LOOP-Programme: Syntaktische Komponenten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "LOOP-Programme: Syntaktische Komponenten"

Transkript

1 LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: Operationssymbole: + Trennsymbole: ; := Schlüsselwörter: LOOP DO END R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

2 LOOP-Programme: Syntax Die Syntax von LOOP-Programmen wird wie folgt induktiv definiert. (i) Jede Wertzuweisung der Form x i := x j + c bzw. x i := x j c ist ein LOOP-Programm, wobei c eine Konstante ist. (ii) Sind P 1, P 2 LOOP-Programme, dann sind auch P 1 ; P 2 sowie LOOP x i DO P 1 END LOOP-Programme. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

3 LOOP-Programme: Semantik, Teil i) (i) Jede Wertzuweisung der Form x i := x j +c wird wie üblich interpretiert: der neue Wert der Variablen x i berechnet sich als Summe des Wertes der Variablen x j und der Konstanten c, wobei der Wert in der Variablen x j erhalten bleibt. Die Wertzuweisung x i := x j c wird analog interpretiert, wobei sich aber die Werte nach der sogenannten modifizierten Differenz, die wie folgt definiert ist n 1 n 2 = { n 1 n 2 falls n 1 n 2, 0 sonst, berechnen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

4 LOOP-Programme: Semantik, Teil ii) ii) Ein LOOP-Programm der Form P 1 ; P 2 soll die Hintereinanderausführung der Programme P 1 und P 2 bedeuten, also zuerst wird das Programm P 1, dann das Programm P 2 ausgeführt. Ein LOOP-Programm der Form LOOP x i DO P 1 END bedeutet, dass das Programm P 1 sooft ausgeführt wird, wie der Wert der Variablen x i zu Beginn angibt. Änderungen des Wertes der Variablen x i haben also keinen Einfluss auf die Anzahl der Wiederholungen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

5 LOOP-berechenbare Funktionen Eine Funktion f : N k N, k N, heißt LOOP-berechenbar, falls es ein LOOP-Programm P gibt, das f in dem Sinne berechnet, dass P, gestartet mit n 1, n 2,..., n k in den Variablen x 1, x 2,..., x k und 0 in den restlichen Variablen, mit dem Wert f(n 1, n 2,..., n k ) in der Variablen x 0 stoppt. Schreibweise: f = f k P R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

6 Erstes Beispiel einer LOOP-berechenbaren Funktion Gegeben sei das LOOP-Programm x 0 := x 1 + 0; LOOP x 2 DO x 0 := x END Man erkennt leicht, dass das Programm mit dem Wert der Summe der Anfangsbelegungen der Variablen x 1 und x 2 in der Variablen x 0 stoppt. Es berechnet also die Addition +: N 2 N vermöge (x 1, x 2 ) +(x 1, x 2 ) = x 1 + x 2. Also ist die Addition LOOP-berechenbar. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

7 Zweites Beispiel einer LOOP-berechenbaren Funktion Gegeben sei das LOOP-Programm LOOP x 2 DO LOOP x 1 DO x 0 := x END END Eine genaue Betrachtung des Programms zeigt, dass damit die Funktion : N 2 N vermöge (x 1, x 2 ) (x 1, x 2 ) = x 1 x 2, berechnet wird. Die Multiplikation ist damit also LOOP-berechenbar. Man beachte, dass die Anfangsbelegung der Variablen x 0 Definition 0 ist. Das wird hier gebraucht und verwendet. natürlich laut R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

8 Drittes Beispiel einer LOOP-berechenbaren Funktion Das Konstrukt IF x 1 = 0 THEN A ELSE B END wird durch das LOOP-Programm x 2 := 1; x 3 := 0; LOOP x 1 DO x 2 := 0; x 3 := 1 END; LOOP x 2 DO A END; LOOP x 3 DO B END simuliert. Dabei sind die Variablen x 2 und x 3 natürlich nicht in den Programmen A und B enthalten. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

9 Aussagen über LOOP-berechenbarer Funktionen Jede von einem LOOP-Programm berechnete Funktion ist total. (Da die Anzahl der Abläufe einer LOOP-Schleife endlich ist, stoppt das Programm bei jeder Eingabe.) Es gibt (intuitiv) berechenbare Funktionen, die nicht LOOP-berechenbar sind. (z.b. jede berechenbare Funktion, die nicht total ist) Es gibt totale und (intuitiv) berechenbare Funktionen, die nicht LOOPberechenbar sind. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

10 WHILE-Programme: Syntaktische Komponenten WHILE-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: Trennsymbole: ; := Operationssymbole: + Schlüsselwörter: LOOP WHILE DO END R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

11 WHILE-Programme: Syntax Die Syntax von WHILE-Programmen wird wie folgt induktiv definiert. (i) Jede Wertzuweisung der Form x i := x j + c bzw. x i := x j c ist ein WHILE-Programm, wobei c eine Konstante ist. (ii) Sind P 1, P 2 WHILE-Programme, dann sind auch P 1 ; P 2 und LOOP x i DO P 1 END und WHILE x i 0 DO P 1 END WHILE-Programme. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

12 WHILE-Programme: Semantik, Teil i) Jede Wertzuweisung der Form x i := x j + c wird wie üblich interpretiert: der neue Wert der Variablen x i berechnet sich als Summe des Wertes der Variablen x j und der Konstanten c, wobei der Wert in der Variablen x j erhalten bleibt. Die Wertzuweisung x i := x j c wird analog interpretiert, wobei sich aber die Werte nach der sogenannten modifizierten Differenz, die wie folgt definiert ist { n 1 n 2 falls n 1 n 2, n 1 n 2 = 0 sonst, berechnen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

13 WHILE-Programme: Semantik, Teil ii) Ein WHILE-Programm der Form P 1 ; P 2 soll die Hintereinanderausführung der Programme P 1 und P 2 bedeuten, also zuerst wird das Programm P 1, dann das Programm P 2 ausgeführt. Ein WHILE-Programm der Form LOOP x i DO P 1 END bedeutet, dass das Programm P 1 sooft ausgeführt wird, wie der Wert der Variablen x i zu Beginn angibt. Änderungen des Wertes der Variablen x i haben also keinen Einfluss auf die Anzahl der Wiederholungen. Ein WHILE-Programm der Form WHILE x i 0 DO P 1 END bedeutet, dass das Programm P 1 solange ausgeführt wird, wie der Wert der Variablen x i ungleich Null ist. Es findet also vor jedem erneuten Durchlauf des Programms P 1 eine Abfrage der Variablen x i statt. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

14 WHILE-berechenbare Funktionen Eine Funktion f : N k N, k N, heißt WHILE-berechenbar, falls es ein WHILE-Programm P gibt, das f in dem Sinne berechnet, dass P, gestartet mit n 1, n 2,..., n k in den Variablen x 1, x 2,..., x k und 0 in den restlichen Variablen, mit dem Wert f(n 1, n 2,..., n k ) in der Variablen x 0 stoppt. Ist f(n 1, n 2,..., n k ) dagegen nicht definiert, so stoppt P nicht. Schreibweise: f = f k P Folgerung: Jede LOOP-berechenbare Funktion ist WHILE-berechenbar. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

15 1. Beispiel einer WHILE-berechenbaren Funktion Das WHILE-Programm x 3 := x 1 5; WHILE x 3 0 DO x 1 := x END; LOOP x 1 DO x 0 := x END; LOOP x 2 DO x 0 := x END berechnet die Funktion f : N 2 N vermöge f(x 1, x 2 ) = { x 1 + x 2 falls x 1 5, nicht definiert sonst. Folgerung: Es gibt WHILE-berechenbare Funktionen, die nicht LOOPberechenbar sind. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

16 2. Beispiel einer WHILE-berechenbaren Funktion Das WHILE-Programm x 1 := x 1 + 1; WHILE x 1 0 DO x 0 := x 0 + 1; LOOP x 2 DO x 1 := x 1 1 END END; x 0 := x 0 1 berechnet die ganzzahlige Division div : N 2 N vermöge { x 1 x x 1 div x 2 = 2 falls x 2 > 0, nicht definiert sonst. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

17 Äquivalenz von WHILE-Programmen und Turingmaschinen Satz: 1. Jede WHILE-berechenbare Funktion ist Turing-berechenbar. 2. Jede Turing-berechenbare Funktion ist WHILE-berechenbar. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

18 Simulation: WHILE-Programm durch Turingmaschine Mehrband-Turingmaschinen können Wertzuweisungen ausführen (wobei ein Band einer Variablen entspricht), Konstanten addieren und subtrahieren, hintereinander ausgeführt werden, WHILE-Schleifen ausführen. Damit kann man ein WHILE-Programm (mit k Variablen) durch eine (k-band-)turingmaschine simulieren. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

19 Simulation: Turingmaschine durch WHILE-Programm 1 Gegeben sei TM M = (Z, Σ, Γ, δ, z 1,, {z k }), wobei Z = {z 1, z 2,..., z k }, Γ = {a 1, a 2,..., a m }. Sei außerdem b eine Zahl mit b > m. Eine Turingmaschinen-Konfiguration a i1 a i2... a ip z l a j1 a j2... a jq wird durch drei Programmvariablen x, y, z mit den Werten x = (i 1 i 2... i p ) b, y = (j q j q 1... j 1 ) b, z = l repräsentiert; dabei bedeutet (i 1 i 2... i p ) b die Zahl i 1 i 2... i p in b-närer Darstellung, also x = p i µ b p µ, y = µ=1 q j µ b µ 1 µ=1 R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

20 Simulation: Turingmaschine durch WHILE-Programm 2 Stuktur des WHILE-Programmes mit Eingabe und Ausgabe auf y z := 1; WHILE z < k DO END a := y mod b; z := z; IF(z = 1 AND a = 1) THEN P 1,1 END; IF(z = 1 AND a = 2) THEN P 1,2 END;. IF(z = k 1 AND a = m) THEN P k 1,m END; Das Teilprogramm P i,j simuliert die Konfigurationsänderung für Zustand z i und Bandsymbol a j. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

21 Simulation: Turingmaschine durch WHILE-Programm 3 Stuktur des Teilprogrammes P i,j für δ(z i, a j ) = (z i, a j, L) z := i ; y := y div b; y := b y + j ; y := b y + (x mod b); x := x div b Entsprechend kann man sich die anderen Fälle vorstellen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

22 Die Churchsche These Jede intuitiv berechenbare Funktion ist Turing-berechenbar. Die Churchsche These kann naturgemäß nicht bewiesen werden. Sie wird aber durch die Tatsache gestützt, dass zahlreiche weitere Modelle der Berechenbarkeit äquivalent zur Turing-Berechenbarkeit sind, z.b. Post- und Markov-Algorithmen, Registermaschinen, partiell-rekursive Funktionen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit Die Programmiersprache LOOP (i) Syntaktische Komponenten: Variable: x 0, x 1, x 2,... Konstanten: 0, 1, 2,... Trennsymbole: ; := Operationszeichen: + Schlüsselwörter: LOOP DO END (ii) LOOP-Programme: Wertzuweisungen:

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-11: LOOP und WHILE Programme I 1/46 Organisatorisches Nächste Vorlesung: Mittwoch,

Mehr

Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, November 29, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Die Registermaschine (random access machine, RAM) 0 I 0 1 I 1 2 I 2 m I m Programm

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 23 Turingmaschine (TM) M = (Q, Σ, Γ, B, q 0, q, δ) Unendliches Band... 0 c

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Was bisher geschah... Grundbegriffe, die wir verstehen und erklären können: DTM, NTM, Entscheider, Aufzähler, berechenbar/entscheidbar, semi-entscheidbar, unentscheidbar, Church-Turing-These THEORETISCHE

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

1 falls n ein Anfangsabschnitt der Dezimalbruchentwicklung von π ist, f(n) = 0 sonst

1 falls n ein Anfangsabschnitt der Dezimalbruchentwicklung von π ist, f(n) = 0 sonst 21 2 Berechenbarkeit Dieses Kapitel entspricht im Wesentlichen dem Kapitel 2 (Berechenbarkeitstheorie) in [9] Jeder, der programmieren kann, weiß, dass es so etwas wie einen intuitiven Berechenbarkeitsbegriff

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 3. Vorlesung: WHILE und LOOP Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 12. April 2017 Was bisher geschah... Grundbegriffe, die wir verstehen und erklären

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

Theoretische Informatik SS 03 Übung 5

Theoretische Informatik SS 03 Übung 5 Theoretische Informatik SS 03 Übung 5 Aufgabe 1 Im Buch von Schöning ist auf S. 106-108 beschrieben, wie eine Turing-Maschine durch ein GOTO-Programm simuliert werden kann. Zeigen Sie, wie dabei die Anweisungen

Mehr

Proseminar Theoretische Informatik - WS07/08 - Prof. Helmut Alt. I. Einleitung Berechnungsmodelle LOOP, WHILE, GOTO, rekursive Funktionen

Proseminar Theoretische Informatik - WS07/08 - Prof. Helmut Alt. I. Einleitung Berechnungsmodelle LOOP, WHILE, GOTO, rekursive Funktionen Proseminar Theoretische Informatik - WS07/08 - Prof. Helmut Alt I. Einleitung Berechnungsmodelle LOOP, WHILE, GOTO, rekursive Funktionen Berechenbarkeitsmodelle Welchen Sinn haben diese? Wie kann man effizient

Mehr

Berechenbarkeit und Komplexität Vorlesung 11

Berechenbarkeit und Komplexität Vorlesung 11 Berechenbarkeit und Komplexität Vorlesung 11 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 7. Dezember 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 7.

Mehr

GOTO simuliert Turingmaschinen

GOTO simuliert Turingmaschinen GOTO simuliert Turingmaschinen Wir wissen bisher: LOOP ( GOTO = WHILE TM Jetzt zeigen wir, dass auch WHILE = TM gilt: Die Turingmaschine M =(Z,,,,z 1,, E) berechne f. Wir simulieren M mit einem GOTO-Programm

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Universelle Rechner und Church sche These

Universelle Rechner und Church sche These Universelle Rechner und Church sche These Slide 1 Universelle Rechner und Church sche These Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Universelle Rechner und

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I µ-rekursive Funktionen WS 2012/2013 Primitiv-rekursive Funktionen Jede primitiv-rekursive Funktion ist Loop-berechenbar. Das bedeutet, dass jede PR-Funktion in der Loop-Programmiersprache formuliert

Mehr

2. Imperative Programmierung und Berechenbarkeit - Registermaschinen -

2. Imperative Programmierung und Berechenbarkeit - Registermaschinen - 2. Imperative Programmierung und Berechenbarkeit - Registermaschinen - 2.1 Definition 2.2 Loop-Programme 2.3 While Programme 2.4 While Programme und rekursive Funktionen Im Wesentlichen: Tafel! Maschinenmodell

Mehr

6.4 Entscheidbarkeit. nein sein müssen, ist klar. THEO 6.4 Entscheidbarkeit 205/307 c Ernst W. Mayr

6.4 Entscheidbarkeit. nein sein müssen, ist klar. THEO 6.4 Entscheidbarkeit 205/307 c Ernst W. Mayr 6.4 Entscheidbarkeit Wortproblem Leerheit Äquivalenz Schnittproblem Typ 3 ja ja ja ja DCFL ja ja ja nein (*) Typ 2 ja ja nein (*) nein Typ 1 ja nein (*) nein nein Typ 0 nein (*) nein nein nein (*) Diese

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 4 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Turingmaschinen Mehrband-TM Kostenmaße Komplexität 2 Mehrband-TM Kostenmaße

Mehr

Entscheidungsprobleme

Entscheidungsprobleme Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge U Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge

Mehr

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Theoretische Informatik II. WS 2007/2008 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch. 1. Teilklausur Vorname:... Nachname:...

Theoretische Informatik II. WS 2007/2008 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch. 1. Teilklausur Vorname:... Nachname:... Theoretische Informatik II WS 2007/2008 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch 1. Teilklausur 11. 12. 2007 Persönliche Daten bitte gut leserlich ausfüllen! Vorname:... Nachname:... Matrikelnummer:...

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Lehrstuhl für Theoretische Informatik Prof. Dr. Markus Lohrey Grundlagen der Theoretischen Informatik Nachklausur Nachklausur zur Vorlesung Grundlagen der Theoretischen Informatik WS 2016/17 / 27. Februar

Mehr

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 29. November 2007 Turing-mächtige

Mehr

Die Ackermannfunktion

Die Ackermannfunktion Die Ackermannfunktion Slide 1 Die Ackermannfunktion Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Die Ackermannfunktion Slide 2 Eine Frage zu Anfang Ist jede intuitiv

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert:

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert: 3. LOOP-, WHILE- und GOTO-Berechenbarkeit 3.1 LOOP-Programme Komponenten: Variablen: x 0, x 1, x 2,, y, z, Konstanten: 0, 1, 2, Trennsymbole: ; := Operationszeichen: +, - Schlüsselwörter: LOOP, DO, END

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt:

Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: 5.2 Linear beschränkte Automaten Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: (q, c, d) δ(q, ) = c =. Ein Leerzeichen wird also nie durch ein anderes

Mehr

Primitiv rekursive Funktionen

Primitiv rekursive Funktionen Primitiv rekursive Funktionen Primitiv rekursive Funktionen Historisch: Die Einführung der primitiven Rekursivität war ein erster (und erfolgloser) Versuch, den Begriff der Berechenbarkeit (oft synonym

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Höhere Programmiermodelle Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 8 18. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Turing-Maschine Definition

Turing-Maschine Definition Turing-Maschine Definition Definition: Eine Turing-Maschine ist ein Quintupel M = (X, Z, z 0, Q, δ), wobei - X und Z Alphabete sind, - z 0 Z und Q Z gelten, - δ eine Funktion von (Z \ Q) (X { }) in Z (X

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Vorlesung SS 2013 1. Einführung I. Berechenbarkeitsbegriff, typische Fragen: wann ist eine Funktion berechenbar? wie lässt sich der intuitive Berechenbarkeitsbegriff formal

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I LOOP Programme, rekursive Funktionen und der Turm von Hanoi Prof. Dr. Nikolaus Wulff Berechenbarkeit Mitte des 20. Jahrhunderts beantworteten Pioniere, wie Alan M. Turing

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

Präsenzübung Berechenbarkeit und Komplexität

Präsenzübung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

Einführung in die Informatik Turing Machines

Einführung in die Informatik Turing Machines Einführung in die Informatik Turing Machines Eine abstrakte Maschine zur Präzisierung des Algorithmenbegriffs Wolfram Burgard 1 Motivation und Einleitung Bisher haben wir verschiedene Programmiersprachen

Mehr

Entscheidungsprobleme

Entscheidungsprobleme Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge M Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 13. LOOP-, WHILE- und GOTO-Berechenbarkeit Malte Helmert Gabriele Röger Universität Basel 9. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

Rekursive Funktionen Basisfunktionen

Rekursive Funktionen Basisfunktionen Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P

Mehr

Theoretische Informatik SS 03 Übung 4

Theoretische Informatik SS 03 Übung 4 Fakten aus Übung 3 Theoretische Informatik SS 03 Übung 4 In Übung 3 wurden einigen Fakten bewiesen, die für diese Übung benötigt werden. Folgende Konstrukte können mit LOOP-Programmen simuliert werden:

Mehr

Mitschrift BFS WS 13/14

Mitschrift BFS WS 13/14 Mitschrift BFS WS 13/14 Stand: 4. Juni 2014 Dieses Skript zum Teil Primitive und µ-rekursion der Vorlesung Berechenbarkeit und Formale Sprachen im Wintersemester 2013/14 bei Prof. Wanka wurde von untenstehenden

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie (Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie 1) Schreiben Sie ein LOOP-Programm, das die Funktion f: N \ {0} N, f (n) = n n berechnet. Sie dürfen in Ihrem Programm die Multiplikation

Mehr

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p.

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p. Thorsten Timmer SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke Turing Maschine SS 2005 p. 1/35 Inhalt Einführung Formale Definition Berechenbare Sprachen und Funktionen Berechnung ganzzahliger

Mehr

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn Ideen und Konzepte der Informatik Programme und Algorithmen Kurt Mehlhorn 26. Oktober 2015 Programme und Algorithmen Programmiersprache = Kunstsprache mit genau definierter Syntax (was ist ein zulässiger

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Lektion 10: Entscheidbarkeit Kurt-Ulrich Witt Wintersemester 2013/14 Kurt-Ulrich Witt Theoretische Informatik Lektion 10 1/15 Inhaltsverzeichnis Kurt-Ulrich Witt Theoretische Informatik

Mehr

Registermaschine (RAM), Church-Turing-These

Registermaschine (RAM), Church-Turing-These Registermaschine (RAM), Church-Turing-These Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 21. Oktober 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Registermaschine (RAM), Church-Turing-These. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Registermaschine (RAM), Church-Turing-These. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Registermaschine (RAM), Church-Turing-These Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 22 Registermaschinen (RAM) Programm b c(0) c(1) c(2) c(3) c(4)...

Mehr

Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik

Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik Logik, Berechenbarkeit und Komplexität Sommersemester 2008 Fachhochschule Wiesbaden Prof. Dr. Steffen Reith Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik 1 Turingmaschinen - Ein

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Kapitel 5. Entscheidbarkeit und Berechenbarkeit. 5.1 Entscheidbarkeit

Kapitel 5. Entscheidbarkeit und Berechenbarkeit. 5.1 Entscheidbarkeit Kapitel 5 Entscheidbareit und Berechenbareit Wir wenden uns nun grundsätzlichen Fragen zu, nämlich den Fragen nach der prinzipiellen Lösbareit von Problemen. Dazu stellen wir auch einen Zusammenhang zwischen

Mehr

Typen von Programmiersprachen

Typen von Programmiersprachen Typen von Programmiersprachen Berechenbarkeitstheorie: Formalisierung des intuitiven Berechenbarkeitsbegriffs man kann vier Typen von Programmiersprachen zum Berechnen von Zahlenfunktionen unterscheiden:

Mehr

Unvollständigkeit der Arithmetik

Unvollständigkeit der Arithmetik Unvollständigkeit der Arithmetik Slide 1 Unvollständigkeit der Arithmetik Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Unvollständigkeit der Arithmetik Slide

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Universelle Turingmaschinen und Church sche These Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander

Mehr

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Slide 1 Primitiv rekursive und µ-rekursive Funktionen Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Primitiv rekursive

Mehr

Einführung in die Informatik Turing Machines

Einführung in die Informatik Turing Machines Einführung in die Informatik Turing Machines Eine abstrakte Maschine zur Präzisierung des Algorithmenbegriffs Wolfram Burgard Cyrill Stachniss 1/14 Motivation und Einleitung Bisher haben wir verschiedene

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

1936 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus

1936 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus //5 Abstrakte Maschinenmodelle: Turingmaschine (TM) 96 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus einem festen Teil ( "Hardware ) einem variablen Teil ( "Software

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 9 2. Juli 2010 Einführung in die Theoretische

Mehr

2.5 Halteproblem und Unentscheidbarkeit

2.5 Halteproblem und Unentscheidbarkeit 38 25 Halteproblem und Unentscheidbarkeit Der Berechenbarkeitsbegriff ist auf Funktionen zugeschnitten Wir wollen nun einen entsprechenden Begriff für Mengen einführen Definition 255 Eine Menge A Σ heißt

Mehr

Grundlagen der Informatik Kapitel 19. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 19. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 19 Harald Krottmaier Sven Havemann Agenda Begriffe Turingmaschine Beispiele Berechenbarkeit Hilfsmittel Beispiele WS2007 2 Motivation Sind Computer allmächtig? Präziser:

Mehr

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn Ideen und Konzepte der Informatik Programme und Algorithmen Kurt Mehlhorn November 2016 Algorithmen und Programme Algorithmus = Schritt-für-Schritt Vorschrift zur Lösung eines Problems. Formuliert man

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 15. Ackermannfunktion Malte Helmert Gabriele Röger Universität Basel 28. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale Sprachen III. Berechenbarkeitstheorie

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

11. Übungsblatt. x y(top(push(x, y)) = y)

11. Übungsblatt. x y(top(push(x, y)) = y) Logik, Berechenbarkeit und Komplexität Sommersemester 2012 Hochschule RheinMain Prof. Dr. Steffen Reith 11. Übungsblatt 1. Ein Keller (engl. stack) ist eine bekannte Datenstruktur. Sei die Signatur S =

Mehr

Berechenbarkeit und Komplexität Vorlesung 3

Berechenbarkeit und Komplexität Vorlesung 3 Berechenbarkeit und Komplexität Vorlesung 3 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 22. November 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 22.

Mehr

Theoretische Informatik. Berechenbarkeit

Theoretische Informatik. Berechenbarkeit Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was

Mehr

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14.

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14. Theorie der Informatik 16. April 2014 14. primitive Rekursion und µ-rekursion Theorie der Informatik 14. primitive Rekursion und µ-rekursion 14.1 Einleitung 14.2 Basisfunktionen und Einsetzung Malte Helmert

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 19 Entscheidbarkeit und Berechenbarkeit In der letzten Vorlesung haben wir verschiedene mathematische Operationen

Mehr

Klassische Informationstheorie: Berechenbarkeit und Komplexität

Klassische Informationstheorie: Berechenbarkeit und Komplexität Klassische Informationstheorie: Berechenbarkeit und Komplexität Christian Slupina 1. Institut für Theoretische Physik Datum: 12.Juli 2011 Inhalt Gedankenexperiment: Die Turingmaschine Standard-Turingmaschinen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt Endklausur 26. August 2011 Einführung in die Theoretische

Mehr

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Eine partielle Funktion ist eine Relation f A B; für jedes x dom(f) gibt es ein y range(f) mit x f y; wir schreiben statt f A B und x

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 07. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 07. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 07.11.2017 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Frage Frage: Ist der

Mehr

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr