Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik"

Transkript

1 Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik István Pál Okt. 2014

2 Gliederung Bekannte Grundbegriffe Geschichte der Differentialrechnung Anwendungsgebiete der Differentialrechnung Anwendungsbeispiele (Physik, Technik) + Theorie Zusammenfassung Dokument: slides-diff.tex,v /10/15 01:48:21 pali Exp(pdfLATEX ed: 15. Oktober 2014)

3 Bekannte Grundbegriffe Newton und Leibniz, Fermat, Descartes, Euler und Dirichlet Sekante, Tangente Konvergenz: lim n x n = x Stetigkeit (ε δ-kriterium: f(x) Stetig in a D(f) ε δ : x a < δ, f(x) f(a) < ε ): Eine Funktion ohne Sprung Sogar... Differenzierbarkeit: Grenzwert der Differenzenquotienten. Eindeutige, lokale, lineare Approximation einer Funktion in einem Punkt f (x 0 ) = lim x x0 f(x) f(x 0 ) x x 0 = lim h 0 f(x 0 + h) f(x 0 ) h I. Pál 15. Okt

4 Geschichte der Differentialrechnung Der Begriff Kurve aus der Antike als geometrisches Objekt. (Mechanik: Durch die Bewegung des Massenpunktes eindeutig bestimmt, aber nicht umgekehrt) Die Aufgabenstellung: Tangentenproblem (die Tangente an eine Kurve durch ihre Sekante zu approximieren) Fermat: im 1628 Methode zur Extremstellen-Bestimmung Descartes: Kreis an eine Kurve Newton u. Leibniz (unabh.): die Grundsteine, Ende d. 17. Jh. Euler und Dirichlet: die Ableitungsregel, allg. Def. I. Pál 15. Okt

5 Anwendungsgebiete der Differentialrechnung In meisten Gebieten der Naturwissenschaften und Technik Von der Zeit abhängige Funktionen: Chemie, Physik (Mechanik, Weg-Zeit-Diagramm, Geschwindigkeit-Zeit-Diagr.) etc. Beispiele für Änderungsraten x y bzw. f(x) Änderungsrate y x Lokale Änderungsrate f (x 0 ) Zeit Weg Durchschnitts-Geschw. Momentan-Geschwindigkeit Zeit Geschwindigkeit Durchschnitts-Beschl. Momentan-Beschleunigung Zeit Flughöhe Durchschnittliche Steig- Momentane Steig- bzw. bzw. Sinkgeschwindigkeit Sinkgeschwindigkeit Zeit Wassermenge Durchschnittliche Momentane Zuflussgeschwindigkeit Zuflussgeschwindigkeit Weg Benzinvolumen Durchschnittliche Momentaner Benzinverbrauch Benzinverbrauch Höhe Luftdruck Durchschnittliche Momentane Luftdruckänderung Luftdruckänderung Minimum, Maximum, Optimumberechnung Lösen von Gleichungen, Gleichungssystemen Automobilindustrie, Schiffbau: Spline I. Pál 15. Okt

6 Anwendungsbeispiele aus der Physik Weg B Stadt B s Signal A t0 t1 t2 t3 t4 t5 t6 t7 t8 Zeit I. Pál 15. Okt

7 Anwendungsbeispiele aus der Physik Beispiel (Weg-Zeit Diagramm): Verlauf der Fahrt eines Objekts Die gekrümmte Kurve ist das Bild der Funktion s = f(t) Dem Abszissen-Unterschied t entspricht der Ordinaten-Unterschied s und die Gerade (Sekante) durch die Punkte P 0 (t 0, s 0 ) u. P 1 (t 1, s 1 ) hat den Anstieg nach den Regeln der anal. Geom., als Quotient der Differenzen Differenzenquotient: s t = s 1 s 0 = f(t 1) f(t 0 ) = f(t 0 + t) f(t 0 ) t 1 t 0 t 1 t 0 t = f(t 0 + h) f(t 0 ) h = tan α Differentialquotient o. Ableitung: Das untersuchte Verhalten der Kurve im P 0 wird umso besser ausgedrückt, je näher P an P 0 liegt. Läuft P gegen P 0 so geht die Sekante [P 0, P ] in eine Grenzlage, in die Tangente im P 0 über s lim t 0 t (falls es existiert) Was haben wir jetzt eigentlich berechnet? I. Pál 15. Okt

8 Anwendungsbeispiele aus der Physik Geschwindigkeit v = s t, v = f (t) nach Leibniz = ds dt nach Newton = ṡ Aufgabe 1: Bestimmen wir die Geschwindigkeit in dem Zeitpunkt t 0 bei dem freien Fall. Wir wissen: s = f(t) = g 2 t2 Plan: Wir verwenden die vorherigen geom. Überlegungen (man s könnte es Definition(en) nennen) lim t 0 t und führen wir die Rechnungen durch, schließlich Kontrolle. Lösung: g s t = 2 (t 0 + t) 2 g 2 t2 0 t lim t 0 = g 2 t(2t 0 + t) t s t = lim t 0 gt 0 + g 2 t = gt 0 v = gt 0 = gt 0 + g 2 t I. Pál 15. Okt

9 Anwendungsbeispiele aus der Physik Weg B B Stadt Signal s Geschwindigkeit Zeit A Zeit t0 t1 t2 t3 t4 t5 t6 t7 t8 Geschwindigkeit Zeit Die Geschwindigkeitskurve v = ṡ = f (t) scheint,,günstig zu sein. Was passiert, wenn wir es nochmal differenzieren? Welche physikalische Größe erhalten wir? (Beschleunigung) Eine Funktion heißt zweimal differenzierbar, wenn f differenzierbar ist und die Ableitung f := (f ) = d2 f von f dx 2 heißt zweite Ableitung von f. Allgemein k-mal differenzierbar, wenn f (k) := (f (k 1) ) = dk f existiert. dx k I. Pál 15. Okt

10 Anwendungsbeispiele aus der Physik Ableitungsregeln (a) Additionsregel: (f + g) (x) = f (x) + g (x) (b) Produktregel: (f g) (x) = f (x 0 )g(x) + f(x)g (x)) (c) Quotientregel: (f/g) (x) = (f (x)g(x) f(x)g (x)) g 2 (x) (d) Kettenregel: (g f) (x) = g (f(x)) f (x) Ableitung der Grundfunktionen Grundfunktion Typ Allg. Bezeichnung erste Ableitung Konstant f(x) = c (c R) f (x) = 0 Linear f(x) = cx f (x) = c Potenz f(x) = cx n f (x) = cn x n 1 Sinus Trig.Fn. f(x) = sin x f (x) = cos x Cosinus Trig.Fn. f(x) = cos x f (x) = sin x Exponential f(x) = a x (a R) f (x) = a x ln a Logarithmus f(x) = log a x = ln x f (x) = 1 ln a x ln a Beispiel: Bei freiem Fall aus s = f(t) = g 2 t2 erhält man durch Differenzieren ṡ = gt und nochmal Differenzieren s = g. Dabei ist die Konstante g, die Erdbeschleunigung. Der freie Fall ist danach eine Bewegung mit konstanter Beschleunigung. I. Pál 15. Okt

11 Anwendungsbeispiel: Harmonische Schwingung Die Harmonische-Schwingung wird beschrieben durch y(t) = A sin(ω t + ϕ 0 ) mit Amplitude A, Nullphasenwinkel ϕ 0, Kreisfreq. ω = 2π f Aufgabe 2: Bestimmen wir die maximale Geschwindigkeit der harmonischen Schwingung bei bekannten Amplitude y 0. Plan: Ableitung der Amplitudenfunktion nach t mit Hilfe von Ableitungsregeln (f (c x) = c, (sin x) = cos x, Kettenregel (g f) (x) = g (f(x)) f (x) = dg df df dx ) Schwingungsgeschwindig.. Wir analysieren die erhaltene Funktion und Kontrolle. I. Pál 15. Okt

12 Anwendungsbeispiel: Harmonische Schwingung Lösung: y(t) = y 0 sin(ω t + ϕ 0 ) v = ẏ(t) = y 0 cos(ω t + ϕ 0 ) ω v = y 0 ω cos(ω t + ϕ 0 ) }{{} max 1 v max = y 0 ω I. Pál 15. Okt

13 Extremalaufgaben Bestimmung von Extremwerten (Minimum, Maximum) Mittelwertsätze (Roll, Lagrange, Cauchy) Monotonie der Ableitung und lokale Extrema x x 0 f (x) f(x) M x x 0 f (x) f(x) m f hat ein lokales Minimum (Maximum) an der Stelle x, falls f (x) = 0 und f (x) > 0 (bzw. f (x) < 0) gilt. (f (x) = 0?) I. Pál 15. Okt

14 Anwendungsbeispiel: Wurfparabel Aufgabe 3: Bei Parabelwurf ist die Formel für die Entfernung s(α) = v2 0 sin 2α, g wobei v 0 der Anfangsgeschwindigkeit des Wurfobjekts und α ist der Winkel zwischen Anfangsgeschwindigkeit und Waagerecht (α 0, α 90 ) Plan: Bild skizzieren. HB: s =! max. Ableitungen und Rechnungen durchführen, schließlich Kontrolle. Lösung: ds dα = v2 0 g 2 cos 2α (v 0 0, g > 0) 2α = π 2 + kπ k = 0, ±1, ±2... α = π 4 + k π 2 d 2 s = 2v2 dα 2 0 g ( 2 sin 2α) = 4v2 0 g sin 2α < 0 α = 45. I. Pál 15. Okt

15 Tangente Tangente an die Funktion f im Punkt P (x 0, f(x 0 )) : (Hilfe y = y 0 + m(x x 0 )) y = f (x 0 )(x x 0 ) + f(x 0 ) f(x) f(x 0 ) x x 0 = f (x 0 ) (x x 0 ) f(x) f(x 0 ) = f (x 0 ) (x x 0 ) f(x) = f (x 0 ) (x x 0 ) + f(x 0 ) y = f (x 0 ) (x x 0 ) + f(x 0 ) I. Pál 15. Okt

16 Newton Verfahren Lösen von Gleichungen der Form f(x) = 0, bzw. die Schnittpunkte eines Funktionsgraphen y = f(x) mit der Abszisse y = 0. Keine Formel (Satz von Ruffini-Abel) Näherung Annahme: Gleichung f(x) = 0 hat nur eine Lösung auf (a, b) Sei y = f(x) differenzierbar auf (a, b) und der Differentialquotient f (x) 0 Der Tangente im Punkt a: f(x) f(a) = f (a) (x a) Die Tangente schneidet die x-achse im Punkt x 1 (y 1 = 0) 0 f(a) = f (a) (x 1 a) f(x) = x 1 f (a) af (a) af (a) f(x) = x 1 f (a) x 1 = a f(a) f (a), x 2 = x 1 f(x 1) f (x 1 ),..., x n+1 = x n f(x n) f (x n ) die Newtonsche Iterationsformel I. Pál 15. Okt

17 Differenzieren mit dem Computer Zwei Möglichkeiten: Symbolisch Numerisch f (x) = df dx f(x + ε) f(x) ε f (x) = df f(x + ε) f(x ε) = dx 2ε Anwendung: Genauigkeit überprüfen z.b. mit f(x) = tan x Höhere Ableitungen ( Stärkerer Genauigkeitsverlust) f (x) = df 2 dx = f (x + ε) f (x ε) 2 2ε I. Pál 15. Okt

18 Taylor Reihenentwicklung Vor,,Computer-Zeit war das Rechnen mühsam,,rechenschieber. Dann kamen die elektrischen Taschenrechner und plötzlich konnte man Sinus rechnen. Wie war es doch möglich, da sin = cos( π 2 x) nicht-algebraisch, bzw. transzendent sind. Lösung: Dank u.a. Taylor die transzendenten Funktionen mit algebraischen Funktionen (Potenzreihen) beliebig genau angenähert werden kann Die fundamentale Formel: ( x x 0 klein genug, < 1) f(x) = k=0 f (k) (x 0 ) k! (x x 0 ) k = f(x 0 ) + f (x 0 ) 1 (x x 0 ) + f (x 0 ) 2 (x x 0 ) , wobei x 0 die Anschlussstelle und die Zahl k! die Fakultät ist. Methoden der Kleinsten Quadrate x [f(x) t(x)]2 x [f(x 0) + f (x 0 )(x x 0 ) t(x)] 2 I. Pál 15. Okt

19 Zusammenfassung Anwendungsgebiete, Beispiele + Theorie der Differentialrechnung Differenzieren mit dem Computer, Newton Verfahren, Taylor Reihenentwicklung Die Idee, eine nichtlineare Funktion durch ihre lineare Approximation lokal zu ersetzen, ist absolut zentral in Analysis. NICHT VERGESSEN! Literatur: siehe auch (suche: Analysis) I. Pál 15. Okt

20 Ende Vielen Dank für die Aufmerksamkeit! I. Pál 15. Okt

21 Anwendungsbeispiel: optimal Volumen Aufgabe: Der Schlosser soll aus einem quadratischen Metallstück mit Seitenlängen a eine von oben offene Kiste verfertigen, so dass aus den Ecken des originalen Arbeitsstückes ein Quadrat mit Seitenlängen x ausgeschnitten wird. Wie soll x gewählt werden, damit das Volumen der Metallkiste maximal wird? Plan: Bild skizzieren. HB: Volumen maximal. Ableitungen und Rechnungen durchführen, schließlich Kontrolle. Lösung: V = (a 2x) 2 x = (a 2 2a2x + 2x 2 ) x = a 2 x 4ax 2 + 4x 3 = 2x 3 4ax 2 + a 2 x dv dx = 2x 2 8ax + a 2 x 1,2 = 8a± 64a 2 48a 2 24 x 1 = a 2, x 2 = a 6 I. Pál 15. Okt

22 Anwendungsbeispiel: Elektrotechnik Aufgabe: Der innere Widerstand R b einer Batterie ist unveränderbar. Der externe Widerstand R kann geändert werden. Wie soll R gewählt werden, damit die Leistung P daran maximal wird. Plan: Nebenbedingung (NB): Ohm Gesetz U = I R I = Hauptbedingung (HB): P = U I = I 2 R! = maximal Rechnungen durchführen und zum Abschluss Kontrolle. Lösung: P dp dr = ( E R b +R )2 R = =... = E 2 R b R (R b +R) 3 E2 R (R b +R) 2 d 2 P = E 2 1(R b +R) 3 (R b R) (R b +R) 2 dr 2 P (R b ) = 1 4 E 2 R b (R b +R) 6! < 0 E R b +R I. Pál 15. Okt

23 Anwendungsbeispiel: Geometrische Optik Aufgabe: Es gilt die Linsengleichung 1 f = 1 t + 1 k. Bei gegebener Brennweite f auf welchem Objektabstand t und Bildweite k wird ihre Summe minimal? Plan: y = t + k minimal; NB 1 f = 1 t + 1 k ; Rechnungen + Kontrolle Lösung: 1 f = 1 t + 1 k tkf tk = fk + tf k = tf t f y(t) = t + tf t f (f konstant) dy dt = 1 + f(t f) tf (t f) 2 = 1 f 2 (t f) 2! = 0 (t f t 1, t 2 ) Minimum ( d2 y dt 2 ) t 1,2 > 0 I. Pál 15. Okt

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Kapitel 5 Differential- und Integralrechnung in einer Variablen

Kapitel 5 Differential- und Integralrechnung in einer Variablen Kapitel 5 Differential- und Integralrechnung in einer Variablen Inhaltsverzeichnis DIE ABLEITUNG... 3 DEFINITIONEN... 3 EIGENSCHAFTEN UND ABLEITUNGSREGELN... 4 TAYLOR SCHE FORMEL UND MITTELWERTSATZ...

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

1 Funktionen und ihre Ableitungen

1 Funktionen und ihre Ableitungen 1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Bezüge zu den Bildungsstandards

Bezüge zu den Bildungsstandards Differentialrechnung Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik In Anlehnung an Prof. Dr. Bernd Zimmermanns Seminarpräsentationen Inhalt Bezüge zu den Bildungsstandards

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang . Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Differentialrechnung

Differentialrechnung KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )

Mehr

Mathematische Grundlagen für das Physik-Praktikum:

Mathematische Grundlagen für das Physik-Praktikum: Mathematische Grundlagen für das Physik-Praktikum: Grundwissen: Bruchrechnung Potenzen Logarithmen Funktionen und ihre Darstellungen: Lineare Funktionen Proportionen Exponentialfunktion Potenzfunktionen

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 4. Differentialrechnung Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an.

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an. Repetitorium zur Ingenieur-Mathematik I, WS 00/ Aufgabe : Bestimmen Sie das quadratische Polynom, auf dessen Graph die Punkte (, 4), (0, ), (, 7) liegen. Aufgabe : a) Wann ist eine Folge konvergent (Definition)?

Mehr

Das Differenzialrechnen

Das Differenzialrechnen Das Differenzialrechnen Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi000.de 1 Die Eigenschaften von Zahlenfolgen Seite 1 - arithmetische

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen 7-E Partielle Ableitungen einer Funktion von n Variablen Bei einer Funktion y f x1, x,..., xn von n unabhängigen Variablen x1, x,..., x n lassen sich insgesamt n partielle Ableitungen

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

KOMPETENZHEFT ZU STAMMFUNKTIONEN

KOMPETENZHEFT ZU STAMMFUNKTIONEN KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2

Mehr

6 Weiterer Ausbau der Differentialrechnung

6 Weiterer Ausbau der Differentialrechnung 6 Weiterer Ausbau der Differentialrechnung 6.1 Mittelwertsätze, Extremwerte, Satz von Taylor Motivation: Wie wählt man Höhe und Durchmesser einer Konservendose, so dass bei festem Volumen V möglichst wenig

Mehr

Differenzialrechnung Einführung 1

Differenzialrechnung Einführung 1 0.0.06 Änderungstendenz einer Funktion Differenzialrechnung Einführung Eines der wichtigsten Merkmale einer Funktion ist die Änderungstendenz, womit angegeben wird, wie stark die Funktionswerte f() zu-

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Reellwertige Funktionen mehrerer Veränderlicher

Reellwertige Funktionen mehrerer Veränderlicher Reellwertige Funktionen mehrerer Veränderlicher Teilnehmer: Philipp Besel Joschka Braun Robert Courant Florens Greÿner Tim Jaschek Leroy Odunlami Gloria Xiao Heinrich-Hertz-Oberschule, Berlin Ludwigs-Georgs-Gymnasium,

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm TEIL I: KINEMATIK Unter Kinematik versteht man die pure Beschreibung der Bewegung eines Körpers (oder eines Systems aus mehreren Körpern), ohne nach den Ursachen dieser Bewegung zu fragen. Letzteres wird

Mehr

Der Differenzenquotient

Der Differenzenquotient Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

Differentialrechnung. ANALYSIS Kapitel 7 SprachProfil - Oberstufe KSOe. Ronald Balestra CH Zürich

Differentialrechnung. ANALYSIS Kapitel 7 SprachProfil - Oberstufe KSOe. Ronald Balestra CH Zürich Differentialrechnung ANALYSIS Kapitel 7 SprachProfil - Oberstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 3. September 2012 Überblick über die bisherigen ANALYSIS - Themen: 1 Funktionen

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Analysis.

Analysis. Analysis www.schulmathe.npage.de Inhaltsverzeichnis 1 Zahlenfolgen 4 1.1 Bildungsvorschriften für Zahlenfolgen..................... 5 1.2 Monotonie von Zahlenfolgen.......................... 5 1.3 Arithmetische

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

3. Differentialrechnung

3. Differentialrechnung 3. Differentialrechnung 3.1. Differentialquotient, Ableitung und Differential Bildachse y Funktion y = f(x ) y(x 0 + Δx) y(x ) 0 Sekante: Δy/ Δx := [y(x + Δx) - y(x )]/ Δx 0 0 α Tangente in x 0 Winkel

Mehr

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung

Mehr

Geschwindigkeiten, Steigungen und Tangenten

Geschwindigkeiten, Steigungen und Tangenten Geschwindigkeiten, Steigungen und Tangenten 1-E Die Geschwindigkeit cc Wir beginnen mit dem Problem der Geschwindigkeit: Wie können wir die Geschwindigkeit eines bewegten Objektes in einem bestimmten Augenblick

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

dx nf(x 0). dx f(n 1) (x 0 ) = dn

dx nf(x 0). dx f(n 1) (x 0 ) = dn 4.3. Höhere Ableitungen, Konveität, Newtonverfahren 65 4.3 Höhere Ableitungen, Konveität, Newtonverfahren Ist f:i R differenzierbar auf einem Intervall I, so erhalten wir eine neue Funktion auf I, nämlich

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

f(x) = 1 5 ex c Roolfs

f(x) = 1 5 ex c Roolfs Krümmung Die lineare Näherung von Funktionen durch Geraden (Tangenten) bildet die Grundlage der Differentialrechnung. Quadratische Näherungen durch Parabeln werden bei Reihenentwicklungen betrachtet. Durch

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 6. Oktober 2017, 12:57 Alexander

Mehr

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $ Mathematik für Ingenieure I, WS 008/009 Dienstag 0. $Id: stetig.te,v.5 009/0/0 7:3:38 hk Ep $ $Id: diffb.te,v. 009/0/0 7:50: hk Ep hk $ III. Analysis 3 Stetige Funktionen 3.4 Umkehrfunktionen Zum Abschluss

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

12 Extremwerte und Monotonie

12 Extremwerte und Monotonie 5 II. Differentialrechnung 1 Extremwerte und Monotonie Lernziele: Resultate: Existenz von Maxima und Minima stetiger Funktionen auf kompakten Intervallen, Monotoniesatz Kompetenzen: Bestimmung lokaler

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Lösungen zu den Vermischten Aufgaben Kapitel 5

Lösungen zu den Vermischten Aufgaben Kapitel 5 Band 10 - Einführungsphase NRW Lösungen zu den Vermischten Aufgaben Kapitel 5 1. Qualitative Skizzen der Füllgraphen (oben) und der zugehörigen Geschwindigkeitsgraphen (unten). a) b) c) d). a) IV) b) II)

Mehr

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3) - 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +

Mehr

Satz von Taylor, Taylor-Reihen

Satz von Taylor, Taylor-Reihen Satz von Taylor, Taylor-Reihen Die Kenntnis von f liefert gewisse Rücschlüsse auf die Funtion f selbst, zb Monotonie, mögliche loale Extrema Die Kenntnis von f liefert darüberhinaus eine Information, ob

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

MATHEMATIK K1. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1 21.11.2013 Aufgabe 1 2 3 4 5 6 7 Punkte (max) 6 3 4 4 2 10 1 Punkte Gesamtpunktzahl /30 Notenpunkte Der GTR ist nur für die Lösung der Textaufgabe (und zur Kontrolle der andern) zugelassen.

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3 SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 3 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr