Wärmeleitungsgleichung,

Größe: px
Ab Seite anzeigen:

Download "Wärmeleitungsgleichung,"

Transkript

1 Fachbereich Mathematik der Universität Hamburg SoSe 2015 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung, Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen zusätzlichen Erläuterungen sind diese Unterlagen unvollständig (z. Bsp. fehlen oft wesentliche Voraussetzungen). Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Eine Veröffentlichung dieser Unterlagen an anderer Stelle ist untersagt! 1

2 Die Anfangsrandwertaufgabe für die Wärmeleitungsgleichung u t cu xx = h(x,t) u(x,0) = u 0 (x) x (a,b), u(a,t) = f(t) t > 0, u(b,t) = g(t) t > 0, c : Wärmeleitfähigkeit / Diffusionskoeffizient Schritt 1) Randwerte homogenisieren [ v(x,t) := u(x,t) f(t)+ x a ] b a (g(t) f(t)) v(a,t) = u(a,t) f(t) a a b a (g(t) f(t)) v(b,t) = u(b,t) f(t) b a b a (g(t) f(t)) c > 0, t > 0, x (a,b) bei uns (0,L) 2

3 Neue DGL für v mit a = 0 und b = L: u(x,t) := v(x,t)+f(t)+ x L (g(t) f(t)) u t (x,t) := v t (x,t)+ f(t)+ x L (ġ(t) f(t)) u x (x,t) := v x (x,t)+0+ 1 L (g(t) f(t)) u xx (x,t) := v xx (x,t) DGL : v t cv xx = h(x,t) f(t) x L (ġ(t) f(t)) =: h(x,t) Neue Anfangswerte : v(x,0) = u(x,0) f(0) x L (g(0) f(0)) =: v 0(x). Das neue Problem besteht aus : i. d. R. inhomogener DGL, inhomogene Anfangswerte, homogene Randdaten 3

4

5 Schritt 2) Zerlegung in zwei einfachere Probleme Wir betrachten die zwei Aufgaben: I) II) ṽ t cṽ xx = 0 ˆv t cˆv xx = h(x,t) ṽ(x,0) = v 0 (x) ˆv(x,0) = 0 ṽ(0,t) = ṽ(l,t) = 0 ˆv(a,t) = ˆv(b,t) = 0. Problem I): homogene DGL, homog. Randwerte, inhomog. Anfangswerte Produktansatz: v(x,t) = q(t) p(x) Einsetzen in DGL: q(t) p(x) c q(t) p (x) = 0 Umsortierung ergibt: q(t] q(t) = (x] cp p(x) = konstant! Zunächst: p (x) = λ p(x) 4

6 v(0,t) = q(t) p(0) = 0 = v(l,t) = q(t) p(l) = 0 = DGL: p = λ p Charakteristisches Polynom: µ 2 +λ = 0 µ = ± λ allgemeine Lösung ae λx +be λx Außer für doppelte Nullstellen! Hier λ = 0 λ = 0 = p(x) = a 0 e 0x +b 0 xe 0x = a 0 +b 0 x, p(0) = 0 = a 0 = 0 p(l) = 0 = b 0 L = 0 5

7 λ < 0 = p(x) = ae λx +be λx p(0) = 0 = ae 0 +be 0 = 0 p(l) = 0 = ae λl ae λl = 0 λ > 0 = p(x) = âe λx +ˆbe λx p(x) = âe i λx +ˆbe i λx = p(0) = 0 = acos(0)+bsin(0) = a = 0 p(l) = 0 = bsin( λl) = 0 Nichttriviale Lösungen gibt es also nur für: 6

8 λ n = ( nπ L ) 2 = n 2 ω 2, n N,ω = π L Zugehörige Lösungen: ( nπ ) p n (x) = sin(nωx) = sin L x Mit diesen λ Werten lösen wir die zweite DGL q n (t] q n (t) = c p n(x] p n (x) = c λ n q n (t) = cλ n q n (t) q n (t) = e cλ nt = e cω2 n 2 t ṽ(x,t) = α n e cω2 n 2t sin(nωx) ω = π L 7

9 ṽ(x,t) = α n e cω2 n 2t sin(nωx) ω = π L Die Anfangswerte liefern die Bedingung ṽ(x, 0) = α n sin(nωx) = v 0 (x) also sind die α n die Fourier Koeffizienten der ungeraden, 2L periodischen Fortsetzung von v 0 : α n = 2 L L 0 v 0 (x)sin(nωx)dx. 8

10 Problem II) inhomogene DGL, homogene Rand- und Anfangswerte Ansatz ˆv(x,t) = ˆv n (x,t) = a n (t)p n (x) homogene Randwerte werden erfüllt von: p n (x) = sin(nωx) Ansatz lautet damit: ˆv(x, t) = a n (t)sin(nωx) Wir setzen diesen Ansatz in die DGL ˆv t cˆv xx = h(x,t) ein und erhalten [ȧ n (t)+cn 2 ω 2 a n (t)]sin(nωx) = h(x,t) Fourier Reihe der ungeraden 2L period. Fortsetzung von h(x,t) bzgl. x F h(x,t) = c n (t)sin(nωx) 9

11 Koeffizientenvergleich liefert für jedes a n eine lineare DGL erster Ordnung mit konstanten Koeffizienten ȧ n (t)+cn 2 ω 2 a n (t) = c n (t) Die Lösung muss noch die Anfangswerte erfüllen ˆv(x,0) = a n (0)sin(nωx) = 0 = a n (0) = 0 Man berechnet die a n (t), erhält ˆv. Schritt 3: Zusammensetzen zur Lösung des ursprünglichen Problems : u(x,t) = ˆv(x,t) + ṽ(x,t) + f(t) + x L (g(t) f(t)) 10

12 Beispiel 1: Klausur 2007 (Struckmeier/Kiani) u t u xx = x π π(t+1) 2 0 < x < π, t R +, u(x,0) = 1 x + sin(6x) 0 < x < π, π u(0,t) = 1 t > 0, t+1 u(π,t) = 0 t > 0. Schritt 1) Randwerte homogenisieren v(x,t) := u(x,t) f(t) x a b a (g(t) f(t)) 11

13 Neue Aufgabe für v(x,t) = u(x,t) 1 t+1 ( 1 x ) π DGL für u: u t u xx = x π π(t+1) 2 v t (x,t) = v t v xx = u t + 1 (t+1) 2 ( 1 x π) uxx = v(x,0) = v(0,t) = u(0,t) 1 t+1 = 0, v(π,t) = u(π,t) 1 t+1 ( 1 π ) π = 0. 12

14 Diese Aufgabe mit homogener Differentialgleichung und homogenen Randwerten hat die Lösung v(x,t) = a n e cω2 n 2t sin(nωx), ω = π L = 1, c = 1 Anfangswerte verlangen v(x,0) = a n sin(nx) = sin(6x) also a k = und u(x,t) = v(x,t)+ 1 t+1 x π(t+1) = 13

15 Beispiel 2) u t u xx = 0 u(x,0) = sin(x) 2x π 0 < t, 0 < x < π/2, 0 x π/2, u(0,t) = u( π 2,t) = 1 e t t > 0. Schritt 1) Randdaten homogenisieren u = v +f + x L (g f) hier g(t) = f(t) = 1 e t, also u(x,t) = v(x,t)+1 e t u t = v t +e t u xx = v xx v(x,0) = u(x,0) 1+e 0 = u(x,0) v(0,t) = v( π 2,t) = 0 14

16 Neue Aufgabe mit homogenen Randdaten: v t v xx = e t 0 < t, 0 < x < π/2, v(x,0) = sin(x) 2x π 0 x π/2, v(0,t) = v( π,t) = 0 t > 0. 2 Es ist also c = 1, L = π/2, ω = π/l = 2. 2.Schritt: Zerlegen 1. Teilaufgabe: v = ṽ + ˆv ṽ t ṽ xx = 0 ṽ(x,0) = sin(x) 2x π 0 < t, 0 < x < π/2, 0 x π/2, ṽ(0,t) = ṽ( π,t) = 0 t >

17 Geschlossene Lösungsdarstellung: ṽ(x,t) = α n e cω2 n 2t sin(nωx) = α n e 4n2t sin(2nx) ṽ(x,0) = sin(x) 2x π mit α n = 2 L L 0 v 0 (x)sin(nωx)dx. also α n = 4 π π/2 0 ( sin(x) 2x π ) sin(2nx) dx. bzw. α n = 16

18 Berechnung der Fourierkoeffizienten A n = π/2 0 sin(x)sin(2nx)dx = 2n( 1)n 1 4n 2 (2 x part. oder Formelsammlung) B n = α n = 4 π π/2 0 xsin(2nx)dx = π( 1)n+1 4n [ A n 2 ] π B n = 4 π [ 2n( 1) n 1 4n 2 2 π (1 x partiell oder Formelsammlung) π( 1) n+1 ] 4n = 8n( 1)n π(1 4n 2 ) 8( 1)n+1 4nπ = 2( 1)n π [ 4n (1 4n 2 ) + 1 ] = 2( 1)n n nπ(1 4n 2 ) ṽ(x,t) = α n e 4n2t sin(2nx) = 2( 1) n 2 t nπ(1 4n 2 ) e 4n sin(2nx)) 17

19 2. Teilaufgabe: ˆv t ˆv xx = e t ˆv(x,0) = 0 0 < t, 0 < x < π/2, 0 x π/2, ˆv(0,t) = ˆv( π,t) = 0 t > 0. 2 Ansatz wie oben ˆv(x,t) = a n (t)sin(2nx) = a n (t)sin(nωx) ˆv t (x,t) = ȧ n (t)sin(2nx) v xx (x,t) = DGL: ( ) = e t 1 18

20 Mit der Fourierreihe F h der ungeraden periodischen Fortsetzung von h(x,t) = e t, x [0,π/2] bzgl. x F h(x,t) = c n (t)sin(2nx) = (ȧn (t)+4n 2 a n (t) ) sin(2nx) = c n (t)sin(2nx) = ȧ n (t)+cn 2 ω 2 a n (t) = ȧ n (t)+4n 2 a n (t) = c n (t) c n (t) = 2 π/2 π/2 0 e t sin(2nx)dx = 4e t π π/2 0 sin(2nx)dx = 4e t π [ cos(2nx) 2n ] π/2 0 = 0 n gerade 4e t nπ n ungerade. 19

21 Die Anfangswerte verlangen: ˆv(x,0) = a n (0)sin(2nx) = 0 Also: a n (0) = Für gerade n erhalten wir ȧ n (t)+4n 2 a n (t) = 0, a n (0) = 0 a n (t) = 0. Für ungerade n erhalten wir jeweils eine lineare inhomogene gewöhnliche Dgl: Lösung der homogenen Dgl. ȧ n (t)+4n 2 a n (t) = 4e t nπ a n,h (t) = γ n e 4n2 t 20

22 Inhomogene Dgl. entspricht ẏ(t)+4n 2 y(t) = 4 nπ e t = p(t) e µt Spezieller Ansatz (s. DGL I) : y p (t) = q(t) e µt oder Variation der Konstanten: y h (t) = k e 4n2t = y p (t) = k(t) e 4n2 t 21

23 Spezieller Ansatz : a n,p = βe t liefert: βe t +4n 2 βe t = 4e t nπ = β = Die allgemeine Lösung lautet somit a n (t) = 4e t n(4n 2 1)π + γ ne 4n2 t 4 n(4n 2 1)π Aus der Anfangsbedingung a n (0) = 0 folgt (immer noch n ungerade) a n (0) = a n (t) = 4 n(4n 2 1)π + γ n = 0 = γ n = 4e t n(4n 2 1)π + 4 n(4n 2 1)π e 4n2t = Insgesamt also a n (t) = 4 n(4n 2 1)π 4 n(4n 2 1)π (e 4n2t e t ) 0 n gerade 4 n(4n 2 1)π (e 4n2t e t ) n ungerade 22

24 Zusammensetzung der Lösung: siehe Kästen: u(x,t) = v(x,t)+1 e t = ṽ(x,t)+ ˆv(x,t)+1 e t ṽ(x,t) = 2( 1) n 2 t nπ(1 4n 2 ) e 4n sin(2nx)) ˆv(x,t) = a n (t)sin(2nx) a n (t) = 0 n gerade 4 n(4n 2 1)π (e 4n2t e t ) n ungerade ˆv = 4 2 t (2n 1)(4(2n 1) 2 1)π (e 4(2n 1) e t )sin(2(2n 1)x) 23

25 Zusammenstellung geschlossener Lösungsformeln (ohne Gewähr, bitte vor der Klausur mit Vorlesung/Formelsammlung abgleichen!) I) Wärmeleitungsgleichung, ARWA, homogen, homogene Randwerte u t cu xx = 0 c > 0, x (0,L), t > 0 u(x,0) = u 0 (x) u(0,t) = 0 t > 0, u(l,t) = 0 t > 0, x [0,L], u(x,t) = a k e cω2 k 2t sin(kωx) ω = π L k=1 u(x,0) = a k sin(kωx)! = u 0 (x) evtl. Koeffizientenvergleich k=1 a k = 2 L b a u 0 (x)sin(kωx)dx falls Koeff nvergleich nicht möglich 24

26 II) Wärmeleitungsgleichung, ARWA, inhomogen, homogene Randwerte: u t cu xx = h(x,t), x (0,L), t > 0 u(x,0) = u 0 (x), x (0,L) u(0,t) = 0 u(l,t) = 0 t > 0 Entweder: wie oben zerlegen ũ t cũ xx = 0 0 < t, 0 < x < L, ũ(x,0) = u 0 (x) 0 x L, ũ(0,t) = ũ(l,t) = 0 t > 0. Also Typ I) und 25

27 û t cû xx = h(x,t) 0 < t, 0 < x < L, û(x,0) = 0 0 x L, û(0,t) = û(l,t) = 0 t > 0. û(x,t) = a k (t) sin(kωx) DGL: k=1 (ȧ k (t)+ a k (t) ck2 π 2 k=1 ω = π L L 2 )sin(kωx)! = h(x,t) evtl. Koeffizientenvergleich da k (t) (t) + a k (t) ck2 π 2 = c dt L 2 k (t), a k (0) = 0 falls Koeff nvergleich nicht möglich c k (t) = 2 L L 0 h(x,t) sin(kωx)dx und dann summieren: u = û+ũ gewöhnliche Dgl s für die a k 26

28 oder: direkt u t cu xx = h(x,t), x (0,L), t > 0 u(x,0) = u 0 (x), x (0,L) u(0,t) = 0 u(l,t) = 0 t > 0 u(x,t) = k=1 a k (t) sin(kωx) da k (t) (t) + a k (t) ck2 π 2 dt L 2 c k (t) = 2 L b k = 2 L L 0 L 0 h(x, t) sin(kωx)dx u 0 (x) sin(kωx)dx ω = π L = c k (t), a k (0) = b k 27

29 III) Wärmeleitungsgleichung, ARWA, inhomogene Randwerte: u t cu xx = h(x,t), x (0,L), t > 0 u(x,0) = u 0 (x), x (0,L) u(0,t) = f(t) u(l,t) = g(t) t > 0 Randwerte homogenisieren v(x,t) = u(x,t) f(t) x L (g(t) f(t)) ergibt neue Aufgabe für v mit homogenen Randwerten. Falls neue Dgl. homogen : Fall I). Falls neue Dgl. inhomogen : Fall II). 28

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Department Mathematik der Universität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Die ins Netz

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Anleitung zu Blatt 3 Differentialgleichungen II. Wellengleichung

Anleitung zu Blatt 3 Differentialgleichungen II. Wellengleichung Department Mathematik der Universität Hamburg SoSe 9 Dr. Hanna Peywand Kiani Aneitung zu Batt 3 Differentiageichungen II Weengeichung Die ins Netz gesteten Kopien der Aneitungsfoien soen nur die Mitarbeit

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 partielle Differentialgleichungen (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3

Mehr

Musterlösung Serie 2

Musterlösung Serie 2 D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Differentialgleichungen II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 2006 Prof. Dr. R. Lauterbach Dr. K. Rothe Differentialgleichungen II für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 4 Aufgabe 13: Gegeben

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis SS 25 PD Dr. Peer Christian Kunstmann 7.9.25 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zur Bachelor-Modulprüfung Aufgabe :

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys

Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys Prof. Pöschel Höhere Mathematik III 3.9.5 Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel:

Mehr

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 Mathematik Online Kurs Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 http://www.mathematik-online.org/ 2 http://www.mathematik-online.org/ Mathematik Online Kurs Prüfungsvorbereitung HM 3 für

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

3.3 Eindimensionale Wellengleichung

3.3 Eindimensionale Wellengleichung 3.3. Eindimensionale Wellengleichung 77 3.3 Eindimensionale Wellengleichung Die Wellengleichung lautet c 2 u(x,t) = 2 u t 2(x,t) für alle x Ω Rn, t R, wobei c > 0 eine Konstante ist. Schauen wir uns diese

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 5. September 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Im R 3 wird eine Fläche T durch die Abbildung

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Anleitung zu Blatt 4, Analysis II

Anleitung zu Blatt 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. Hanna Peywand Kiani Anleitung zu Blatt 4, Analysis II SoSe 1 Potenzreihen III, Integration I Die ins Netz gestellten Kopien der Anleitungsfolien sollen

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3

Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Lineare DGL Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Die zugehörige homogene Gleichung ist dann 2x+y = 0 Alle Lösungen (allgemeine Lösung)

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 10: Gewöhnliche Differentialgleichungen Prof. Dr. Erich Walter Farkas Mathematik I+II, 10. Diff. Gl. 1 / 59 1 Differentialgleichungen

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4. Umkehrbarkeit I Man betrachte die durch g(s, t = (e s cos(t, e s sin(t gegebene Funktion g : R R. Zeigen Sie, dass

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung

Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 7. Juni 2017 Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung Wenn

Mehr

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 0./.08.008 Kurseinheit 5: Die Wärmeleitungsgleichung Aufgabe : Gegeben ist das Anfangswertproblem

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Musterlösungen Serie 9

Musterlösungen Serie 9 D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden

Mehr

3.3 Eindimensionale Wellengleichung

3.3 Eindimensionale Wellengleichung 3.3. Eindimensionale Wellengleichung 75 3.3 Eindimensionale Wellengleichung Die Wellengleichung lautet c 2 u(x,t) = 2 u t 2(x,t) für alle x Ω Rn, t R, wobei c > 0 eine Konstante ist. Schauen wir uns diese

Mehr

Partielle Differentialgleichungen Prüfung am

Partielle Differentialgleichungen Prüfung am Partielle Differentialgleichungen Prüfung am 27.04.2017 Name, Vorname Matrikelnummer Unterschrift Dauer: 60 Minuten. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gruppenarbeit. Bitte schreiben

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

13 Differentialgleichungen

13 Differentialgleichungen 3 Differentialgleichungen 282 3. Einführung Unter einer Differentialgleichung (=: DGL) versteht man eine Bestimmungsgleichung für eine unbekannte Funktion, in der die Funktion selbst und ihre Ableitungen

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Lineare gewöhnliche Differentialgleichungen und Randwertprobleme

Lineare gewöhnliche Differentialgleichungen und Randwertprobleme Kapitel Lineare gewöhnliche Differentialgleichungen und Randwertprobleme Eine Differentialgleichung (DGL) ist eine Gleichung, in der die Variable x, die gesuchte Funktion y(x) sowie deren Ableitungen vorkommen.

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Anleitung zu Blatt 1, Analysis II

Anleitung zu Blatt 1, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt, Analysis II SoSe 0 Banachscher Fixpunktsatz Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012

MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012 MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012 Dieser Kurs ist eine Einführung von linearen partiellen Differentialgleichungen. Das Hauptziel ist

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Klausur zur HM3 (vertieft) für LRT und MaWi

Klausur zur HM3 (vertieft) für LRT und MaWi Prof. M. Eisermann Höhere Mathematik 3 (vertieft) 1. September 016 Klausur zur HM3 (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Studiengang:

Mehr

Lineare Differenzialgleichung und verwandte Fälle

Lineare Differenzialgleichung und verwandte Fälle Lineare Differenzialgleichung und verwandte Fälle 1. Die lineare Differenzialgleichung Eine lineare Differenzialgleichung 1. Ordnung besitzt die Form y + g(x)y = h(x), wobei g(x) und h(x) stetig sind.

Mehr

Kapitel 15. Kontrolltheorie. Josef Leydold Mathematik für VW WS 2017/18 15 Kontrolltheorie 1 / 19. T (1 s(t)) f (k(t)) dt

Kapitel 15. Kontrolltheorie. Josef Leydold Mathematik für VW WS 2017/18 15 Kontrolltheorie 1 / 19. T (1 s(t)) f (k(t)) dt Kapitel 15 Kontrolltheorie Josef Leydold Mathematik für VW WS 217/18 15 Kontrolltheorie 1 / 19 Wirtschaftswachstum Aufgabe: Maximiere Konsum im Zeitraum [, T]: max s(t) 1 (1 s(t)) f (k(t)) dt f (k)...

Mehr

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Prüfung in Höhere Mathematik 3 9. März 21 Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Aufgabe 1: (7 Punkte Gegeben ist die Menge G : {(x,y R 2

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Hochschule Augsburg Elektrotechnik/Mechatronik Semester: Mathematik 2 SS 2015 Seite 1/10

Hochschule Augsburg Elektrotechnik/Mechatronik Semester: Mathematik 2 SS 2015 Seite 1/10 Mathematik SS 015 Seite 1/10 Prüfungsfach: Mathematik Zeit: 90 Min. Prüfungstermin: 6.7.015 Prüfer: Prof. Dr. Hollmann, Prof. Dr. Zacherl Hilfsmittel: Formelsammlung (DIN-A4-Blatt) Kontrollieren Sie zunächst,

Mehr

Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe Dr. Hanna Peywand Kiani Anleitung 3 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Elementare Funktionen.Teil stereographische Projektion

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Fourier-Reihen. Definition. Eine auf R definierte Funktion f heißt periodisch mit der Periode T 0, wenn f(x + T ) = f(x) x R.

Fourier-Reihen. Definition. Eine auf R definierte Funktion f heißt periodisch mit der Periode T 0, wenn f(x + T ) = f(x) x R. Fourier-Reihen Sehr häufig in der Natur begegnen uns periodische Vorgänge, zb beim Lauf der Gestirne am Nachthimmel In der Physik sind Phänomene wie Schwingungen und Wechselströme periodischer Natur Zumeist

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

11 Fourier-Analysis Grundlegende Begriffe

11 Fourier-Analysis Grundlegende Begriffe 11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

1.5 Lineare Differentialgleichungen zweiter Ordnung

1.5 Lineare Differentialgleichungen zweiter Ordnung 16 Kapitel 1. Differentialgleichungen 1.5 Lineare Differentialgleichungen zweiter Ordnung Eine lineare Differentialgleichung zweiter Ordnung hat die Form y +a 1 (x)y +a 0 (x)y = b(x), wobei a 1,a 0,b:I

Mehr

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1)

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1) Einsteinufer 5, 1587 Berlin 3.Übungsblatt - S. 1 Knicken SS 21 Aufgabe 1 Die (homogene) Knickdifferentialgleichung lautet: Ein geeigneter Ansatz zur Lösung lautet: w + α 2 w = mit α 2 := F (1) w = Acos(αx)

Mehr

Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten

Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Robert Labus Wintersemester 01/013 Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Definition Ist n N eine natürliche Zahl und a k R für k = 1;...; n, dann wird die Abbildung

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analsis WS 0/5 PD Dr. Peer Christian Kunstmann 05..0 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Phsik Lösungsvorschläge zum. Übungsblatt Aufgabe 6: a Es handelt

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n

Mehr