid aus eiem Papierblatt im Format DIN A4 durch sukzessives Halbiere herausgeschitte ud da "über Eck" eu ageordet worde. Welche Folge bilde die Flächeihalte der Rechtecke

Mehr

Quadratfraktal. Abbildung 1 Abbildung 2 Abbildung 3

Quadratfraktal. Abbildung 1 Abbildung 2 Abbildung 3 Nimm ei quadratisches Blatt Papier. Scheide lägs eier Diagoale eimal die Hälfte ab. Zerlege die zweite Hälfte i vier rechtwiklige gleichscheklige Dreiecke (Abb. ). Zwei dieser vier Dreiecke kast du u abscheide

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 9 G8

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 9 G8 Gymasium Ecketal Mathematisch-aturwisseschaftliches Gymasium Neusprachliches Gymasium Gymasium Ecketal Neukircheer Straße 904 Ecketal Grudwisse Jahrgagsstufe: 9 G8. Wurzel, Poteze mit ratioalem Expoete

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 10 Die gleichscheklige Dreiecke ABC habe die Base AB

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 06 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Gegebe ist die Fuktio f mit der Gleichug y 3 + + = mit

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Die Jensensche Ungleichung

Die Jensensche Ungleichung Die Jesesche Ugleichug Has-Gert Gräbe, Uiv Leipzig Februar 1998 1 Kovexe ud kokave Fuktioe Wir betrachte eie stetige Fuktio y = (x), die au eiem oee Itervall ]a, b[ deiiert sei möge Eie solche Fuktio köe

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Für Trapeze ABC D mit de parallele Seite [AD ] ud [BC ]

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach:

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach: Kursuterlage zum BSc Studiegag Geographie, FSU Jea, Modul 4 Die Eiheitsgagliie, Uit Hydrograph Eiheitsgagliie (Uit Hydrograph) Defiitio der Eiheitsgagliie Die Eiheitsgagliie (egl. uit hydrograph, Sherma

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe .0 Die Pukte P(0/-7) ud Q(5/-) liege auf eier ach ute geöffete Normalparabel p. G< x. Bereche die Gleichug der Parabel p. (Ergebis: y = - x + 6x - 7 ). Bestimme die Koordiate des Parabel-Scheitels. Gib

Mehr

AUFGABEN. Verständnisfragen

AUFGABEN. Verständnisfragen AUFGABEN Gelegetlich ethalte die Aufgabe mehr Agabe, als für die Lösug erforderlich sid. Bei eiige adere dagege werde Date aus dem Allgemeiwisse, aus adere Quelle oder sivolle Schätzuge beötigt. eifache

Mehr

Gaußsches Integral und Stirling-Formel

Gaußsches Integral und Stirling-Formel Gaußsches Itegral ud Stirlig-Formel Lemma. Gaußsches Itegral Es gilt für alle a > : e ax dx π a Beweis: Wir reche: e dx ax e ax dx e ay dy e ax e ay dx dy mit dem Satz vo Fubii e ax +y dx dy. Nu verwede

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Eiführug i das Mathematikstudium ud desse Umfeld (Uterrichtsfach) LVA 05.700 C. Fuchs, K. Fuchs, C. Karolus Wiederholug Schulstoff II WS 2015/16 Die komplexe Zahle Wie wir bereits im erste Teil bemerkt

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Eiführug i das Mathematikstudium ud desse Umfeld (Uterrichtsfach) LVA 05.700 C. Fuchs, K. Fuchs, C. Karolus Wiederholug Schulstoff II WS 2017/18 Die komplexe Zahle Wie wir bereits im erste Teil bemerkt

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Folgen explizit und rekursiv Ac

Folgen explizit und rekursiv Ac Folge explizit ud rekursiv Ac 03-08 Folge sid Fuktioe, bei dee atürliche Zahle ( 0; ; ; ) reelle Zahle a() zugeordet werde. Ma schreibt dafür : a() bzw. a. Für die Folge schreibt ma auch < a >. Folge köe

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 07 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Trapeze BD mit de parallele Seite D ud B rotiere um die Gerade

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

Drehstrom. 1 Begriffe. 2 Drei Phasen und Cosinus. David Vajda 30. April Effektivwert. Nennwert. Spitzenwert = Scheitelwert = Amplitude.

Drehstrom. 1 Begriffe. 2 Drei Phasen und Cosinus. David Vajda 30. April Effektivwert. Nennwert. Spitzenwert = Scheitelwert = Amplitude. Drehstrom David Vajda 0. April 017 1 Begriffe Effektivwert Newert Spitzewert = Scheitelwert = Amplitude Mittel: arithmetisches Mittel geometrisches Mittel quadratisches Mittel..., oder, Mittel: arithmetisches

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Ein Alternativsatz über die Disjunktheit punktierter konvexer Kegel

Ein Alternativsatz über die Disjunktheit punktierter konvexer Kegel Ei Alterativsatz über die Disjuktheit puktierter kovexer Kegel Rudolf Pleier ui 2015 Mittels des Treugssatzes vo Eidelheit (beat ach dem polische Mathematiker Meier Eidelheit, 1910 1943), ach dem ei ichtleerer

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfug 0 a de Realschule i Bayer usterlösug Lösug Diese Lösug wurde erstellt vo orelia azebacher. ie ist keie offizielle Lösug des Bayerische taatsmiisteriums für Uterricht ud Kultus. ufgabe.0

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 00 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A A.0 I eiem Hadbuch zur Wetterkude fide Sie im Kapitel Erdatmosphäre die

Mehr

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK ABITURPRÜFUNG 007 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 0 Miute Wörterbuch zur deutsche Rechtschreibug Tascherecher (icht programmierbar, icht grafikfähig) Tafelwerk Wähle Sie vo

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Aufgaben Reflexionsgesetz und Brechungsgesetz

Aufgaben Reflexionsgesetz und Brechungsgesetz Aufgabe Reflexiosgesetz ud Brechugsgesetz 24. Zeiche zwei Spiegel, die sekrecht zueiader stehe. Utersuche mit zwei verschiede eifallede Strahle, welche Eigeschafte die reflektierte Strahle habe, die acheiader

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 202 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die Pukte A(2 0), B(5 ) ud C bilde das gleichseitige Dreieck

Mehr

Mathematik II Wahlteil Haupttermin Aufgabe A 1

Mathematik II Wahlteil Haupttermin Aufgabe A 1 Prüfugsdauer: Abschlussprüfug 006 Mathematik II Wahlteil Haupttermi Aufgabe A 1 A 1.0 Gegebe sid die Parabel p mit der Gleichug y = 0,15x + 0,3x + 6,85 ud die 3 Gerade g mit der Gleichug y= x+ mit GI =

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie Abitur - Grudkurs Mathematik Sachse-Ahalt 00 Gebiet G Aalytische Geometrie Aufgabe.. 4 0 I eiem kartesische Koordiatesystem sid die Vektore a, b 8 sowie der Pukt 4 4 A 3 gegebe. a) Weise Sie ach, dass

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Lösugsmuster ud Bewertug Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Aufgabe A - Nachtermi FUNKTIONEN A. x + + y=,05 GI = 0 0 K A. 6 y=,05 y=,0 Am Ede des sechste Tages ware vo Bakterie bedeckt.

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

37. Österreichische Mathematik Olympiade Gebietswettbewerb für Fortgeschrittene 27. April 2006

37. Österreichische Mathematik Olympiade Gebietswettbewerb für Fortgeschrittene 27. April 2006 7. Österreichische athemati Olympiade Gebietswettbewerb für Fortgeschrittee 7. April 006 ) Es seie 0 < < y reelle Zahle. H y, G y y, A y, Q y das harmoische, geometrische, arithmetische ud quadratische

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Gegebe sid rechtwiklige Dreiecke BM mit M 4 cm ud de Hypoteuse

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

MATEMATIKA NÉMET NYELVEN MATHEMATIK

MATEMATIKA NÉMET NYELVEN MATHEMATIK Matematika émet yelve emelt szit 06 ÉRETTSÉGI VIZSGA 006 május 9 MATEMATIKA NÉMET NYELVEN MATHEMATIK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA HÖHERES NIVEAU ABITUR JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ANLEITUNG

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i ayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: A 1.0 A 1.1 Aufgabe A 1 Haupttermi Der Wertverlust verschiedeer E-ike-Modelle

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1 Abschlussprüfug 200X Wahlteil Mathematik I Aufgabe A 1 Vorame: Klasse: Platzziffer: Pukte: / A 1.0 A 1.1 Gegebe ist die Fuktio f mit der Gleichug 0,5 y 2 ( 3) 4,5 ( GI IR IR ). Begrüde Sie, warum ma bei

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 14

Technische Universität München Zentrum Mathematik. Übungsblatt 14 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt 4 Hausaufgabe Aufgabe 4. Sie sid 0 Miute zu spät i die Vorlesug gekomme ud stelle

Mehr

Perkolation (WS 2014) Übungsblatt 2

Perkolation (WS 2014) Übungsblatt 2 Istitut für Stochasti Prof. Dr. G. Last Dipl.-Math. S. Ziesche Perolatio WS 04 Übugsblatt Aufgabe Zeige Sie für T, dass θ 0 p ud χ 0 p stetig auf [0, ] sid, we ma als Wertebereich R + { } zulässt. Lösug:

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 1 Die ebestehede Skizze zeigt das Dracheviereck D ABD

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr