Zinsen, Zinseszins, Rentenrechnung und Tilgung
|
|
- Hildegard Hertz
- vor 3 Jahren
- Abrufe
Transkript
1 Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs
2 Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln
3 Zinseszins Aufgabe: Corina legt zu Jahresanfang 1400 bei ihrer Sparkasse an. Der Zinssatz beträgt 3,75%. Zinsen werden mitverzinst. Wie viel Euro Zinsen erhält sie nach 1 Jahr und 7 Monaten? Auf welches Guthaben ist der Anfangsbetrag somit angewachsen? Rechnung ohne Formel: Die Zinsen betragen 84,27 und der Guthaben nach 1 Jahr und 7 Monaten beträgt 1484,27
4 Zinsrechnen mit dem Wachstumsfaktor
5 2 Rentenrechnung Definition: Unter einer Rente versteht man eine Folge von regelmäßig wiederkehrenden Ein- bzw. Auszahlungen mit im Allgemeinen gleichhohen Beträgen (= Rentenraten)
6 Klassifikation: Fälligkeit der Rentenraten: vorschüssig oder nachschüssig Zahlungsperiode: jährlich oder unterjährlich (Monate Tage etc.)
7 Übersicht über wichtige Abkürzungen: r = (konstante) Rentenrate R 0 = Rentenbarwert R n = Rentenendwert i = Zinssatz p.a. n = Laufzeit der Rentenzahlung q = Aufzinsfaktor
8 Jährliche Zinsen Nachschüssige Rente Von einer nachschüssigen Rente spricht man, wenn die Rentenzahlungen jeweils zum Ende einer Periode (Jahr) erfolgen Abbildung 1: Entwicklung des Rentenendwertes nach 3 Jahren
9 Beispiel K. zahlt am Jahresende (r) auf ein Konto, welches p=8% Verzinsung bietet. Wie hoch ist der Kontostand nach 10 Jahren (n)? R 1 = R 2 = *1, = r*(1+q) R 3 = R 2 *1, = r*(1+q)*q+r = r*(1+q+q 2 )... R 10 = R 9 *1, = r*(1+q+q 2 +q 3 +q 4 +q 5 +q 6 +q 7 +q 8 +q 9 ) R 10 = ,62 (Kontostand nach 10 Jahren) Allgemeine Formel für Rentenendwert: R n = r*(1+q+q q n-1 ) = rekursive Formel: R n =R n-1 * q +r; R 1 =r, n>2
10 Der Rentenbarwert (R 0 ) gibt an, was eine zukünftige, über n Perioden fließende Rentenrate heute (Zeitpunkt 0) wert ist. Dazu wird der Rentenendwert R n auf den Zeitpunkt 0 abgezinst, d.h. man dividiert R n durch q n. Der auftretende Faktor: heißt (nachschüssiger) Rentenbarwertfaktor
11 Beispiel Hans möchte ein Haus kaufen. Der Besitzer fordert 15, jeweils am Jahresende zu zahlende Raten in Höhe von Welcher Betrag muss gezahlt werden, wenn Hans seine Schuld beim Hauskauf sofort begleichen möchte (bei Anlage des Kaufpreises bei einer Bank kann man 6% Zinsen p.a. erhalten)? Lösung: Hier wird der Rentenbarwert gesucht r= n= 15 p= 6% Es ergibt sich: R 0 = * 1, R 0 = ,45 1, ,06-1
12
13 Sind von den vier Größen R n (bzw. R 0 ),r,n und q drei bekannt, so kann die jeweils vierte Größe durch Umstellen der bereits bekannten Formeln ermittelt werden. Nachschüssige Rentenrate r a) aus dem Rentenendwert: b) aus dem Rentenbarwert:
14 Nachschüssige Rentenperiode n a) aus dem Rentenendwert: n = log ( R n /r *(q-1)+1) log q b) aus dem Rentenbarwert: n = log (1- R 0 /r *(q-1)) log q Beispielfrage:Jemand hat durch jährlich nachschüssige Raten in Höhe von 8229,12 angespart. Die Verzinsung betrug p=5,5%. Wie viel Jahre lang mußte die Rate überwiesen werden?
15
16 Vorschüssige Rente Bei einer vorschüssigen Rente werden alle Ratenzahlungen am Beginn einer Rentenperiode geleistet Abbildung 2: Entwicklung des Rentenendwertes nach 3 Jahren Hier wird die eingezahlte Rate bereits im ersten Jahr verzinst, d.h.der nachschüssige Rentenendwert wird mit q multipliziert. Es ergibt sich: Für den Rentenbarwert ergibt sich: R 0 = rekursive Formel:R n =(R n-1 +r)*q; R 1 =r*q, n>2
17 Aufgabe 1 Herr Meier möchte jährlich über einen Zeitraum von 15 Jahren bei einer Bank anlegen. Über wie viel Geld kann er bei vorschüssiger bzw. nachschüssiger Einzahlung verfügen? Wie hoch ist die Differenz? Wie viel Geld hat Herr Meier nach 25 Jahren jeweils angespart?
18
19 Aufgabe 2 Herr Schmidt ist 65 Jahre alt und hat Geld angespart. Er möchte sich über die nächsten 20 Jahre eine Zusatzrente auszahlen lassen von Wie viel Geld muss er bei einer Bank, die einen Zinssatz von 4,5% bietet, anlegen, wenn er sich die Raten 1) zum Jahresbeginn 2) zum Jahresende auszahlen lässt?
20
21 3 Tilgung Jeder aufgenomme Kredit muss zurückgezahlt werden.dazu gibt es zwei Varianten 1. Man zahlt die die gesamte Schuldsumme einschließlich Zinsen und Gebühren 2. Man verpflichtet sich den Schuldbetrag durch regelmäßige Zahlungen in gleichbleibenden Abständen zurückzuzahlen. (Hypothek, Kredit, Darlehen, Anleihe ). Die Rückzahlung setzt sich aus Tilgungsrate (Tilgungsbetrag) und Zinsen zusammen. Unter Tilgungsbetrag versteht man denjenigen Betrag, um den sich die Restschuld durch die Rückzahlung vermindert. Annuität ist Summe aus Tilgungsleistung und Zinsen. Es gibt viele Rückzahlungsmodelle. Wir beschränken uns auf die Fälle, in denen die Rückzahlung jeweils zum Zinstermin erfolgt. Dies bedeutet beispielsweise: wird die Verzinsung der Schuldsumme jährlich vorgenommen, so erfolgen auch die Rückzahlungen jährlich.
22 Übersicht über wichtige Abkürzungen
23 Bsp. Für die Ratentilgung. Kredit in Höhe von soll in 6 Jahren zurückgezahlt werden. Die Tilgungsrate beträgt und der Zinssatz liegt bei 9% Jahr Restschuld (zu Beginn des Jahres) Zinsen Tilgung Annuität
24 Wird die Anfangsschuld in n Jahren mit der konstanten jährlichen Rate T getilgt so gilt: Für die Restschuld benötigt man folgende Formel: Beispiel: d.h. nach dem 4. Jahr also im 5. Jahr hat man eine Restschuld von
25 Berechnung der Zinsen in der j-ten Periode Für die Höhe der in der j-ten Periode (hier Jahre) anfallenden Zinsen ergibt sich: Beispiel: Im 4. Jahr betragen die Zinsen 5400
26 Berechnung der Annuität Für die Höhe der in der j-ten Periode (hier Jahre) anfallenden Annuität ergibt sich: Beispiel: Im 4. Jahr beträgt die Annuität 25400
27 Die Tilgungsrate T kann auch durch die Angabe eines Prozentannuität vorgegeben sein. Beispiel: Kredit in Höhe von Die Prozentannuität beträgt 24% und der Zinssatz liegt bei 9% Jahr Restschuld (zu Beginn des Jahres) Zinsen Tilgung Annuität Wie man sieht unterscheidet sich die Tilgungsrate im 5. Jahr von den Vorjahren. In so einem Fall gelten nun die Folgenden Formeln.
28 Mit den Folgenden Formeln kann man nur die Tilgung, Annuität und die Zinsen im letzten Jahr berechnen. Falls keine ganze Zahl ist. Wird mit die größte ganze Zahl, die kleiner ist als, bezeichnet. Dann ergibt sich die Tilgungsrate des letzten Jahres r (= +1) Entsprechend gilt für die Zinsen, die für das letzte Jahr anfallen. Für die Annuität im letzten Tilgungsjahr gilt:
29 Beispiel. Die Tilgungsrate im letzten Jahr beträgt 4800 Die Zinsen im letzten Jahr betragen 432 Die Annuität im letzten Jahr beträgt 5232
30 Berechnung der Zinsen und Annuität zu einem bestimmten Zeitpunkt Die Zinsen im 3. Jahr betragen 516 Die Annuität im 3. Jahr beträgt 34416
31 Restschuld Die Restschuld nach dem 3. Jahr beträgt 33600
32 Annuitätentilgung In diesem Modell bleibt die Annuität im gesamten Rückzahlungszeitraum konstant, während sich die Tilgungsrate ändert.
33 Bsp. Für die Annuitätentilgung Ein Kredit in Höhe von soll in 6 Jahren zurückgezahlt werden. Die Annuitätentilgung beträgt 26750,37 und der Zinssatz liegt bei 9% Jahr Restschuld (zu Beginn des Jahres) Zinsen Tilgung Annuität , , , , , , , , , , , , , , , , , , , , , , , ,37
34 Um die Annuität zu berechnen, können auch bestimmte Formeln, die schon in der Rentenrate erwähnt worden ist, angewendet werden. Liegt ein Tilgungsplan vor, so kann man aus diesem die Restschuld nach j Jahren sowie die Tilgungsrate und die Zinsbelastung im j-ten Jahr einfach ablesen. Man kann aber auch auf bestimmte Formel zugreifen.
35 Nach dem 2. Jahr hat man eine Restschuld in Höhe von 86663,72
36 Die Tilgung beträgt im 2. Jahr 17385,90
37 Praxis In der Praxis spielt die Kredithöhe und Tilgungsdauer eine Rolle. 1.Kredithöhe: Welcher Kreditbetrag S kann bei einem angenommen Zinssatz von p% aufgenommen werden, wenn dieser in n Jahren mit Hilfe der vorgegebenen Annuität getilgt werden soll. 2.Tilgungsdauer: Wie lange dauert es, bis eine benötigter Kredit der Höhe S mit Hilfe der vorgegebenen Annuität bei einem Zinssatz von p% getilgt ist. Zu1. Durch umstellen der Formel nach S, kann leicht die Kredithöhe bestimmt werden.
38 Zu2. Um die Tilgungsdauer zu berechnen muss die Formel nach n umgeformt werden. A S(q 1) ist genau die Tilgung für des 1. Jahres,somit gilt Man kann nicht erwarten, dass n eine ganze Zahl ist, somit muss man auch im letzten Jahr nicht die volle Annuität zahlen. Falls n keine ganze Zahl ist bezeichnen wir mit wieder die größte ganze Zahl, die kleiner oder gleich n ist
39 Tilgungsrest
40 Beispiel K. benötigt dringend einen Darlehen von Er ist in der Lage eine Annuität von für die Rückzahlung aufzubringen. Gesucht ist die Tilgungsdauer bei einem Darlehensverzinsung von 9%. Zusätzlich soll die Annuität, die am Ende des letzten Jahres fällig wird, bestimmt werden.
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht
Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.
Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche
Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;
1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112
3.3. Tilgungsrechnung
3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Hochschule Augsburg Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb
Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung
4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor
Übungsserie 6: Rentenrechnung
HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine
Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui
Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 193 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei einer Abschreibung werden eines Gutes während der Nutzungsdauer festgehalten. Diese Beträge stellen dar und dadurch
Finanzmathematik - Grundlagen
Finanzmathematik - Grundlagen Formelsammlung Zugelassene Formelsammlung zur Klausur im Sommersemester 2005 Marco Paatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Zinsrechnung Symbole
Aufgaben zur Finanzmathematik, Nr. 1
Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!
Unter einer Rente versteht man eine regelmässige und konstante Zahlung.
Anwendungen aus der Finanzmathematik a) Periodische Zahlungen: Renten und Leasing Unter einer Rente versteht man eine regelmässige und konstante Zahlung Beispiele: monatliche Krankenkassenprämie, monatliche
2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?
Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind
Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen
Finanzmathematik Fakultät Grundlagen September 2011 Fakultät Grundlagen Finanzmathematik Grundlagen: Folgen und endliche Reihen Rentenrechnung Fakultät Grundlagen Finanzmathematik Folie: 2 Folgen Reihen
Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1
Finanzmathe Formelsammlung v.2.3 1 Inhaltsverzeichnis I Zinsrechnung 1 I.1 Jährliche Verzinsung..................................... 1 I.1.1 Einfache Verzinsung................................. 1 I.1.2
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge
Finanzmathematik mit Excel
Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz
Finanzmathematik. 1. Aus einem Wasserhahn fließen in einer Minute 48 Liter. Wieviel Liter fließen in 8 3 4 Minuten?
Finanzmathematik Dreisatz Prozentrechnung Zinseszins Der Reichtum gleicht dem Seewasser, je mehr man davon trinkt, desto durstiger wird man. Arthur Schopenhauer 1. Aus einem Wasserhahn fließen in einer
Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)
(K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung
Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10
Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das
Rentenrechnung und Annuitätentilgung
Rentenrechnung und Annuitätentilgung Wiederholung: Zinseszinsen Es soll ein Kaital K0) von 0 e zu einem jährlichen Zinssatz a ) von 3,5 % angelegt werden Nach einem Jahr kommen zu den 0 e also Zinsen von
1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5
Inhalt. Einfache Zinsrechnung (lineare Verzinsung).... Zinseszinsrechnung (exponentielle Verzinsung)...4. Rentenrechnung...5 4. Tilgungsrechnung...6 Die Größe p bezeichnet den Zinsfuß (z.b. 0). Die Größe
Übungsblatt 1 Finanzmathematik
Übungsblatt 1 Finanzmathematik 1. Können bei einfacher Verzinsung von 6% und einer Anlagedauer von einem halben Jahr aus 1.000 e mehr als 1.030 e werden? 2. Ein fester Anlagebetrag wird bei der Privatbank
Das Mathe- Viertelfinale
Das Mathe- Viertelfinale 1. Geben Sie für die folgenden Untersuchungen mögliche statistische Einheiten und Masse an und bestimmen die notwendigen Identifikationskriterien. Geben Sie ferner die zugrundeliegende
b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?
Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche
Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren
Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER
Kirsten Wüst Finanzmathematik Vom klassischen Sparbuch zum modernen Zinsderivat GABLER I Inhaltsverzeichnis VORWORT V INHALTSVERZEICHNIS VII ABBILDUNGSVERZEICHNIS XV TABELLENVERZEICHNIS XVII 1 ZINSFINANZINSTRUMENTE
Universität Duisburg-Essen
T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen
Finanzwirtschaft. Teil II: Bewertung
Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und
Übungsaufgaben Tilgungsrechnung
1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf
Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN
Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme
o Der Endwert der Rente beträgt CHF 198'394.10. Aufgabe 19.1 (Seite 649) 6%% ~ Jahre qn_1 q-1 7'125.-- (vorschüssig)
Aufgabe 19.1 (Seite 649) CD Berechnen von Bar- und Endwerten a) Die Laufzeit einer jeweils Anfang Jahr ausbezahlten Rente von CHF 7'125.-- beträgt 16 Jahre. Wie hoch ist der Endwert der Rente, wenn die
1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate
1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00
Zinseszins- und Rentenrechnung
Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz
Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm
urs toolbox - Tipps für Excel-Anwender Excel - Thema: Finanzmathematik excel yourself Autoren: Ralf Sowa, Christian Hapke Beachten Sie unsere Hinweise und Nutzungsbedingungen. Vorgestellte Musterlösungen
[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen
[FINANZMATHEMATIK] Mag. Michael Langer 1. Zinseszinsrechnung Zinseszins Wird ein Kapital K 0 zum Jahreszinssatz i so angelegt, dass es jedes Jahr um die Zinsen vermehrt wird, dann beträgt das Kapital nach
Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011
Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:
Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,
Finanzmathematik - Grundlagen
Finanzmathematik - Grundlagen Aufgabensammlung Sommersemester 2005 Marco Papatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Klausur 2002 Aufgabe 1 Student K. Toffel überzieht sein Girokonto
6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung
6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme
Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt
Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1
Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z
Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen
Aufgabe 1 Nennen und erläutern Sie drei Darlehensformen nach den Tilgungsarten und nennen Sie je ein Beispiel. Lösung 1 Hinweis: Leider werden die Begrifflichkeiten in verschiedenen Lehrbüchern u. a. Veröffentlichungen
n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)
3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen
BFP07 Lösung: [870,00] + [150,60]
BFP07 Lösung: [870,00] + [150,60] Die Eheleute Bernd und Nicole Krause beabsichtigen, eine 3-Zimmer-Wohnung zu einem Kaufpreis von 210.000,00 zzgl. einem Tiefgaragenstellplatz von 15.000,00 zu erwerben.
0. Begrifflichkeiten...1. 1. Einfache Zinsrechnung (lineare Verzinsung)...3. 1.1 Jährliche lineare Verzinsung...3
Inhalt 0. Begrifflichkeiten...1 1. Einfache Zinsrechnung (lineare Verzinsung)...3 1.1 Jährliche lineare Verzinsung...3 1.2 Unterjährige lineare Verzinsung, zeitproportionale Zinsverrechnung...4 2. Zinseszinsrechnung
Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013
Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Finanzmathematik (TM/SRM/SM) Tutorium Finanzmathematik Teil 1 1 Zinseszinsrechnung Bei den Aufgaben dieses
Lernfeld/Fach: Baufinanzierungen bearbeiten Thema: Darlehensarten in der Baufi
Übungsaufgaben Aufgabe 1 Die Eheleute Bernd und Nicole Krause beabsichtigen, eine 3-Zimmer-Wohnung zu einem Kaufpreis von 210.000,00 zzgl. einem Tiefgaragenstellplatz von 15.000,00 zu erwerben. Das Objekt
TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden
BspNr: G0010 Themenbereich Finanzmathematik - Rentenrechnung Ziele vorhandene Ausarbeitungen Arbeiten mit geom. Reihen TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische
Tilgungsplan im NTCS Controlling
im Der bietet die Möglichkeit, neue oder bestehende Darlehen und Kredite in übersichtlicher Form zu erfassen. Ebenso können gewährte Darlehen dargestellt werden. Neue Darlehen und Kredite Der Einstieg
Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010
Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:
Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe
Finanzmathematik Kapitel 4 Investitionen Prof. Dr. Harald Löwe Sommersemester 2012 1. Abschnitt INVESTITIONSRECHNUNG Voraussetzungen Investition als Zahlungsstrom Vom Investor zur leistende Zahlungen (Anschaffungen,
Kreditmanagement. EK Finanzwirtschaft
EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften christian.keber@univie.ac.at Kreditmanagement 1 Kreditmanagement
85 = 7,5 r 5 r5 1. r 1 + 100. Aufgaben
6.4 Kurs- und Rentabilitätsrechnung 143 6.4 Kurs- und Rentabilitätsrechnung Das Berechnen von Zinssätzen bei regelmäßigen Geldflüssen führt zu Gleichungen höheren Grades, die man meist nur mit Näherungsverfahren
Seite 1. Feste oder schwankende Kreditrate. Eigenkapitalquote. MBVO Baufinanzierung Die richtige Tilgungsrate
Parameter Feste oder schwankende Kreditrate Abbildung 1: Entwicklung der Kreditrate bei Krediten mit festem Zinssatz und fester Annuität gegenüber Krediten mit regelmäßiger Anpassung des Zinssatzes Parameter
Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:
Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung
Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1
Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 1. Aufgabe Der durchschnittliche Einlagenbestand eines KI gliedert sich in - Sichteinlagen 360 Mio. zu 0,4 % -
Finanzmathematik. Über Kapital sollte man viel wissen. Besonders über sein eigenes.
1 Finanzmathematik TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Institut für Numerische Mathematik und Optimierung Dr.rer.nat. H. Schreier Sommersemester 2012 Die Finanzmathematik ist
Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert
Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien
Darlehen - als Möglichkeit der... -Finanzierung
Darlehen - als Möglichkeit der.... -Finanzierung Situation: Bestattungsinstitut Thomas Bayer e. K. benötigt für ein Investitionsprojekt 0.000 Euro. Die Hausbank bietet dieses Darlehen mit folgenden Konditionen
3. Rentenrechnung mit Excel
132 Rentenrechnung mit Excel 3. Rentenrechnung mit Excel 3.1 Einführung Bei der Rentenrechnung ist die Verwendung folgender Größen und Symbole üblich: r r e konstante regelmäßige Zahlung (Rentenrate) jährlich
Bernd Luderer. Starthilfe Finanzmathematik. Zinsen - Kurse - Renditen. 4., erweiterte Auflage. Springer Spektrum
Bernd Luderer Starthilfe Finanzmathematik Zinsen - Kurse - Renditen 4., erweiterte Auflage Springer Spektrum Inhaltsverzeichnis 1 Grundlegende Formeln und Bezeichnungen 1 1.1 Wichtige Bezeichnungen 1 1.2
Mathematik-Klausur vom 2. Februar 2006
Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:
, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 %
Themenerläuterung Das Thema verlangt von dir die Berechnung von Zinsen bzw. Zinseszinsen, Anfangskapital, Endkapital und Sparraten. In seltenen Fällen wird auch einmal die Berechnung eines Kleinkredites
Finanzmathematik, Investition und Finanzierung
Finanzmathematik, Investition und Finanzierung Aufgaben und Fälle / von Prof. Dr. Christa Drees-Behrens Prof. Dr. Matthias Kirspel Prof. Dr. Andreas Schmidt Prof. Helmut Schwanke 2., überarbeitete Auflage
PLANUNG UND ENTSCHEIDUNG EXCEL-FORMELN. für INVESTITIONSRECHNUNGEN
. UNIVERSITÄT HOHENHEIM INSTITUT FÜR LNDWIRTSCHFTLICHE ETRIESLEHRE FCHGEIET: PRODUKTIONSTHEORIE UND RESSOURCENÖKONOMIK. Prof. Dr. Stephan Dabbert PLNUNG UND ENTSCHEIDUNG EXCEL-FORMELN für INVESTITIONSRECHNUNGEN
Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1.
Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 44 ff. In Kraft getreten am 1. September 2000 6 Kredite (1) Bei Krediten sind als Preis die Gesamtkosten als jährlicher
Aufgabe 1: Finanzmathematik (20 Punkte)
Aufgabe 1: Finanzmathematik (20 Punkte) Im Zusammenhang mit der Finanzmarktkrise entschließt sich der Autohersteller LEPO zusätzlich zu der vom Staat unter bestimmten Voraussetzungen bewilligten Abwrackprämie
Mathematik-Klausur vom 28.01.2008
Mathematik-Klausur vom 28.01.2008 Studiengang BWL PO 1997: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang B&FI PO 2001: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang BWL PO 2003: Aufgaben
WS 15/16 1. Übungsblatt Dr. Ulrich Kerkho. Folgen und Reihen
WS 15/16 1. Übungsblatt Dr. Ulrich Kerkho Folgen und Reihen Aufgabe 1 Entscheiden Sie, ob es sich um eine arithmetische oder eine geometrische Folge handelt und bestimmen Sie den 20. Folgenwert: a) a 1
Mathematik-Klausur vom 16.4.2004
Mathematik-Klausur vom 16..200 Aufgabe 1 Die Wucher-Kredit GmbH verleiht Kapital zu einem nominellen Jahreszinsfuß von 20%, wobei sie die anfallenden Kreditzinsen am Ende eines jeden Vierteljahres der
Kommunales Zins- und Schuldenmanagement
3 Martin Wambach Alexander Etterer Dr. Gunnar Stark Kommunales Zins- und Schuldenmanagement Einsatz von Zinsinstrumenten in den Städten und Gemeinden B Kredite B.1 Systematik der Aktionsparameter B.1.1
Mathematik-Klausur vom 4.2.2004
Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ
Einführung in die Betriebswirtschaftslehre
Ernst-Moritz-Arndt- Rechts- und Staatswissenschaftliche Fakultät Lehrstuhl für Betriebswirtschaftslehre, insbesondere Marketing Daniel Hunold Skript zur Übung Einführung in die Betriebswirtschaftslehre
6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W
6. Zinsrechnen 382 Wie viele Zinsen bringt ein Kapital in HoÈ he von 8.000,00 a bei einem Zinssatz von 6 % p.a. in 90 Tagen? (A) 90,00 W (B) 120,00 W (C) 180,00 W (D) 210,00 W (E) 240,00 W 383 Zu welchem
lebensbegleitenden Finanzmathematik
Martin Hödlmoser Das lxl der lebensbegleitenden Finanzmathematik Kredit-, Darlehens-, Leasingraten Rendite von Veranlagungen (Sparbücher, Wertpapiere,...) Zinsverrechnungsmodalitäten Tilgungspläne Grundzüge
Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:
Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten
Übungsklausur der Tutoren *
Übungsklausur der Tutoren * (* Aufgabenzusammenstellung erfolgte von den Tutoren nicht vom Lehrstuhl!!!) Aufgabe 1 - Tilgungsplan Sie nehmen einen Kredit mit einer Laufzeit von 4 Jahren auf. Die Restschuld
Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.
Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von
Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011
Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min
Investition und Finanzierung. Aufgaben und Fälle
Finanzmathematik, Investition und Finanzierung Aufgaben und Fälle von Prof. Dr. Christa Drees-Behrens Prof. Dr. Matthias Kirspel Prof. Dr. Andreas Schmidt Prof. Helmut Schwanke 2., überarbeitete Auflage
Bankgeschäfte nachgerechnet!
Bankgeschäfte nachgerechnet! Fremdwährung - Girokonto - Wertpapiere - Veranlagung - Finanzierung von Alexandra Kuhnle-Schadn, Rainer Kuhnle 2., aktualisierte und erweiterte Auflage 2007 Bankgeschäfte nachgerechnet!
Wirtschaftsmathe für W-Ing. Aufgabensammlung Teil 1 Sommersemester 2015
Wirtschaftsmathe für W-Ing. Aufgabensammlung Teil 1 Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Aufgabe 1 Eine Rechnung über 3.250 wird nicht sofort bezahlt. Daher sind Verzugszinsen
Finanzmathematik mit Excel 1
Finanzmathematik mit Excel 1 Einfache Zinsrechnung 2 Folgende Begriffe werden benötigt: Begriff Definition Kapital Geldbetrag, der angelegt oder einem anderen überlassen wird. Laufzeit Dauer der Überlassung.
Finanzierung Kapitel 4: Der Zeitwert des Geldes
Kapitel 4: Der Zeitwert des Geldes von Sommersemester 2010 Grundlegendes zur Investitionstheorie Jedes Investitionsprojekt kann abstrakt als eine zeitliche Verteilung von Cash-Flows betrachtet werden.
4 Reihen und Finanzmathematik
4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.
Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor
1. Kapitel: Grundkonzeption der Unternehmensbewertung Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor Sachverhalt: Herr Glück kauft im Dezember 2012 von seinem Weihnachtsgeld (5 000 Euro) Lose der
Bei der Ermittlung der Zinstage wird der erste Tag nicht, der letzte Tag aber voll mitgerechnet.
Zinsrechnung Sofern nicht ausdrücklich erwähnt, werden die Zinsen nach der deutschen Zinsmethode berechnet. Bei der deutschen Zinsmethode wird das Zinsjahr mit 360 Tagen und der Monat mit 30 Tagen gerechnet:
Definition Gegenwartswert (Barwert) Der Wert des Geldes ist, über den man in der Gegenwart verfügen kann, ist grösser als der Wert des Geldes, den man in der Zukunft erhalten/zahlen wird. Diskontierung
Darlehensvertrag zwischen der Energie-Genossenschaft Darmstadt eg im Folgenden Darlehensnehmerin genannt, und. Name. Anschrift
Darlehensvertrag zwischen der Energie-Genossenschaft Darmstadt eg im Folgenden Darlehensnehmerin genannt, und Name Anschrift 1 Zweck Zweck des Darlehens ist die Finanzierung von Photovoltaikanlagen in
Berechnung des Grundwertes 27. Zinsrechnung
Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.