Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am"

Transkript

1 Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe erreichbare Punkte erreichte Punkte Bitte tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,... rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,... beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,... geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an,... begründen Sie Ihre Antworten ausführlich und... kreuzen Sie hier an, an welchem der folgenden Termine Sie nicht zur mündlichen Prüfung antreten können: Fr., Mo., Viel Erfolg!

2 1. Im folgenden Beispiel soll ein Windrad mit Generator, dargestellt in Abbildung 1, untersucht werden. Das Windrad besteht aus vier identischen Flügeln mit der Länge l und der Breite b, deren Anstromwinkel α über den Eingang ζ mit α = ζ cos(ζ) eingestellt werden kann. Dadurch kann die vom Wind mit der Geschwindigkeit v angeströmte Fläche mit der Modulationsfunktion k(α) = cos(α) verändert werden. Auf die Flügelflächen wirkt in Drehrichtung der Windruck = c p (α) ρ v, der das Rad antreibt. Hierbei bezeichnet c p (α) den Windbeiwert und ρ die Dichte der Luft. Das Windrad ist über eine starre Welle mit einem Gleichstromgenerator verbunden, der das Moment τ el = c A Φi A mit der Maschinenkonstanten c A > und dem magnetischen Fluss Φ > erzeugt. Das gesamte Trägheitsmoment des Windrads samt Stange und Generator sei Θ. Am Generator liegt die konstante Gleichspannung U N an. Die induzierte Spannung ergibt sich zu u i = c A Φω mit der Drehwinkelgeschwindigkeit der Maschine ω in rad/s. b i A R L l α U N Φ u i G r ω v Abbildung 1: Windrad mit Generator. Lösen Sie die nachfolgenden Teilaufgaben: a) Stellen Sie die Modellgleichungen mit den Zustandsgrößen x = [ ω, i A, α ] T in 5 P. der Form ẋ = f(x, u) y = h(x, u) mit dem Eingang u = [ v, ζ ] T und dem Ausgang y = ia dar. Hinweis: Das durch den Winddruck erzeugte Drehmoment auf einen Flügel kann durch Integration über den Hebelarm s τ F = k(α)bs ds berechnet werden. s

3 b) Berechnen Sie die Ruhelagen des Systems für eine konstante Windgeschwin- P. digkeit v R und mit ζ R =. c) Linearisieren Sie das mathematische Modell um die berechnete Ruhelage x R 3 P. und stellen Sie das linearisierte System in der Form ẋ = A x + B u y = C x + D u dar. Ist die Ruhelage des linearisierten autonomen Systems asymptotisch stabil? Begründen Sie Ihre Antwort. 3

4 . Gegeben ist das autonome System ẋ = Ax mit A = [ c 5 + 3c + 1 c 6 ]. a) Geben Sie ein Intervall für den konstanten Parameter c R an, sodass die P. Ruhelage x R für jeden Anfangswert x R global asymptotisch stabil ist. b) Bestimmen Sie den Zeitverlauf von x(t) für den Anfangswert x R. 4 P. Hinweis: Die Eigenvektoren der gegebenen Dynamikmatrix können mit angenommen werden. v 1 = [ 1 c+3 I ] und v = [ 1 c+3+i c) Bestimmen Sie den Anfangswert x = x(t ), t =, wenn[ für die] Konstante P. e c = 1 gilt und zum Zeitpunkt t 1 = 1π der Zustand x(t π 1) = lautet. ] 3e π d) Schreiben Sie das gegebene System in zeitdiskreter Darstellung mit der Ab- 1 P. tastzeit T a = π an. e) Bestimmen Sie den Verlauf des Zustands x k für den Anfangswert x R. P. 4

5 3. Gegeben ist der Regelkreis laut Abbildung mit den Übertragungsfunktionen G 1 = V s mit der Verstärkung V =., G = s +.5 s + 5s + 8 u - G 1 G y Abbildung : Regelkreis. Bearbeiten Sie die folgenden Teilaufgaben. a) Zeichnen Sie das Bode-Diagramm für die Übertragungsfunktion des offenen 4 P. Kreises L. Nutzen Sie hierfür die bereitgestellte Vorlage. Ist der offene Kreis BIBO-stabil? Beurteilen Sie mit Hilfe des Bode-Diagramms die Stabilität des geschlossenen Kreises. Hinweis: log( 5 4 ).1 b) Welche der beiden Ortskurven in Abbildung 3 beschreibt den offenen Kreis L? P. Begründen Sie ihre Antwort ausführlich. Im(L1(Iω)) ω = ω =+ Re(L 1 (Iω)) ω = ω =+ 1 Im(L(Iω)) 4 4 Abbildung 3: Ortskurven zu Aufgabe 3.b). 4 ω = ω = ω =+ ω =+ Re(L (Iω)) 4 c) Berechnen Sie den Ausgang y(t) des offenen Kreises L für t für einen P. Impuls am Eingang u = δ() sowie für den Einheitssprung u = σ(). d) Berechnen Sie die eingeschwungene Lösung y(t) des geschlossenen Kreises T P. für den Eingang u(t) = sin(t). 5

6 4. Gegeben ist das zeitdiskrete System x k+1 = y = [,, 1]x k. x k +.3 u k a) Bestimmen Sie die zeitdiskrete Übertragungsfunktion G(z) des gegebenen Sy- 1 P. stems. b) Zeigen Sie, dass das System vollständig beobachtbar ist. P. c) Entwerfen Sie einen vollständigen Luenberger Beobachter für den Zustand x. 3 P. Die Eigenwerte der Dynamikmatrix Φ e des Fehlersystems e k+1 = Φ e e k mit e = ˆx x sollen die Werte λ 1 =.5, λ =.5 und λ 3 =. annehmen. d) Untersuchen Sie mit Hilfe des Jury Verfahrens die Stabilität des in Punkt c) 3 P. entworfenen Beobachters, wenn sich die Dynamikmatrix des gegebenen Systems auf ändert. Φ a =

7 Frequenz in rad/s Phase in Grad Betrag in db Abbildung 4: Vorlage Bode-Diagramm zu Aufgabe 3 7

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am.. Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Übungsskript Regelungstechnik 2

Übungsskript Regelungstechnik 2 Seite 1 von 11 Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik Prof. Dr.-Ing. Klaus Dietmayer / Seite 2 von 11 Aufgabe 1 : In dieser Aufgabe sollen zeitdiskrete Systeme untersucht werden.

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016

Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016 Hörsaal 2 Montag, den 08. 08. 2016 Beginn: 10.00 Uhr Bearbeitungszeit: 120

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden.

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden. Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

Systemtheorie und Regelungstechnik Abschlussklausur

Systemtheorie und Regelungstechnik Abschlussklausur Systemtheorie und Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 7. März 5, 9:-:, Freiburg, Georges-Koehler-Allee, HS 6 und HS 6 page

Mehr

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Behrang Monajemi Nejad Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

60 Minuten Seite 1. Einlesezeit

60 Minuten Seite 1. Einlesezeit 60 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Kirchhoff-Hörsaal 1 Donnerstag, den 19. 09. 2013 Beginn: 09.30 Uhr Bearbeitungszeit: 120 Minuten

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN BEDEUTUNG DER GEWICHTSFUNKTION UND

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Kurze Einführung in die Darrieus Windturbinen

Kurze Einführung in die Darrieus Windturbinen LA VERITAT (www.amics21.com) Kurze Einführung in die Darrieus Windturbinen Darrieus Windturbinen von Manuel Franquesa Voneschen 1 Diese Windturbinen mit vertikaler Achse sind ziemlich anspruchsvolle Maschinen,

Mehr

Klausur»Elektronische Schaltungen I/II« Ergebnis der Klausur

Klausur»Elektronische Schaltungen I/II« Ergebnis der Klausur Univ. Prof. Dr. Ing. H. Wupper Prüfungs Nr. 2063, 2151 Klausur»Elektronische Schaltungen I/II«Datum: 2011 Name........................................... Vorname...........................................

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung 6.8.8 Regelungstechnik II (5-59-) Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 (unterschiedlich gewichtet, total 6 Punkte) Um die

Mehr

14 Übungen zu Regelung im Zustandsraum Teil 2

14 Übungen zu Regelung im Zustandsraum Teil 2 Zoltán Zomotor Versionsstand: 9. März 25, :32 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3./de/

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Ingenieurmathematik für Maschinenbau, Blatt 1

Ingenieurmathematik für Maschinenbau, Blatt 1 Ingenieurmathematik für Maschinenbau, Blatt 1 Probeklausur Ingenieurmathematik für Maschinenbau Studiengang Prüfungsfach Prüfer Prüfungstermin Prüfungsdauer Prüfungsunterlagen Hilfsmittel Maschinenbau

Mehr

Experimentalphysik EP, WS 2013/14

Experimentalphysik EP, WS 2013/14 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

x W x 3 W M 2 x 2 x 1

x W x 3 W M 2 x 2 x 1 Priv-Doz G Reißig, F Goßmann MSc Universität der Bundeswehr München Institut für Steuer- und Regelungstechnik LRT-5 Email: felixgossmann@unibwde Moderne Methoden der Regelungstechnik, HT 26 Übung - Lösung

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte) Prof. L. Guzzella Prof. R. D Andrea BSc - Sessionsprüfung 5.8.8 Regelungstechnik I (151-591-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 1 Minuten 9 (unterschiedlich

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Erreichbarkeit und Zustandsregler

Erreichbarkeit und Zustandsregler Übung 5 Erreichbarkeit und Zustandsregler 5. Kriterium für die Erreichbarkeit Betrachtet wird wieder ein zeitkontinuierliches, lineares und zeitinvariantes System (LZI bzw. LTI : Linear Time Invariant)

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

rechnerisch, ob weitere Lösungen dieser Gleichung im Bereich 0 x l existieren.

rechnerisch, ob weitere Lösungen dieser Gleichung im Bereich 0 x l existieren. Anwendungs- und Optimierungsaufgaben (Technik) 1. Ein Balken der Länge l ist auf zwei Stützen gelagert (siehe Bild). Der Balken wird durch sein Eigengewicht auf Biegung beansprucht. Die Durchbiegung ist

Mehr

Experimentalphysik EP, WS 2012/13

Experimentalphysik EP, WS 2012/13 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/3 Probeklausur (ohne Optik)-Nummer: 7. Januar 03 Hinweise zur Bearbeitung Alle benutzten

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte) BSc - Sessionsprüfung 7.8.23 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet,

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente 1.3 Sttische Momente, Schwerpunkte und Trägheitsmomente Sttisches Moment M g eines Mssenpunktes P (der Msse m) bezüglich einer Gerden g: M g := ml Msse Hebelrm l Abstnd von P zu g g 9 P l Bei n Mssenpunkten

Mehr

Institut für Elektrotechnik u. Informationstechnik. Systemtheorie - Nichtlineare Systeme

Institut für Elektrotechnik u. Informationstechnik. Systemtheorie - Nichtlineare Systeme Institut für Elektrotechnik u. Informationstechnik Systemtheorie - Nichtlineare Systeme Stabilitätskonzepte nach Ljapunov Prof. Dr. techn. F. Gausch 211 Inhaltsverzeichnis 1 Gegenüberstellung von Eigenschaften

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Linearisierung. Vorlesung 4. Realität: nichtlinear. Wunsch: Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) A=F(Y)

Linearisierung. Vorlesung 4. Realität: nichtlinear. Wunsch: Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) A=F(Y) Realität: nichtlinear Y AF(Y) A Wunsch: im Betriebspunkt linear Y K A Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) 1 Beispiel für Nichtlineare Systemkomponente: Ventil in

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Schwerpunktfach Physik und Anwendungen der Mathematik

Schwerpunktfach Physik und Anwendungen der Mathematik Schriftliche Maturitätsprüfung 2014 Kantonsschule Reussbühl Luzern Schwerpunktfach Physik und Anwendungen der Mathematik Prüfende Lehrpersonen Klasse Hannes Ernst (hannes.ernst@edulu.ch) Luigi Brovelli

Mehr

Trigonometrische Funktionen Luftvolumen

Trigonometrische Funktionen Luftvolumen Trigonometrische Funktionen Luftvolumen Die momentane Änderungsrate des Luftvolumens in der Lunge eines Menschen kann durch die Funktion f mit f(t) = 1 2 sin(2 5 πt) modelliert werden, f(t) in Litern pro

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

Asynchronmaschine: Heylandkreis für

Asynchronmaschine: Heylandkreis für Aufgabe 1: Asynchronmaschine: Heylandkreis für R 1 =0Ω Ausgangspunkt für die Konstruktion des Heylandkreises in Aufgabe 1.1 bildet der Nennstrom mit seiner Phasenlage. Abbildung 1: Nennstrom Da der Leistungsfaktor

Mehr

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Fachpraktikum Hochdynamische Antriebssysteme. Theoretische Grundlagen Gleichstrommaschine

Fachpraktikum Hochdynamische Antriebssysteme. Theoretische Grundlagen Gleichstrommaschine Fachpraktikum Hochdynamische ntriebssysteme Gleichstrommaschine Christof Zwyssig Franz Zürcher Philipp Karutz HS 2008 Gleichstrommaschine Die hier aufgeführten theoretischen Betrachtungen dienen dem Grundverständnis

Mehr

PN 1 Klausur Physik für Chemiker

PN 1 Klausur Physik für Chemiker PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-A 16. Februar 2004 Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Karsten Gänger Christian Jung Andreas Schulz Jörg Schröder

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie

Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - WS0809 - Blatt 1 / 16 Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik Teil 1: Physikalische Chemie

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: Technische Mechanik III Übung WS 004 / 005 Klausur Teil Institut für Robotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer Tel.: +43/73/468-9786 Fax: +43/73/468-979 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Regelungstechnik I (WS 15/16) Übung 2

Regelungstechnik I (WS 15/16) Übung 2 Regelungstechnik I (WS 5/6) Übung Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Aufgabe. (Linearität, Zeitinvarianz). Überprüfen Sie die folgenden dynamischen Systeme auf Linearität

Mehr

Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau,

Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau, Universität Siegen, Fachbereich Maschinenbau, 31.7.9 Name: Matrikelnummer: Aufgabe 1 (8 Punkte) Für die Abschätzung der Lebensdauer eines Wälzlagers wird die Bestimmungsgröße K gemäß der obenstehenden

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Klausur zum Fach Mathematik 1 Teil 1

Klausur zum Fach Mathematik 1 Teil 1 (Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 06.07.202 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 29.8.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Theory Austrian German (Austria) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag.

Theory Austrian German (Austria) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 points) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag. Einleitung Bistabile nichtlineare halbleitende

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Übung 4.1: Dynamische Systeme

Übung 4.1: Dynamische Systeme Übung 4.1: Dynamische Systeme c M. Schlup, 18. Mai 16 Aufgabe 1 RC-Schaltung Zur Zeitpunkt t = wird der Schalter in der Schaltung nach Abb. 1 geschlossen. Vor dem Schliessen des Schalters, betrage die

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

Klausur»Elektronische Schaltungen I/II« Ergebnis der Klausur

Klausur»Elektronische Schaltungen I/II« Ergebnis der Klausur Univ. Prof. Dr. Ing. H. Wupper Prüfungs Nr. 2063, 2151 Klausur»Elektronische Schaltungen I/II«Datum: 2010 Name........................................... Vorname...........................................

Mehr

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr