3 g-adische Ziffernentwicklung reeller Zahlen

Größe: px
Ab Seite anzeigen:

Download "3 g-adische Ziffernentwicklung reeller Zahlen"

Transkript

1 1 3 g-adche Zffernentwcklung reeller Zahlen In deem Kaptel e tet 2 g N und Z g = {0, 1, 2, 3,..., g 1} N. Motvaton: Wr wollen jede potve reelle Zahl x > 0 n der Ba g 2 dartellen (g-adche Dartellung von x. Dafür verwenden wr,,zffern au der Menge Z g. Für negatve reelle Zahlen x etzen wr da Vorzechen vor de g-adche Dartellung von x. Defnton 11. E een 0 < x R, d Z und ( d mt Z g ene Folge n Z g (ene Folge von,,g-adchen Zffern. Dann heßen d der g-adche Exponent und ( d de g-adche Zffernentwcklung von x, wenn folgende glt: (G1 z d 0 (G2 x = (G3 zu jedem n Z gt e en max{n, d} mt g 1. (z d z d+1... z 2 z 1 z 0, z 1 z 2 z 3... g fall d 0 Schrewee: x = (0, 00 }{{... 0} z d z d+1... g fall d > 0 d 1 De Zahl g nennt man de Ba der Zffernentwcklung von x. Spezell agt man für 10-adch auch dezmal, für 2-adch auch dual, für 8-adch auch oktal und für 16-adch auch hexadezmal oder edezmal. Bemerkung: Hat x > 0 ene g-adche Zffernentwcklung we n Defnton 11, o nennen wr de g-adche Zfferentwcklung von x. g Bepel: De reelle Zahl π R etzt de Dezmaldartellung π = (3, = (d = 0, z 0 = 3, z 1 = 1, z 2 = 4, z 3 = 1,.... De 3-adche Dartellung von π t π = (10, = (d = 1, z 1 = 1, z 0 = 0, z 1 = 0, z 2 = 1, z 3 = 0, z 4 = 2, z 5 = Bepel 3.1: Wählen Se ene natürlche Zahl zwchen 100 und 150 und geen Se für dee den g-adchen Exponenten und de g-adche Zffernentwcklung für g = 10, 2, 7 und 16 an! Bepel 3.2: Warum t de Folge ( 2 mt = 1 für alle 2 kene 2-adche Zffernfolge für 1 2? We eht de 2-adche Zffernfolge von 1 2 au?

2 2 0 für 0 Bepel 3.3: Zegen Se, da de Folge ( Z mt = 1 für ungerade > 0 4 für gerade > 0 ene 5-adche Zffernfolge für 0,375 t. Bepel 3.4: Geen Se für x = 1/3 den g-adchen Exponenten und de g-adche Zffernentwcklung für g = 10, 3 und 2 an! Lemma 5 (Kennzechnung der g-adchen Zffernentwcklung. E een 0 < x R, d Z und ( d ene Folge n Z g. Dann nd folgende Auagen äquvalent: a d t der g-adche Exponent und ( d t de g-adche Zffernentwcklung von x. z d 0 und für alle n d glt: n 0 x g < 1 g. (* n Bewe. a : (G1 ergt z d 0. (G2 ergt für jede n d: x n g = z 0, wel alle Summanden 0 nd. =n+1 < g 1 = 1 mt (G3. gn =n+1 a: Offenar t (G1 erfüllt. (G2 ergt ch au (* durch Grenzüergang n. Nehmen wr an, da (G3 falch wäre: e gt en n Z, oda für alle n glt: = g 1. Dann erhalten wr mt deem n n der rechten Unglechung von (* ene Glechhet, alo enen Wderpruch. Bepel 3.5: Machen Se ch de Bedeutung von Lemma 5. vertändlch, ndem Se de erten Dezmalzffern von x = 3 etmmen. We erhalten Se de jewel nächte Dezmalzffer? Satz 22. Für jede 0 < x R extert genau ene g-adche Zffernentwcklung. Bewe. I. Extenz: Da de Potenzen g d für d Z treng monoton von + nach 0 fallen, gt e en endeutg etmmte d Z mt g d x < g (d 1. Man üerlegt ch lecht, da dee d der enzg möglche Wert für den Exponenten von x für ene g-adche Zffernfolge von x t. Für alle k d defneren wr rekurv de Folge z k = ( k 1 [g k x ],

3 woe [ ] de Gauß-Klammer ezechnet. Wr eween nun, da de o defnerte Folge (z k k d ene g-adche Zfferentwcklung von x t, ndem wr mt volltändger Indukton zegen, da dee Folge de Kennzechnung (* au Lemma 5. erfüllt. Induktonanfang: n = d De rekurve Defnton lefert z d = [g d x] Z, und wegen oger Wahl von d erhalten wr 1 [g d x] < g, alo 1 z d Z g. Induktonchlu: von n auf n + 1 Wr nehmen an, da (* für den Index n erfüllt t, und eween damt, da z n+1 Z g und (* für den Index n + 1 glt. [ Verwenden wr (* für den Index n n der Rekuronformel z n+1 = g n+1( x n ], o erhalten wr unmttelar, da 0 z n+1 < g glt, alo z n+1 Z g. Mt der Unglechung 0 g n+1( x n ( 1 g n+1( x n g n+1 g zn+1 g zn+1 < 1 erhalten wr mt x n+1 drekt de Unglechung (* für den Index n = II. Endeutgket: De Endeutgket von d ergt ch au den Üerlegungen am Beweanfang oen. Nehmen wr an, wr hätten zwe verchedene Zffernentwcklungen für x, alo x = =. E e j d der mnmale Index mt z j z j. Dann erhalten wr aer mt der Unglechung (* für den Index n := j enen Wderpruch, da ede g-adche Zfferndartellungen von x een. Bemerkung: De Rekuronformel m Bewe gt an, we de g-adche Zffernfolge von x erhalten werden kann. Kennen wr eret z 1,..., z 3 der 3-adchen Dartellung von π (vgl. Bepel oen, o erhalten wr z 4 = [ 3 4 (π ] = [ 3 4 π ] = [ 2, ] = 2 und z 5 = [ 3 5 (π ] = [ 3 5 π ] = [ 1, ] = 1. Satz 23. E e 0 < x R. De g-adche Zffernentwcklung ( d von x wrd perodch (d.h. e gt m d und l N +, oda für alle n m glt: z n+l = z n genau dann, wenn x Q glt. Bewe.,, : E een m und l o we m Satz gegeen. In der Umformung (g l 1x = gl m+l 1 g = g + l =m+l m 1 g l g =m heen ch wegen der Perodztät der Zffern a dem Index m de eden unendlchen Summen auf, und wr erhalten (g l 1x Q, und omt x Q.

4 4,, : E een 0 < x = r Q mt r Z, N und d der g-adche Exponent von x. Mt Satz 22 erhalten wr für jede k max{0, d}: ( k 1 z k = [g ] ] k x = [g k r k 1 g [ g k rk ] = Z g mt enem r k Z und 0 r k < g. Da e nur endlch vele Möglchketen für de natürlchen Zahlen r k gt, exteren m N und l N + mt r m = r m+l. Wr zegen nun mt volltändger Indukton, da für alle n m glt: r n = r n+l (und omt auch z n = z n+l. Induktonanfang: für n = m tmmt de Behauptung wegen oger Wahl von m und l. Induktonchlu von n auf n + 1: E gelte r n = r n+l und z n = z n+l, und wr erhalten r n+1 = g n+1 (x n z ( = g (g n x n 1 z rn z n = g( z n = ( rn+l ( n+l 1 = g z n+l = g (g n+l z n+l x z n+l = g (x n+l+1 z = r n+l+1 Bepel 3.6: Spezaleren Se den zweten Tel de Bewee von Satz 23 für de Zahl x = und g = 10, ndem Se de entprechenden z k und r k erechnen. We hängen de r k mt den e der Dvon 517 : 740 auftretenden Reten zuammen? De folgende Defnton dent dazu, de perodche Zffernentwcklung von ratonalen Zahlen näher zu unteruchen. Dazu defneren wr de,,nachkommafolge ener g-adchen Zffernentwcklung, ndem wr de Zffernentwcklung de ganzzahlgen Antel [x] gnoreren, und ene eventuell päter egnnende g-adche Zffernfolge (d > 1 mt führenden Nullen zum Komma ergänzen. Defnton 12. a Für 0 < x R e x = de g-adche Zffernentwcklung von x. Dann heßt ( 1 de g-adche Nachkommafolge von x, woe m Fall d > 1 für alle 1 < d = 0 geetzt wrd. E e 0 < x Q und ( 1 de g-adche Nachkommafolge von x, owe v = mn{m N e gt en j N +, oda für alle n > m glt: z n+j = z n } l = mn{j N + für alle n > v glt: z n+j = z n } Dann heßen v 0 de Vorperodenlänge und l 1 de Perodenlänge der g-adchen Zffernfolge von x. It v = 0, o heßt de g-adche Zffernfolge von x renperodch. It l = 1 und z v+1 = 0, o agt man:,,de g-adche Zffernentwcklung von x rcht a.

5 Bepel 3.7: Machen Se ch de Begrffe au Defnton 12. an Hand der verchedenen g-adchen Zffernentwcklungen von x = 1/3 au Bepel 3.4 vertändlch. 5 Satz 24. E e 0 < x Q und x = a de reduzerte Bruchdartellung von x [vgl. 1, Satz 9]. Weter een = max{t T ( ggt(t, g = 1} und = g. Dann nd µ = mn{j 0 g g j } de Vorperodenlänge v und λ = ord (g de Perodenlänge l der g-adchen Zffernfolge von x. Bewe. E genügt, x Q mt 0 < x < 1 zu etrachten. E een ( 1 de g-adche Nachkommafolge von x, v 0 de Vorperodenlänge und l 1 de Perodenlänge von x. Au dem erten Bewetel von Satz 23 (mt v + 1 tatt m und d = 1 erhalten wr (g l 1x = v+l l v = h g v mt enem h N, und omt a = x = h g v (g l 1. Da a de reduzerte Bruchdartellung t, mu = g den Nenner g v (g l 1 telen. Au der Defnton von ergt ch dann, da (g l 1 und g g v gelten mu (Anm.: g enthält nur Prmfaktoren von g. Somt erhalten wr λ = ord (g l und µ = mn{j 0 g g j } v. Da g λ 1 mod (, folgt (g λ 1. Wr folgen nun dem zweten Bewetel von Satz 23, d.h. für alle k 1 haen wr z k = [ r k ] mt r ( k a = gk k 1 und 0 r k < g. Damt erhalten wr Da (gλ 1g µ g r µ+λ+1 r µ+1 = (gλ 1g µ g a g ( µ+λ a = g µ+λ+1 µ+λ g g µ+λ + g ( a µ g µ+1 µ g µ. = Z, t der letzte Term n oger Umformung ene durch g telare, ganze Zahl, worau wr mt der vorangehenden Unglechung r µ+λ+1 = r µ+1 und damt z µ+λ+1 = z µ+1 erhalten. Genauo we m zweten Bewetel von Satz 23 können wr darau folgern, da für alle n > µ glt: r n+λ = r n und z n+λ = z n. Damt haen wr v µ und l λ gezegt, womt zuammen mt dem erten Bewetel Satz 24 eween t.

6 6 Bepel 3.8: Veruchen Se ene ratonale Zahl zu fnden, deren dezmale Nachkommafolge Vorperodenlänge 2 und Perodenlänge 5 hat. (Tpp: = Bepel 3.9: Welche Perodenlänge hat de duale Nachkommafolge von x = 3/5 zw. x = 5/13 zw. x = 1/31?

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorthmche Bonformatk HMM Algorthmen: Forward-Backward Baum-Welch Anwendung m equenzalgnment Ulf Leer Wenmanagement n der Bonformatk Formale Defnton von HMM Defnton Gegeben Σ. En Hdden Markov Modell t

Mehr

arxiv: v1 [math.nt] 10 Apr 2014

arxiv: v1 [math.nt] 10 Apr 2014 Über de ratonalen Punkte auf der Sphäre von Nkolay Moshchevtn 1 Moskau) arxv:1404.907v1 [math.nt] 10 Apr 014 Wr beschäftgen uns her mt der Approxmaton von Punkten auf der n-dmensonalen Sphäre durch ratonale

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Erzeugung mit einer rotierenden flachen Spule

Erzeugung mit einer rotierenden flachen Spule 2. Snuförmge Wechelpannung De elektromagnetche Indukton t ene der Grundlagen unerer technchen Zvlaton. Der Strom, der au der Steckdoe kommt, t bekanntlch en Wecheltrom. De hn verurachende Wechelpannung

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

R S T R S T R S T. 1 Lineare, affine und konvexe Kombinationen. Definition: X. Definition: Sei X. U. BREHM: Konvexgeometrie 1-1

R S T R S T R S T. 1 Lineare, affine und konvexe Kombinationen. Definition: X. Definition: Sei X. U. BREHM: Konvexgeometrie 1-1 U. BEHM: Konvexgeoete - Lneae, affne un konvexe Kobnatonen W abeten -enonalen euklchen au I un cheben x = ( x,, x ) ( ξ I, =,, ) fü enen Punkt (Vekto) von I. Da nnee Poukt auf I von Vektoen x un y = (

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0 8. MARKOVKETTEN 17 8. Marovetten Abbldung 8.1: Reduzble und perodsche Marovette 8.1. Homogene Marovetten n dsreter Zet En Prozess {X n : n IIN} hesst homogene Marovette (n dsreter Zet) mt (abzählbarem)

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Berechnung der Kriech- und Schwindwerte

Berechnung der Kriech- und Schwindwerte Berehnung der Kreh- und Shwndwere Grundlagen Beon zeg bere uner üblhen Gebrauhbedngungen en augepräge zeabhängge Verhalen wodurh Dehnungen aufreen können de en Mehrfahe der elahen Dehnung beragen: laabhängge

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Mathematik der Finanzmärkte Vorlesungsskript

Mathematik der Finanzmärkte Vorlesungsskript Mathematk der Fnanzmärkte Vorlesungsskrpt Wnter 24/25 Achm Klenke Insttut für Mathematk Johannes Gutenberg-Unverstät Manz Staudngerweg 9 D-5599 Manz 16. Februar 25 korrgert: 11. Aprl 25 2 Inhaltsverzechns

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert).

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert). V. Kolluson Im olgopolstschen Wettbewerb treffen mtunter mmer weder de glechen Frmen aufenander. Des eröffnet de Möglchket für stlles Zusammenspel, wel abwechendes Verhalten n späteren Zusammentreffen

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

Gewichtetes arithmetisches Mittel und Streuung

Gewichtetes arithmetisches Mittel und Streuung Dpl.-Kaufm. Wolfgang Schmtt u mener Skrptenrehe: " Kene ngt vor... " ugewählte Themen der dekrptven Stattk Gewchtete arthmetche Mttel und Streuung Modellaufgabe Übungen Löungen www.nf-lernen.de Modellaufgabe:

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Beispiel: Die Zahl 32768 als Summe der Ziffern, die einen Koeffizient zur Potenz 10 darstellen:

Beispiel: Die Zahl 32768 als Summe der Ziffern, die einen Koeffizient zur Potenz 10 darstellen: - Zahlendarstellung n Rechnern Wr wssen berets aus der Dgtaltechnk we Ganzzahlen bnär dargestellt (codert) werden und können de Grundrechenoperatonen ausführen. I nachfolgenden Kaptel wrd auf deser Matere

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner Prosemnar Speltheore SS 2006 Ausarbetung zum Vortrag Allgemene Zwe-Personenspele am 06.07.2006 Vortragender: Floran Lener Der Vortrag basert auf dem entsprechenden Kaptel wo-person general-sum games aus

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Mathematisches Modell und Algorithmen der Termin- und Reihenfolgeplanung

Mathematisches Modell und Algorithmen der Termin- und Reihenfolgeplanung Mathematche Modell und Algorthmen der Termn- und Rehenfolgeplanung Dr.-Ing. SU) Yury Zack, Europäche Zentrum für Mechatronk Aachen Dr. rer. nat. Sergey Rotn, Lehrtuhl für Produktonytematk, RWTH Aachen

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Algebraische Kombinatorik und Anwendungen in der kommutativen Algebra

Algebraische Kombinatorik und Anwendungen in der kommutativen Algebra Algebrasche Kombnatork und Anwendungen n der kommutatven Algebra Dr. Martna Kubtzke Wntersemester 2012/13 Goethe-Unverstät Frankfurt Inhaltsverzechns 1 Monomale Ideale und smplzale Komplexe 1 1.1 Monomale

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

4 Die geometrische Darstellung der komplexen

4 Die geometrische Darstellung der komplexen 4 De geometrsche Darstellung der komplexen Zahlen Mt komplexen Zahlen kann man rechnen we mt gewöhnlchen Zahlen. Man kann mt hnen alle quadratschen Glechungen lösen. Aber das st be wetem ncht alles: Komplexe

Mehr

Zur Bestimmung des Terms der Regressionsgeraden

Zur Bestimmung des Terms der Regressionsgeraden Nme: Zu Betmmug de Tem de Regeogede Auggput ue Üeleguge t e vte Stz vo Dte ; ; ; ;; ; Dtum: mt de etpehede Mttelwete ud, de ze ud,de Kovz ud dem Koeltooeffzete. Geuht d de Wete de Stegugfto ud de Odtehtt

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

folgende Wärmeübergangsbeziehung: Nu = 0, 664 Re

folgende Wärmeübergangsbeziehung: Nu = 0, 664 Re Aufgabe 3.5: Berechnung ene Wärmeübergangkoezenten En Körper mt der Oberäche A = 1 m 2 und der Temperatur ϑ W = 30 C wrd mt Luft der Temperatur ϑ F = 10 C (Druck p = 1 bar) angetrömt. De Gechwndgket der

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

Kurzinformation zu ergänzenden Modulen und Dienstleistungen der B.K.L.-isos GmbH beim Einsatz von SER DOMEA

Kurzinformation zu ergänzenden Modulen und Dienstleistungen der B.K.L.-isos GmbH beim Einsatz von SER DOMEA B.K.L. - Integratnervce für ffene Syteme Kurznfrmatn zu ergänzenden Mdulen und Dentletungen der B.K.L.- bem Enatz vn SER DOMEA Stand: 5/2003 De B.K.L.- t et velen Jahren DOMEA -Partner und hat für Kunden

Mehr

Vorlesung: "Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA)"

Vorlesung: Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA) 6 Zuverlägke und Produklebenzyklu 6. Genaugke und Fehlerverhalen 6.2 Technche Zuverlägke 6.2. Klafkaon von Aufällen 6.2.2 Aufall- und Überlebenwahrchenlchke 6.2.3 Fehlerrae 6.3 Zuverlägke von Hardware-Funkonen

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6 Übungen zur Vorlesung Physkalsche Chee B. Sc. ösungsvorschlag zu Blatt 6 Prof. Dr. Norbert Happ Jens Träger Wnterseester 7/8.. 7 Aufgabe De Wellenfunkton des haronschen Oszllators hat de For Ψ v N v H

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

1. Runde 2010. Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde 2010. Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettbewerb Mathemat Wssenschaftszentrum Postfach 2 14 48 53144 Bonn Fon: 228-9 59 15-2 Fax: 228-9 59 15-29 e-mal: nfo@bundeswettbewerb-mathemat.de www.bundeswettbewerb-mathemat.de Korreturommsson

Mehr

Grundlagen der stochastischen Integration

Grundlagen der stochastischen Integration Ruhr-Unverstät Bochum 2. November 29 Glederung Vorbemerkungen Vorberetungen (Fltratonen, Stoppzeten, Martngale) Lévy-Prozesse Stochastsche Integraton Itô-Formel Lteratur R. Cont, P. Tankov (24). Fnancal

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

2. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

2. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettbewerb Mathematk Wssenschaftszentrum Postfach 0 14 48 53144 Bonn Fon: 08-377 411 Fax: 08-377 413 e-mal: nfo@bundeswettbewerb-mathematk.de www.bundeswettbewerb-mathematk.de Korrekturkommsson Karl

Mehr

Proof of Knowledge for Factorization & Fair Encryption of ElGamal/RSA Keys

Proof of Knowledge for Factorization & Fair Encryption of ElGamal/RSA Keys R. Fschln/15. Februar 000 Proof of Knowledge for Factorzaton & Far Encrypton of ElGamal/RS Keys G. Poupard und J. Stern [PS99a, PS99b] haben auf dem Lumny-Workshop enen (kurzen) Proof-of-Knowledge für

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr