Zinsen, Zinseszins, Rentenrechnung und Tilgung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zinsen, Zinseszins, Rentenrechnung und Tilgung"

Transkript

1 Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs

2 Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln

3 Zinseszins Aufgabe: Corina legt zu Jahresanfang 1400 bei ihrer Sparkasse an. Der Zinssatz beträgt 3,75%. Zinsen werden mitverzinst. Wie viel Euro Zinsen erhält sie nach 1 Jahr und 7 Monaten? Auf welches Guthaben ist der Anfangsbetrag somit angewachsen? Rechnung ohne Formel: Die Zinsen betragen 84,27 und der Guthaben nach 1 Jahr und 7 Monaten beträgt 1484,27

4 Zinsrechnen mit dem Wachstumsfaktor

5 2 Rentenrechnung Definition: Unter einer Rente versteht man eine Folge von regelmäßig wiederkehrenden Ein- bzw. Auszahlungen mit im Allgemeinen gleichhohen Beträgen (= Rentenraten)

6 Klassifikation: Fälligkeit der Rentenraten: vorschüssig oder nachschüssig Zahlungsperiode: jährlich oder unterjährlich (Monate Tage etc.)

7 Übersicht über wichtige Abkürzungen: r = (konstante) Rentenrate R 0 = Rentenbarwert R n = Rentenendwert i = Zinssatz p.a. n = Laufzeit der Rentenzahlung q = Aufzinsfaktor

8 Jährliche Zinsen Nachschüssige Rente Von einer nachschüssigen Rente spricht man, wenn die Rentenzahlungen jeweils zum Ende einer Periode (Jahr) erfolgen Abbildung 1: Entwicklung des Rentenendwertes nach 3 Jahren

9 Beispiel K. zahlt am Jahresende (r) auf ein Konto, welches p=8% Verzinsung bietet. Wie hoch ist der Kontostand nach 10 Jahren (n)? R 1 = R 2 = *1, = r*(1+q) R 3 = R 2 *1, = r*(1+q)*q+r = r*(1+q+q 2 )... R 10 = R 9 *1, = r*(1+q+q 2 +q 3 +q 4 +q 5 +q 6 +q 7 +q 8 +q 9 ) R 10 = ,62 (Kontostand nach 10 Jahren) Allgemeine Formel für Rentenendwert: R n = r*(1+q+q q n-1 ) = rekursive Formel: R n =R n-1 * q +r; R 1 =r, n>2

10 Der Rentenbarwert (R 0 ) gibt an, was eine zukünftige, über n Perioden fließende Rentenrate heute (Zeitpunkt 0) wert ist. Dazu wird der Rentenendwert R n auf den Zeitpunkt 0 abgezinst, d.h. man dividiert R n durch q n. Der auftretende Faktor: heißt (nachschüssiger) Rentenbarwertfaktor

11 Beispiel Hans möchte ein Haus kaufen. Der Besitzer fordert 15, jeweils am Jahresende zu zahlende Raten in Höhe von Welcher Betrag muss gezahlt werden, wenn Hans seine Schuld beim Hauskauf sofort begleichen möchte (bei Anlage des Kaufpreises bei einer Bank kann man 6% Zinsen p.a. erhalten)? Lösung: Hier wird der Rentenbarwert gesucht r= n= 15 p= 6% Es ergibt sich: R 0 = * 1, R 0 = ,45 1, ,06-1

12

13 Sind von den vier Größen R n (bzw. R 0 ),r,n und q drei bekannt, so kann die jeweils vierte Größe durch Umstellen der bereits bekannten Formeln ermittelt werden. Nachschüssige Rentenrate r a) aus dem Rentenendwert: b) aus dem Rentenbarwert:

14 Nachschüssige Rentenperiode n a) aus dem Rentenendwert: n = log ( R n /r *(q-1)+1) log q b) aus dem Rentenbarwert: n = log (1- R 0 /r *(q-1)) log q Beispielfrage:Jemand hat durch jährlich nachschüssige Raten in Höhe von 8229,12 angespart. Die Verzinsung betrug p=5,5%. Wie viel Jahre lang mußte die Rate überwiesen werden?

15

16 Vorschüssige Rente Bei einer vorschüssigen Rente werden alle Ratenzahlungen am Beginn einer Rentenperiode geleistet Abbildung 2: Entwicklung des Rentenendwertes nach 3 Jahren Hier wird die eingezahlte Rate bereits im ersten Jahr verzinst, d.h.der nachschüssige Rentenendwert wird mit q multipliziert. Es ergibt sich: Für den Rentenbarwert ergibt sich: R 0 = rekursive Formel:R n =(R n-1 +r)*q; R 1 =r*q, n>2

17 Aufgabe 1 Herr Meier möchte jährlich über einen Zeitraum von 15 Jahren bei einer Bank anlegen. Über wie viel Geld kann er bei vorschüssiger bzw. nachschüssiger Einzahlung verfügen? Wie hoch ist die Differenz? Wie viel Geld hat Herr Meier nach 25 Jahren jeweils angespart?

18

19 Aufgabe 2 Herr Schmidt ist 65 Jahre alt und hat Geld angespart. Er möchte sich über die nächsten 20 Jahre eine Zusatzrente auszahlen lassen von Wie viel Geld muss er bei einer Bank, die einen Zinssatz von 4,5% bietet, anlegen, wenn er sich die Raten 1) zum Jahresbeginn 2) zum Jahresende auszahlen lässt?

20

21 3 Tilgung Jeder aufgenomme Kredit muss zurückgezahlt werden.dazu gibt es zwei Varianten 1. Man zahlt die die gesamte Schuldsumme einschließlich Zinsen und Gebühren 2. Man verpflichtet sich den Schuldbetrag durch regelmäßige Zahlungen in gleichbleibenden Abständen zurückzuzahlen. (Hypothek, Kredit, Darlehen, Anleihe ). Die Rückzahlung setzt sich aus Tilgungsrate (Tilgungsbetrag) und Zinsen zusammen. Unter Tilgungsbetrag versteht man denjenigen Betrag, um den sich die Restschuld durch die Rückzahlung vermindert. Annuität ist Summe aus Tilgungsleistung und Zinsen. Es gibt viele Rückzahlungsmodelle. Wir beschränken uns auf die Fälle, in denen die Rückzahlung jeweils zum Zinstermin erfolgt. Dies bedeutet beispielsweise: wird die Verzinsung der Schuldsumme jährlich vorgenommen, so erfolgen auch die Rückzahlungen jährlich.

22 Übersicht über wichtige Abkürzungen

23 Bsp. Für die Ratentilgung. Kredit in Höhe von soll in 6 Jahren zurückgezahlt werden. Die Tilgungsrate beträgt und der Zinssatz liegt bei 9% Jahr Restschuld (zu Beginn des Jahres) Zinsen Tilgung Annuität

24 Wird die Anfangsschuld in n Jahren mit der konstanten jährlichen Rate T getilgt so gilt: Für die Restschuld benötigt man folgende Formel: Beispiel: d.h. nach dem 4. Jahr also im 5. Jahr hat man eine Restschuld von

25 Berechnung der Zinsen in der j-ten Periode Für die Höhe der in der j-ten Periode (hier Jahre) anfallenden Zinsen ergibt sich: Beispiel: Im 4. Jahr betragen die Zinsen 5400

26 Berechnung der Annuität Für die Höhe der in der j-ten Periode (hier Jahre) anfallenden Annuität ergibt sich: Beispiel: Im 4. Jahr beträgt die Annuität 25400

27 Die Tilgungsrate T kann auch durch die Angabe eines Prozentannuität vorgegeben sein. Beispiel: Kredit in Höhe von Die Prozentannuität beträgt 24% und der Zinssatz liegt bei 9% Jahr Restschuld (zu Beginn des Jahres) Zinsen Tilgung Annuität Wie man sieht unterscheidet sich die Tilgungsrate im 5. Jahr von den Vorjahren. In so einem Fall gelten nun die Folgenden Formeln.

28 Mit den Folgenden Formeln kann man nur die Tilgung, Annuität und die Zinsen im letzten Jahr berechnen. Falls keine ganze Zahl ist. Wird mit die größte ganze Zahl, die kleiner ist als, bezeichnet. Dann ergibt sich die Tilgungsrate des letzten Jahres r (= +1) Entsprechend gilt für die Zinsen, die für das letzte Jahr anfallen. Für die Annuität im letzten Tilgungsjahr gilt:

29 Beispiel. Die Tilgungsrate im letzten Jahr beträgt 4800 Die Zinsen im letzten Jahr betragen 432 Die Annuität im letzten Jahr beträgt 5232

30 Berechnung der Zinsen und Annuität zu einem bestimmten Zeitpunkt Die Zinsen im 3. Jahr betragen 516 Die Annuität im 3. Jahr beträgt 34416

31 Restschuld Die Restschuld nach dem 3. Jahr beträgt 33600

32 Annuitätentilgung In diesem Modell bleibt die Annuität im gesamten Rückzahlungszeitraum konstant, während sich die Tilgungsrate ändert.

33 Bsp. Für die Annuitätentilgung Ein Kredit in Höhe von soll in 6 Jahren zurückgezahlt werden. Die Annuitätentilgung beträgt 26750,37 und der Zinssatz liegt bei 9% Jahr Restschuld (zu Beginn des Jahres) Zinsen Tilgung Annuität , , , , , , , , , , , , , , , , , , , , , , , ,37

34 Um die Annuität zu berechnen, können auch bestimmte Formeln, die schon in der Rentenrate erwähnt worden ist, angewendet werden. Liegt ein Tilgungsplan vor, so kann man aus diesem die Restschuld nach j Jahren sowie die Tilgungsrate und die Zinsbelastung im j-ten Jahr einfach ablesen. Man kann aber auch auf bestimmte Formel zugreifen.

35 Nach dem 2. Jahr hat man eine Restschuld in Höhe von 86663,72

36 Die Tilgung beträgt im 2. Jahr 17385,90

37 Praxis In der Praxis spielt die Kredithöhe und Tilgungsdauer eine Rolle. 1.Kredithöhe: Welcher Kreditbetrag S kann bei einem angenommen Zinssatz von p% aufgenommen werden, wenn dieser in n Jahren mit Hilfe der vorgegebenen Annuität getilgt werden soll. 2.Tilgungsdauer: Wie lange dauert es, bis eine benötigter Kredit der Höhe S mit Hilfe der vorgegebenen Annuität bei einem Zinssatz von p% getilgt ist. Zu1. Durch umstellen der Formel nach S, kann leicht die Kredithöhe bestimmt werden.

38 Zu2. Um die Tilgungsdauer zu berechnen muss die Formel nach n umgeformt werden. A S(q 1) ist genau die Tilgung für des 1. Jahres,somit gilt Man kann nicht erwarten, dass n eine ganze Zahl ist, somit muss man auch im letzten Jahr nicht die volle Annuität zahlen. Falls n keine ganze Zahl ist bezeichnen wir mit wieder die größte ganze Zahl, die kleiner oder gleich n ist

39 Tilgungsrest

40 Beispiel K. benötigt dringend einen Darlehen von Er ist in der Lage eine Annuität von für die Rückzahlung aufzubringen. Gesucht ist die Tilgungsdauer bei einem Darlehensverzinsung von 9%. Zusätzlich soll die Annuität, die am Ende des letzten Jahres fällig wird, bestimmt werden.

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

3.3. Tilgungsrechnung

3.3. Tilgungsrechnung 3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Hochschule Augsburg Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 193 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei einer Abschreibung werden eines Gutes während der Nutzungsdauer festgehalten. Diese Beträge stellen dar und dadurch

Mehr

Übungsserie 6: Rentenrechnung

Übungsserie 6: Rentenrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren? Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche

Mehr

Aufgaben zur Finanzmathematik, Nr. 1

Aufgaben zur Finanzmathematik, Nr. 1 Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!

Mehr

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode SS 2018 Torsten Schreiber 313 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge

Mehr

Finanzwirtschaft. Teil II: Bewertung

Finanzwirtschaft. Teil II: Bewertung Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und

Mehr

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10 Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das

Mehr

Rentenrechnung und Annuitätentilgung

Rentenrechnung und Annuitätentilgung Rentenrechnung und Annuitätentilgung Wiederholung: Zinseszinsen Es soll ein Kaital K0) von 0 e zu einem jährlichen Zinssatz a ) von 3,5 % angelegt werden Nach einem Jahr kommen zu den 0 e also Zinsen von

Mehr

Finanzmathematik mit Excel

Finanzmathematik mit Excel Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme

Mehr

Finanzmathematik - Grundlagen

Finanzmathematik - Grundlagen Finanzmathematik - Grundlagen Formelsammlung Zugelassene Formelsammlung zur Klausur im Sommersemester 2005 Marco Paatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Zinsrechnung Symbole

Mehr

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben 5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung.

Unter einer Rente versteht man eine regelmässige und konstante Zahlung. Anwendungen aus der Finanzmathematik a) Periodische Zahlungen: Renten und Leasing Unter einer Rente versteht man eine regelmässige und konstante Zahlung Beispiele: monatliche Krankenkassenprämie, monatliche

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode SS 2017 Torsten Schreiber 309 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen. Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Definition Gegenwartswert (Barwert) Der Wert des Geldes ist, über den man in der Gegenwart verfügen kann, ist grösser als der Wert des Geldes, den man in der Zukunft erhalten/zahlen wird. Diskontierung

Mehr

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Zinsrechnung A: Die Zinsen

Zinsrechnung A: Die Zinsen Zinsrechnung A: Die Zinsen EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z X X X X X x K 2400 2400 2400 2400 2400 2400 i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr

Mehr

Finanzmathematik. 1. Aus einem Wasserhahn fließen in einer Minute 48 Liter. Wieviel Liter fließen in 8 3 4 Minuten?

Finanzmathematik. 1. Aus einem Wasserhahn fließen in einer Minute 48 Liter. Wieviel Liter fließen in 8 3 4 Minuten? Finanzmathematik Dreisatz Prozentrechnung Zinseszins Der Reichtum gleicht dem Seewasser, je mehr man davon trinkt, desto durstiger wird man. Arthur Schopenhauer 1. Aus einem Wasserhahn fließen in einer

Mehr

Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1

Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1 Finanzmathe Formelsammlung v.2.3 1 Inhaltsverzeichnis I Zinsrechnung 1 I.1 Jährliche Verzinsung..................................... 1 I.1.1 Einfache Verzinsung................................. 1 I.1.2

Mehr

Tilgungsplan im NTCS Controlling

Tilgungsplan im NTCS Controlling im Der bietet die Möglichkeit, neue oder bestehende Darlehen und Kredite in übersichtlicher Form zu erfassen. Ebenso können gewährte Darlehen dargestellt werden. Neue Darlehen und Kredite Der Einstieg

Mehr

A n a l y s i s Finanzmathematik

A n a l y s i s Finanzmathematik A n a l y s i s Finanzmathematik Die Finanzmathematik ist eine Disziplin der angewandten Mathematik, die sich mit Themen aus dem Bereich von Finanzdienstleistern, wie etwa Banken oder Versicherungen, beschäftigt.

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W 6. Zinsrechnen 382 Wie viele Zinsen bringt ein Kapital in HoÈ he von 8.000,00 a bei einem Zinssatz von 6 % p.a. in 90 Tagen? (A) 90,00 W (B) 120,00 W (C) 180,00 W (D) 210,00 W (E) 240,00 W 383 Zu welchem

Mehr

Kreditmanagement. EK Finanzwirtschaft

Kreditmanagement. EK Finanzwirtschaft EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften christian.keber@univie.ac.at Kreditmanagement 1 Kreditmanagement

Mehr

1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5

1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5 Inhalt. Einfache Zinsrechnung (lineare Verzinsung).... Zinseszinsrechnung (exponentielle Verzinsung)...4. Rentenrechnung...5 4. Tilgungsrechnung...6 Die Größe p bezeichnet den Zinsfuß (z.b. 0). Die Größe

Mehr

Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1.

Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1. (K + R ) q 1 n = ln K 0 + R / ln(q) (nachschüssig) q 1 n = ln ( K q + R ) q 1 K 0 + R / ln(q) (vorschüssig) q 1 Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Aufgabe 1: Finanzmathematik (20 Punkte)

Aufgabe 1: Finanzmathematik (20 Punkte) Aufgabe 1: Finanzmathematik (20 Punkte) Im Zusammenhang mit der Finanzmarktkrise entschließt sich der Autohersteller LEPO zusätzlich zu der vom Staat unter bestimmten Voraussetzungen bewilligten Abwrackprämie

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 %

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 % Themenerläuterung Das Thema verlangt von dir die Berechnung von Zinsen bzw. Zinseszinsen, Anfangskapital, Endkapital und Sparraten. In seltenen Fällen wird auch einmal die Berechnung eines Kleinkredites

Mehr

Übungsblatt 1 Finanzmathematik

Übungsblatt 1 Finanzmathematik Übungsblatt 1 Finanzmathematik 1. Können bei einfacher Verzinsung von 6% und einer Anlagedauer von einem halben Jahr aus 1.000 e mehr als 1.030 e werden? 2. Ein fester Anlagebetrag wird bei der Privatbank

Mehr

Aufgabensammlung Grundlagen der Finanzmathematik

Aufgabensammlung Grundlagen der Finanzmathematik Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf

Mehr

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf?

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Andreas Rieder UNIVERSITÄT KARLSRUHE (TH) Institut für Wissenschaftliches Rechnen und

Mehr

Klassische Finanzmathematik (Abschnitt KF.1 )

Klassische Finanzmathematik (Abschnitt KF.1 ) Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

o Der Endwert der Rente beträgt CHF 198'394.10. Aufgabe 19.1 (Seite 649) 6%% ~ Jahre qn_1 q-1 7'125.-- (vorschüssig)

o Der Endwert der Rente beträgt CHF 198'394.10. Aufgabe 19.1 (Seite 649) 6%% ~ Jahre qn_1 q-1 7'125.-- (vorschüssig) Aufgabe 19.1 (Seite 649) CD Berechnen von Bar- und Endwerten a) Die Laufzeit einer jeweils Anfang Jahr ausbezahlten Rente von CHF 7'125.-- beträgt 16 Jahre. Wie hoch ist der Endwert der Rente, wenn die

Mehr

Darlehen - als Möglichkeit der... -Finanzierung

Darlehen - als Möglichkeit der... -Finanzierung Darlehen - als Möglichkeit der.... -Finanzierung Situation: Bestattungsinstitut Thomas Bayer e. K. benötigt für ein Investitionsprojekt 0.000 Euro. Die Hausbank bietet dieses Darlehen mit folgenden Konditionen

Mehr

Seite 1. Feste oder schwankende Kreditrate. Eigenkapitalquote. MBVO Baufinanzierung Die richtige Tilgungsrate

Seite 1. Feste oder schwankende Kreditrate. Eigenkapitalquote. MBVO Baufinanzierung Die richtige Tilgungsrate Parameter Feste oder schwankende Kreditrate Abbildung 1: Entwicklung der Kreditrate bei Krediten mit festem Zinssatz und fester Annuität gegenüber Krediten mit regelmäßiger Anpassung des Zinssatzes Parameter

Mehr

Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen

Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen Aufgabe 1 Nennen und erläutern Sie drei Darlehensformen nach den Tilgungsarten und nennen Sie je ein Beispiel. Lösung 1 Hinweis: Leider werden die Begrifflichkeiten in verschiedenen Lehrbüchern u. a. Veröffentlichungen

Mehr

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 1. Aufgabe Der durchschnittliche Einlagenbestand eines KI gliedert sich in - Sichteinlagen 360 Mio. zu 0,4 % -

Mehr

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10.

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10. Seite 8 1 Zinssatz Bruttozins am 31.12. Verrechnungssteuer Nettozins am 31.12. Kapital k Saldo am 31.12. a) 3.5% 2436 852.60 1583.4 69 600 71 183.40 b) 2.3% 4046 1416.10 2629.90 175 913.05 178'542.95 c)

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Sommersemester 2015 Prof. Dr. Stefan Etschberger HSA Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen zeitlichen Abständen und (meistens) in

Mehr

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe Finanzmathematik Kapitel 4 Investitionen Prof. Dr. Harald Löwe Sommersemester 2012 1. Abschnitt INVESTITIONSRECHNUNG Voraussetzungen Investition als Zahlungsstrom Vom Investor zur leistende Zahlungen (Anschaffungen,

Mehr

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate Zinsrechnung 2 1 leicht Monatszinsen Berechne jeweils die Zinsen! a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit:

Mehr

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen

Mehr

Übungsklausur der Tutoren *

Übungsklausur der Tutoren * Übungsklausur der Tutoren * (* Aufgabenzusammenstellung erfolgte von den Tutoren nicht vom Lehrstuhl!!!) Aufgabe 1 - Tilgungsplan Sie nehmen einen Kredit mit einer Laufzeit von 4 Jahren auf. Die Restschuld

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 2016 Torsten Schreiber 303 TILGUNGSRECHNUNG: DEFINITION: Unter der Tilgungsrechnung versteht man einen Zahlungsstrom, der zur Rückführung eines geliehen Betrags (Schuld) dient. Die mathematischen Grundlagen

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 SEK I Lösungen zur Zinseszinsrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Zinseszinsen I. Zinseszins Rechenaufgaben

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung: Lösungsvorschlag

Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung: Lösungsvorschlag Ludwig-Maximilians-Universität München WS 2015/16 Institut für Informatik Übungsblatt 5 Prof. Dr. R. Hennicker, A. Klarl Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung:

Mehr

Das Mathe- Viertelfinale

Das Mathe- Viertelfinale Das Mathe- Viertelfinale 1. Geben Sie für die folgenden Untersuchungen mögliche statistische Einheiten und Masse an und bestimmen die notwendigen Identifikationskriterien. Geben Sie ferner die zugrundeliegende

Mehr

Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm

Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm urs toolbox - Tipps für Excel-Anwender Excel - Thema: Finanzmathematik excel yourself Autoren: Ralf Sowa, Christian Hapke Beachten Sie unsere Hinweise und Nutzungsbedingungen. Vorgestellte Musterlösungen

Mehr

Mathematik-Klausur vom 28.01.2008

Mathematik-Klausur vom 28.01.2008 Mathematik-Klausur vom 28.01.2008 Studiengang BWL PO 1997: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang B&FI PO 2001: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang BWL PO 2003: Aufgaben

Mehr

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden BspNr: G0010 Themenbereich Finanzmathematik - Rentenrechnung Ziele vorhandene Ausarbeitungen Arbeiten mit geom. Reihen TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.205 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P.

Mehr

Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung: Lösungsvorschlag

Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung: Lösungsvorschlag Ludwig-Maximilians-Universität München WS 2015/16 Institut für Informatik Übungsblatt 5 Prof. Dr. R. Hennicker, A. Klarl Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung:

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

Zinsrechnung 2 leicht 1

Zinsrechnung 2 leicht 1 Zinsrechnung 2 leicht 1 Berechne! a) b) c) Kapital 3 400 a) 16 000 b) 24 500 c) Zinsen 2,5% 85 400 612,50 Kapital 3 400 16 000 24 500 KESt (25% der Zinsen) 21,25 100 153,13 Zinsen effektive (2,5 Zinsen

Mehr

IN ZUKUNFT IHR ZUHAUSE. BAUSPAREN.

IN ZUKUNFT IHR ZUHAUSE. BAUSPAREN. IN ZUKUNFT IHR ZUHAUSE. BAUSPAREN. 1 Inhaltsverzeichnis 1. Was ist Bausparen?...3 2. Wie funktioniert Bausparen?...4 3. Die Voraussetzungen für ein Bauspardarlehen... 5 4. Das Prinzip vom Bauspar- und

Mehr

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ"

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ =LQVUHFKQHQ Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ" =LQV =LQVVDW]=LQVIX =HLW -DKU 0RQDW der Preis für die Nutzung eines Kapitals während einer bestimmten

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 15.2.2013

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 15.2.2013 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 5..3 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 3 4 5 6 7 8 gesamt erreichbare P. 4 6 3

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Einsendearbeit 2 (SS 2012)

Mehr

Ü b u n g s b l a t t 2

Ü b u n g s b l a t t 2 Mathe B für Wirtschaftswissenschaftler Sommersemester 01 Walter Oevel 4. 4. 001 Ü b u n g s b l a t t Wir bieten an, bearbeitete Aufgaben zu korrigieren, falls sie zum unten angegebenen Zeitunkt abgeliefert

Mehr

Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen

Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen Finanzmathematik Fakultät Grundlagen September 2011 Fakultät Grundlagen Finanzmathematik Grundlagen: Folgen und endliche Reihen Rentenrechnung Fakultät Grundlagen Finanzmathematik Folie: 2 Folgen Reihen

Mehr

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28.

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28. Mathematik für Klasse 7 Prozentrechnung Zinsrechnung Aufgabensammlung zum Üben- und Wiederholen Datei Nr. 10570 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Teil 1 17 Übungsaufgaben

Mehr

Bei der Ermittlung der Zinstage wird der erste Tag nicht, der letzte Tag aber voll mitgerechnet.

Bei der Ermittlung der Zinstage wird der erste Tag nicht, der letzte Tag aber voll mitgerechnet. Zinsrechnung Sofern nicht ausdrücklich erwähnt, werden die Zinsen nach der deutschen Zinsmethode berechnet. Bei der deutschen Zinsmethode wird das Zinsjahr mit 360 Tagen und der Monat mit 30 Tagen gerechnet:

Mehr

[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen

[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen [FINANZMATHEMATIK] Mag. Michael Langer 1. Zinseszinsrechnung Zinseszins Wird ein Kapital K 0 zum Jahreszinssatz i so angelegt, dass es jedes Jahr um die Zinsen vermehrt wird, dann beträgt das Kapital nach

Mehr