Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A."

Transkript

1 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik Mster (Auge) Mthemtik Bchelor Technik-Kommuniktion M.A. Informtik Lehrmt Informtik Promotion (Auge) Technik-Kommuniktion Bchelor Sonstige: Anzhl Punkte Aufge 1 6 Aufge 2 3 Aufge 3 8 Aufge 4 4 Aufge 5 4 Aufge 6 6 Aufge 7 2 Aufge 8 2 Summe 35 Erreichte Punkte Hinweise: Geen Sie Ihre Antworten in lesrer und verständlicher Form n. Schreien Sie mit dokumentenechten Stiften, nicht mit roten oder grünen Stiften und nicht mit Bleistiften. Bitte entworten Sie die Aufgen uf den Aufgenlättern (enutzen Sie uch die Rückseiten). Auf lle Blätter (inklusive zusätzliche Blätter) müssen Sie Ihren Vornmen, Ihren Nchnmen und Ihre Mtrikelnummer schreien. Ws nicht ewertet werden soll, streichen Sie itte durch. Werden Täuschungsversuche eochtet, so wird die Klusur mit 0 Punkten ewertet. Geen Sie m Ende der Klusur lle Blätter zusmmen mit den Aufgenlättern. 1

2 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Aufge 1 (Endliche Automten): (3 + 3 = 6 Punkte) Sei Σ = {, } ein Alphet. ) Betrchten Sie den folgenden NFA M 1. q 0 q 1 q 2 q 3 Üerführen Sie den NFA M 1 in einen DFA M 1 mit L(M 1) = L(M 1), indem Sie den Potenzutomten zu M 1 ilden. ) Betrchten Sie den folgenden DFA M 2. q 0 q 1 q 2 q 3 q 4 q 5 Bestimmen Sie unter Verwendung eines der eiden Minimierungsverfhren us der Vorlesung den minimlen DFA M 2 mit L(M 2) = L(M 2). Geen Sie dei sowohl die ei der Ausführung des Algorithmus entstehende Telle ls uch eine grphische Drstellung des minimlen DFA M 2 n. ) Wir wenden die Potenzmengenkonstruktion uf den NFA M 1 n und erhlten den folgenden DFA M 1. 2

3 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur , {q 0 } {q 1 } {q 0, q 2 } {q 0, q 2, q 3 } ) Telle des Mrkierungslgorithmus: Aus der Telle ergit sich der folgende minimle DFA: q 0, q 2, q 3 q 1, q 5 q 4 3

4 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Aufge 2 (NFAs und reguläre Ausdrücke): (3 Punkte) Sei Σ = {,, c} ein Alphet. Wndeln Sie folgenden NFA üer Σ in einen äquivlenten regulären Ausdruck um, indem Sie Zustände schrittweise entfernen und die etroenen Knten durch reguläre Ausdrücke ersetzen. Geen Sie hierzu zunächst den resultierenden Automten nch Entfernung von q 2 n und geen Sie dnch den zum Schluss gelesenen regulären Ausdruck n. q 0 q 1 c c q 2 Im ersten Schritt entfernen wir den Zustnd q 2. + c q 0 q 1 c Der resultierende Ausdruck ist: ( + c )( + c( + c )) Eine lterntive Lösung ist: ( + c ) (c( + c ) ) 4

5 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Aufge 3 (Induktionseweis): (3 + 5 = 8 Punkte) Sei T ein Alphet von Terminlsymolen, N eine Menge von Nonterminlsymolen und σ : T T eine Permuttion üer T. Beispielsweise wäre für T 0 = {,, c} die Funktion σ 0 mit σ 0 () =, σ 0 () = c und σ 0 (c) = eine Permuttion. Wir erweitern σ zu einer Funktion σ : (T N) (T N) uf Wörtern von Terminlund Nonterminlsymolen, indem wir Symole us T einzeln permutieren und Symole us N unverändert lssen: σ(w ) σ(), flls w = w mit T, w (T N) σ(w) = σ(w ) A, flls w = w A mit A N, w (T N) ɛ, flls w = ɛ Für σ 0 wie oen und Nonterminle A, B, C gilt lso σ 0 (ABcC) = AcBC. Zu jeder kontextfreien Grmmtik G = (N, T, P, S) in Chomsky-Normlform erstellen wir nun eine kontextfreie Grmmtik G = (N, T, P, S), die die permutierten Wörter erkennen soll. Dfür denieren wir P wie folgt: Es gilt A w P genu dnn, wenn A σ(w) P gilt. ) Beweisen Sie zunächst, dss σ(w) = w für lle w N gilt und verwenden Sie dei Induktion üer die Wortlänge w. ) Beweisen Sie nun, dss L(G) {σ(w) w L(G)} gilt, indem Sie zeigen, dss für lle A N, w (T N) us A n G w uch A n G σ(w) folgt. 1 Verwenden Sie dzu Induktion üer die Aleitungslänge n. Sie dürfen dzu verwenden, dss σ(w) σ(w ) = σ(w w ) für lle w, w (T N) gilt. Hinweise: Im Induktionsschluss etrchtet mn den Fll n 1. Hier soll mn ls Induktionshypothese vorussetzen, dss die zu eweisende Aussge für lle n mit 0 n < n gilt. Trennen Sie im Induktionsschritt die Aleitung A n G w in A 1 G w n 1 G w uf und nutzen Sie us, dss G in CNF ist. ) Im Induktionsnfng ist w = ɛ und es gilt σ(ɛ) = ɛ nch Konstruktion. Im Induktionsschluss etrchten wir w = w A für ein A N und setzen vorus, dss die Aussge für w N ereits gilt. Dnn gilt σ(w) = σ(w A) Def.σ = σ(w ) A I.H. = w A = w. Nch dem Induktionsprinzip ist die Aussge dmit ewiesen. 1 Hierei edeutet A n G w, dss mn ds Wort w in n Aleitungsschritten mit der Grmmtik G us dem Nonterminlsymol A erreichen knn. 5

6 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur ) Im Induktionsnfng ist n = 0 und es gilt A 0 G A und A 0 G A = σ(a). Im Induktionsschluss etrchten wir die Aleitungslänge n 1 und nehmen ls Induktionshypothese n, dss die Aussge ereits für lle n mit 0 n < n gezeigt wurde. Nun können wir die Aleitung A n G w in A 1 G w n 1 G gilt entweder w = T oder w = BC N 2. w zerlegen. D G in CNF ist, Fll w = T : Es folgt n = 1 und w = w. Es git eine Produktion A P und dmit nch Konstruktion uch A σ() P. Dmit können wir A 1 σ() folgern. G Fll w = BC N 2 : Es git eine Produktion A BC P und dmit nch Konstruktion uch A σ(bc) P. Nch Teil () gilt σ(bc) = BC und dmit A BC P. Für die restlichen n 1 Aleitungsschritte können wir die Teilleitungen B k G w B und C l G w C mit w = w B w C und k + l = n 1 etrchten. Nch I.H. gilt B k σ(w G B) und C l σ(w G C). Dmit können wir A G w = BC n 1 G w B w C und A G w = BC n 1 G σ(w B )σ(w C ) folgern. Nch Aufgenstellung gilt σ(w B )σ(w C ) = σ(w w c ) = σ(w). Nch dem Induktionsprinzip ist die Aussge dmit ewiesen. 6

7 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Aufge 4 (Unproduktive Symole): (2 + 2 = 4 Punkte) Sei G := (N, T, P, S) eine kontextfreie Grmmtik mit N := {S, A, B, C}, T := {,, c} und P wie folgt: S S AB A A C B SB C ca D csb ) Ermitteln sie die Menge {Z N es git kein w T mit Z w} der unproduktiven Nonterminle mit Hilfe des in der Vorlesung vorgestellten Verfhrens. Geen Sie ls Zwischenergenis uch den NFA für die Sprche pre (T ) n. ) Geen Sie die Produktionen einer zu G äquivlente Grmmtik G n, in denen nur noch produktive, vom Strtsymol S us erreichre Nonterminle und Terminle verwendet werden und us denen unproduktive Nonterminle entfernt wurden. ) Zuerst erechnen wir den NFA zur Erkennung von T und drus den NFA für pre G (T ).,, c,, c, S, B, D Die Menge der unproduktiven Symolen ist nun N \ pre (T ) = {A, C}. ) Wir erzeugen eine Grmmtik, in der keine rechten Seiten mehr uftreten, die A oder C enthlten: S S B SB D csb Mn knn er D von S us nicht erreichen. Auÿerdem knn mn uch B nicht mehr von S erreichen und wir können dher die D- und B-Produktionen entfernen: S S 7

8 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Aufge 5 (CYK-Algorithmus): (4 Punkte) Gegeen sei die folgende Grmmtik G in Chomsky-Normlform. S BC A SC B c SC AS C c CA AB Testen Sie mit dem CYK-Algorithmus, o ds Wort w = cc in L(G) liegt. w = c c 1 A S B, C B, C 2 B A, B S 3 C, S C, S 4 B, A w L(G) 8

9 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Aufge 6 (Pumping-Lemm): (3 + 3 = 6 Punkte) Wir erinnern n ds reguläre Pumping-Lemm: Sei L eine reguläre Sprche. Dnn git es ein n N 0, so dss jedes Wort w L mit w n in w = xyz zerlegt werden knn mit xy n y > 0 xy i z L für lle i 0 ) Betrchten Sie die Sprche L 1 = { k l c l k, l 0}. Beweisen Sie mithilfe des Pumping-Lemms für reguläre Sprchen, dss L 1 nicht regulär ist. ) Die Sprche L 2 = { i j c k i, j, k 0 und (i = 0 oder j = k)} ist nicht regulär. Beweisen Sie, dss L 2 trotzdem die Eigenschften des regulären Pumping-Lemms erfüllt. Hinweis: Um dies nchzuweisen, muss mn eine Grenze n wählen und eine Zerlegung für jedes Wort w L 2 mit w n ngeen, für die dnn nchzuweisen ist, dss die Eigenschften des Pumping-Lemms erfüllt sind. Hierei ist ereits n = 1 eine geeignete Whl. ) Sei n N 0. Wir wählen ds Wort w = n c n L 1 mit w n. Sei w = xyz mit xy n und y > 0. Wir wählen i = 0, d.h. wir wollen zeigen, dss xy i z / L 1 gilt. Wegen xy n muss y = t für ein t N gelten. Dmit ist w = xz = n t c n und d 0 < y = t gilt, ist w L 1. Nch dem Pumping-Lemm für reguläre Sprchen ist dmit L 1 nicht regulär. ) Wir wählen n = 1. Sei w L 2 mit w 1. Wir wählen die Zerlegung w = xyz mit x = ɛ und y = 1 (ds heiÿt, dss y ds erste Zeichen von w ist). Dnn gilt xy = y = 1 n = 1 und y = 1 > 0. Sei i 0. Wir etrchten ds Wort w = xy i z = y i z. Flls y =, so gilt w = j k c k mit j, k 0 und dher w = j+i 1 k c k. Dmit ist w L 2. Flls y, so gilt w = 0 j c k mit j, k 0 und j + k > 0 und dher entweder w = 0 j+i 1 c k oder w = 0 0 c k+i 1. Dmit ist wiederum w L 2. 9

10 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Aufge 7 (Kellerutomten): (2 Punkte) Gegeen sei die folgende Grmmtik G: S CB DA A B C CB B D DA A Geen Sie einen Kellerutomten M mit höchstens 8 Trnsitionen n, so dss N(M) = L(G) gilt. q 0, S CB, S DA, A ɛ, B ɛ, C CB, C B, D DA, D A 10

11 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur Aufge 8 (Petrinetze): (2 Punkte) Betrchten Sie folgendes Petrinetz N. p 1 t 1 t 2 p 2 p 3 Weiterhin sei die Mrkierung m = (2, 1, 0) für die Stellen p 1, p 2, p 3 gegeen. Untersuchen Sie nun, o die Mrkierung m = (0, 1, 1) von m us erreichr ist und geen Sie Ihren Lösungsweg n. Grphisch lssen sich die eiden Mrkierungen wie folgt illustrieren: p 1 p 1 t 1 t 2 t 1 t 2 p 2 p 3 p 2 p 3 D sich ds Petrinetz uf m deterministisch verhält, git es genu eine mögliche Folge von Kongurtionen: p 1 p 1 p 1 t 1 t 2 t 1 t 2 t 1 t 2 p 2 p 3 p 2 p 3 p 2 p 3 Aus der letzten Kongurtion knn keine weitere Trnsition geschltet werden, und die Mrkierung m = (0, 1, 1) wr nicht unter den erreichten Kongurtionen. Dher ist m nicht von m us erreichr. Allgemeiner lässt sich die Frge mit Hilfe der Inzidenzmtrix des Petrinetzes lösen. Zuerst stellen wir dzu die Mtrizen D und D + uf. 11

12 Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur D = Dmit ergit sich die Inzidenzmtrix ( ) 1 1 0, D + = D = ( ) ( 0 0 ) Nun stellen wir ds Gleichungssystem uf. Dmit m von m us erreichr ist, muss gelten, dss ( ) (0, 1, 1) = (2, 1, 0) + x Zunächst stellen wir die Gleichung um und trnsponieren x = Mit dem Guÿ-Algorithmus lösen wir nun dieses linere Gleichungssystem III + II An der letzten Zeile sehen wir, dss ds Gleichungssystem keine Lösung ht, d 0 1. Dmit ist m nicht von m us erreichr. 12

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Formal Languages and Automata

Formal Languages and Automata Forml Lnguges nd Automt Aufgensmmlung Jn Hldik und Stephn Schulz 10. Novemer 2014 1 Üungsufgen 1.1 Endliche Automten 1.1.1 Aufge Sei Σ = {, }. Geen Sie für die folgenden Sprchen einen DFA n L 0 = {w Σ

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Übung zur Vorlesung Formale Systeme, Automaten und Prozesse

Übung zur Vorlesung Formale Systeme, Automaten und Prozesse RWTH Ahen Lehrgeiet Theoretishe Informtik Emmes Kneis Lnger Rossmnith SS 2009 Üungsltt 1 22.04.2009 Üung zur Vorlesung Formle Systeme, Automten und Prozesse Tutorufge T1 Es seien v, w Σ, so dß vw = wv.

Mehr

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014 Kontextsensitive Sprchen Christin Scheideler Universität Pderorn WS 2014 Kontextsensitive Sprchen Definition 5.1.4 Eine Grmmtik heißt kontextsensitiv oder vom Typ Chomsky-1 flls für jede Regel u v gilt

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Zusammenhänge zwischen Sprachen und Automaten:

Zusammenhänge zwischen Sprachen und Automaten: Kellerutomten Jörg Roth 273 4 Kellerutomten Zusmmenhänge zwischen prchen und utomten: $ x 12 v 9 q r 1 x Wir hen isher einen utomtentyp kennen gelernt, den endlichen utomten. Endliche utomten erkennen

Mehr

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch FORMALE SYSTEME 6. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 27. Oktober 2016 Rückblick Mrkus Krötzsch, 27. Oktober 2016 Formle Systeme Folie 2 von 29 Wiederholung: Opertionen uf Automten

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung . Üungsltt (mit en) 3. VU Formle Modellierung Mrion Brndsteidl, Gernot Slzer 3. Mi 3 (Korrektur 4.6.) Aufge (.3 Punkte) Sei A der folgende Mely-Automt. u/ h/ h/ h/ u/ h/ 3 4 u/ u/ () Geen Sie die Ausge

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

1 Grundlagen der Theorie formaler Sprachen

1 Grundlagen der Theorie formaler Sprachen 1 Grundlgen der Theorie formler Sprchen Wir eginnen dmit, dss wir in diesem Kpitel zunchst einige grundlegende Begriffe und Methoden us der Theorie formler Sprchen, insesondere der regulären Sprchen, wiederholen.

Mehr

1. Formale Sprachen Formale Sprachen

1. Formale Sprachen Formale Sprachen 1. Formle Sprchen Formle Sprchen 1. Formle Sprchen 1.1. Ws ist eine formle Sprche? Wenn mn einen Gednken in einer ntürlichen Sprche usdrücken will, kommt es im wesentlichen uf 2 Aspekte n: 1. Der korrekte

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 2

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 2 Prof. J. Esprz Tehnishe Universität Münhen S. Sikert, J. Krämer KEINE ABGABE Einführung in die theoretishe Informtik Sommersemester 2017 Üungsltt 2 Üungsltt Wir untersheiden zishen Üungs- und Agelättern.

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2004/05 ILKD Prof. Dr. D. Wgner 24. Ferur 2005 1. Klusur zur Vorlesung Informtik III Wintersemester 2004/2005 Lösung! Bechten Sie: Bringen

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Tutoraufgabe 1 (ɛ-produktionen):

Tutoraufgabe 1 (ɛ-produktionen): Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Identifizierbarkeit von Sprachen

Identifizierbarkeit von Sprachen FRIEDRICH SCHILLER UNIVERSITÄT JENA Fkultät für Mthemtik und Informtik INSTITUT für INFORMATIK VORLESUNG IM WINTERSEMESTER STOCHASTISCHE GRAMMATIKMODELLE Ernst Günter Schukt-Tlmzzini 06. Quelle: /home/schukt/ltex/folien/sprchmodelle-00/ssm-06.tex

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

Endliche Automaten 7. Endliche Automaten

Endliche Automaten 7. Endliche Automaten Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte

Mehr

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis Pumping Lemm für reguläre Sprhen (1/2) Informtik II SS 2004 Teil 6: Sprhen, Compiler un Theorie 2 Ds Pumping Lemm ist eine Methoe, um herus zu finen, o eine Sprhe niht regulär. Prof. Dr. Dieter Hogrefe

Mehr

Deterministische endliche Automaten

Deterministische endliche Automaten Endliche Automten Idee: endlicher Automt A ht endlich viele innere Zustände liest Einge wєσ* zeichenweise von links nch rechts git zum Schluß eine J/Nein Antwort A Lesekopf w 1 w 2 w n gelesenes Symol

Mehr

Kapitel: Endliche Automaten & reguläre Sprachen. Endliche Automaten und reguläre Sprachen 1 / 125

Kapitel: Endliche Automaten & reguläre Sprachen. Endliche Automaten und reguläre Sprachen 1 / 125 Kpitel: Endliche Automten & reguläre Sprchen Endliche Automten und reguläre Sprchen 1 / 125 Endliche Automten Endliche Automten erluen eine Beschreiung von Hndlungsläufen: Wie ändert sich ein Systemzustnd

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken Endliche Automten Stoyn Mutfchiev Progrmming Systems L, Universität des Srlndes, Srrücken Astrct Gegenstnd dieser Areit ist der endliche Automt, sowie die Aschlusseigenschften der Sprchen, die von endlichen

Mehr

7 Modellierung von Abläufen 7.1 Endliche Automaten

7 Modellierung von Abläufen 7.1 Endliche Automaten 7 Modellierung von Aläufen 7. Endliche Automten Mod-7. Endlicher Automt: Formler Klkül zur Spezifiktion von relen oder strkten Mschinen. Sie regieren uf äußere Ereignisse, ändern ihren inneren Zustnd,

Mehr

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome.

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome. Herstsemester 2, Institut für Informtik IFI, UZH, Schweiz Modul 3: Schltnetze Informtik I Modul 3: Schltnetze Einführung in die formlen Grundlgen logischer Beschreiungen Boolesche Alger, Schltlger Vorussetzende

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung ehnishe niversität Münhen ommer 2016 Prof. J. Esprz / Dr. M. Luttenerger,. ikert 18. Juni 2016 HA-Lösung A-Lösung Einführung in die theoretishe Informtik Aufgenltt 8 Behten ie: oweit niht explizit ngegeen,

Mehr

Theoretische Informatik

Theoretische Informatik Vorlesung Theoretische Informtik Version: März 23 Mrin Mrgrf Inhltsverzeichnis Einführung 4. Ds Problem Clique.................................. 5.2 Wort-, Entscheidungs-, Optimierungsprobleme und formle

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

7 Modellierung von Abläufen

7 Modellierung von Abläufen 7 Modellierung von Aläufen In diesem Kpitel geht es drum, ds dynmische Verhlten von Systemen zu eschreien, z.b. die Wirkung von Bedienopertionen uf rele Automten oder uf die Benutzungsoerflächen von Softwre-Systemen

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2014) Prof Dr Jens Teuner Leitung der Üungen: Mrcel Preuß, Sestin Breß, Mrtin Schwitll, Krolin

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Monte-Carlo-Integration

Monte-Carlo-Integration Monte-Crlo-Integrtion von Dietmr Herrmnn, Anzing Kurzfssung: An Hnd eines einfchen Beispiels wird gezeigt, dß jedes Integrl ls Erwrtungswert einer reellen Zufllsgröße ufgefßt werden knn. een einer symptotischen

Mehr

1.1 Grundlagen: Reguläre Ausdrücke

1.1 Grundlagen: Reguläre Ausdrücke 11 Grundlgen: Reguläre Ausdrücke Progrmmtext enutzt ein endliches Alphet Σ von Einge-Zeichen, zb ASCII :-) Die Menge der Textschnitte einer Token-Klsse ist i regulär Reguläre Sprchen knn mn mithile regulärer

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Einheit 14: Endliche Automten Thoms Worsch Krlsruher Institut für Technologie, Fkultät für Informtik Wintersemester 2009/2010 1/56 Üerlick Erstes Beispiel: ein Getränkeutomt

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Dank. 1 Determinierte endliche Automaten (DEAs) 2 Indeterminierte endliche Automaten (NDEAs) 3 Automaten mit epsilon-kanten

Dank. 1 Determinierte endliche Automaten (DEAs) 2 Indeterminierte endliche Automaten (NDEAs) 3 Automaten mit epsilon-kanten Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

mathematik und informatik

mathematik und informatik RR Prof. Dr. André Schulz Modul 31321 Grundlgen der Informtik 01657 Grundlgen der Theoretischen Informtik A 01658 Grundlgen der Theoretischen Informtik B LESEPROBE mthemtik und informtik Der Inhlt dieses

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr