4 Reelle und komplexe Zahlenfolgen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4 Reelle und komplexe Zahlenfolgen"

Transkript

1 $Id: folgen.tex,v.2 203//29 2:06:38 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Folgenkonvergenz und die Grenzwerte von Folgen eingeführt. Dass eine Folge (a n ) n N gegen einen Grenzwert a konvergierte hatten wir als (ɛ > 0) (n 0 N) (n n 0 ) : a n a < ɛ definiert. In der letzten Sitzung und in den Übungen dieser Woche hatten wir auch schon einige Beispiele von Grenzwerten berechnet. Zum Rechnen solcher konkreten Beispiele hat sich die obige Definition allerdings als etwas schwerfällig erwiesen, selbst relativ einfache Folgen bedürfen zu ihrem Konvergenzbeweis ständiger Anwendungen der archimedischen Eigenschaft der reellen Zahlen. In dieser Sitzung werden wir einige Rechenregeln für den Umgang mit Grenzwerten entwickeln, durch deren Anwendung man zur Berechnung von Grenzwerten oftmals nicht mehr auf die Definition der Folgenkonvergenz zurückgehen muss. Wir werden zeigen beispielsweise zeigen, dass für jede positive reelle Zahl c R mit c > 0 stets die Aussage ( n c) n gilt indem wir dies auf den schon berechneten Grenzwert n n = zurückführen. Je mehr Grenzwerte bereits bekannt sind, desto mehr Möglichkeiten hat man zur Anwendung der Rechenregeln für Folgengrenzwerte und um so seltener muss man die ɛ n 0 -Definition der Folgenkonvergenz direkt verwenden. Als Startpunkt verwenden wir die sogenannten Nullfolgen, dies sind gerade die gegen 0 konvergenten Folgen. Definition 4.7 (Nullfolgen) Sei K {R, C}. Eine Folge (a n ) n N in K heißt eine Nullfolge wenn (a n ) n N 0 gilt. Ausgeschrieben ist (a n ) n N also genau dann eine Nullfolge wenn (ɛ > 0) (n 0 N) (n n 0 ) : a n < ɛ gilt. Offenbar ist eine reelle oder komplexe Folge (a n ) n N genau dann eine Nullfolge wenn die reelle Folge ( a n ) n N eine Nullfolge ist, dies liegt daran das a n = a n für jedes n N gilt. Lemma 4.4 (Grundeigenschaften von Nullfolgen) Sei K {R, C}. Dann gelten: (a) Sind (a n ) n N und (b n ) n N zwei Nullfolgen in K, so ist auch (a n + b n ) n N eine Nullfolge in K. 0-

2 (b) Sind (a n ) n N eine Nullfolge in K und c K, so ist auch (ca n ) n N eine Nullfolge in K. (c) Sind (a n ) n N eine beschränkte Folge in K und (b n ) n N eine Nullfolge in K, so ist auch (a n b n ) n N eine Nullfolge in K. (d) Sind (a n ) n N eine Folge in K und a K, so gilt genau dann (a n ) n N a wenn (a n a) n N eine Nullfolge ist. (e) Sind (a n ) n N eine Folge in K und (b n ) n N eine Nullfolge in R mit a n b n für alle n N, so ist auch (a n ) n N eine Nullfolge in K. (f) Sind (a n ) n N eine Nullfolge in R mit a n > 0 für alle n N und α Q mit α > 0, so ist auch (a α n) n N eine Nullfolge. Beweis: (a) Sei ɛ > 0. Dann existieren n, n 2 N mit a n < ɛ/2 für alle n N mit n n und b n < ɛ/2 für alle n N mit n n 2. Setze n 0 := max{n, n 2 }. Für alle n N mit n n 0 ist dann auch a n + b n a n + b n < ɛ 2 + ɛ 2 = ɛ. Damit ist (a n + b n ) n N eine Nullfolge in K. (c) Es gibt eine Konstante c 0 mit a n c für alle n N. Sei ɛ > 0. Dann existiert ein n 0 N mit b n < ɛ/(c + ) für alle n N mit n n 0. Ist n N mit n n 0, so ist damit auch a n b n = a n b n c b n cɛ c + < ɛ. Damit ist (a n b n ) n N eine Nullfolge in K. (b) Klar nach (c). (d,e) Klar. (f) Seien p, q Z mit p, q und α = p/q. Wir zeigen zunächst, dass ( q a n ) n N eine Nullfolge ist. Sei also ɛ > 0 gegeben. Dann existiert ein n 0 N mit a n < ɛ q für alle n N mit n n 0. Für jedes n N mit n n 0 folgt damit auch q a n < q ɛ q = ɛ. Also ist ( q a n ) n N eine Nullfolge. Da konvergente Folgen nach Lemma 2.(a) auch beschränkt sind, ist somit auch (a α n) n N = (( q a n ) p ) n N nach (c) eine Nullfolge. Wir wollen noch ein paar Anmerkungen zum eben bewiesenen Lemma festhalten. Zunächst beachte das konvergente Folgen nach Lemma 2.(a) auch beschränkt sind, Aussage (c) des Lemmas ergibt also insbesondere, dass das Produkt einer konvergenten Folge und einer Nullfolge wieder eine Nullfolge ist. Weiter ist es in Aussage (e) des Lemmas nicht wirklich nötig das a n b n für alle n N gilt, es reicht aus das es einen Startindex n 0 N mit a n b n für alle n N mit n n 0 gibt. Dies ist implizit bereits im Lemma enthalten. Erinnern Sie sich daran, dass wir eingehends gesagt hatten, dass implizit immer auch Folgen mit gemeint sind, die erst ab einem Startindex definiert 0-2

3 sind. Weiter ist es für die Konvergenz und den Grenzwert einer Folge offenbar egal ob wir die Folge selbst oder dieselbe Folge ab einem anderen Startindex betrachten. Wenden wir also Aussage (e) des Lemmas auf die Folgen (a n ) n n0 und (b n ) n n0 an, so ergibt sich genau die genannte stärkere Aussage. Letztendlich haben wir uns in Teil (f) auf den Fall rationaler Exponenten α beschränkt, da wir Potenzrechnung mit beliebigen reellen Exponenten noch gar nicht eingeführt haben. Die Aussage (f) wird auch für allgemeine positive Exponenten wahr sein, bedarf dann allerdings eines anderen Beweises, aber dazu werden wir dann später im Semester kommen. Unser Ziel ist noch immer einen ɛ n 0 freien Beweis der Aussage n c für jedes c R mit c > 0 anzugeben. Das eben bewiesene Lemma über Nullfolgen ist ein erster Schritt hierzu, und der zweite Schritt ist das folgende Lemma über reelle Folgen. Lemma 4.5 (Anordnungseigenschaften reeller Grenzwerte) Seien (a n ) n N und (b n ) n N zwei konvergente, reelle Folgen. (a) Gilt a n b n für alle n N, so ist auch a n b n. (b) Gilt a n = b n und ist (u n ) n N eine weitere reelle Folge mit a n u n b n für alle n N, so ist auch die Folge (u n ) n N konvergent mit u n = a n = b n. Beweis: (a) Seien a der Grenzwert von (a n ) n N und b der Grenzwert von (b n ) n N. Angenommen es wäre a > b. Dann ist ɛ := (a b)/2 > 0 und es gibt n, n 2 N mit a n a < ɛ für alle n N mit n n und b n b < ɛ für alle n N mit n n 2. Setze n := max{n, n 2 }. Dann ist a n = a (a a n ) a a n a > a ɛ = a a b = a + b = b + a b = b + ɛ > b + b n b b + b n b = b n, im Widerspruch zu unserer Annahme a n b n. Dies beweist die Behauptung a b. (b) Sei a der gemeinsame Grenzwert der Folgen (a n ) n N und (b n ) n N. Für jedes n N gelten u n a b n a b n a und (u n a) = a u n a a n a n a, also auch u n a max{ a n a, b n a } a n a + b n a. 0-3

4 Nach Lemma 4.(a,d,e) ist (u n a) n N eine Nullfolge, d.h. auch die Folge (u n ) n N konvergiert gegen a. Die Aussage (b) des Lemmas wird manchmal auch als das Einschnürungslemma bezeichnet. Beachte das es auch für dieses Lemma reicht die Ungleichungen a n b n beziehungsweise a n u n b n nur für alle n N mit n n 0 für einen Startindex n 0 N zu fordern. Auch dies liegt daran, dass immer auch Folgen mit gemeint sind, die erst ab einem gewissen Startindex definiert sind. Zur Illustration der jetzt bewiesenen Lemmata wollen wir uns noch einmal den Beweis der Aussage ( n n) n N anschauen. Wir hatten gezeigt, dass für jedes n N mit n 2 die Ungleichung 0 < n 2 n n gilt. Weiter ist die Folge (/(n )) n N als Teilfolge einer Nullfolge wieder eine Nullfolge und nach Lemma 4.(b,f) ist auch ( 2/(n )) n N eine Nullfolge. Damit ist ( n n ) n N nach dem Einschnürungslemma Lemma 5.(b) eine Nullfolge, d.h. wir haben ( n n) n N. Beachte das wir die Konvergenzaussage diesmal direkt aus der obigen Ungleichung gefolgert haben, ein Argumentieren über die Konvergenzdefinition mit ɛ und n 0 war gar nicht mehr nötig. Diesen Effekt werden wir noch häufiger sehen, der Nullfolgenbegriff und das unterstützende Lemma 4 erlauben es viele, aber nicht alle, ɛ-überlegungen durch einfacheres Schließen zu ersetzen. Als eine weitere Anwendung des Einschnürungslemmas wollen wir jetzt, wie schon angekündigt, n c = für alle c R mit c beweisen. Nach der archimedischen Eigenschaft der reellen Zahlen.Lemma 5 gibt es ein n 0 N mit n 0 c. Für alle n N mit n n 0 c ist damit auch n c n n, und da wir bereits ( n n) n N wissen, folgt mit dem Einschnürungslemma Lemma 5.(b) auch ( n c) n N. Der andere Fall für c, also 0 < c <, muss etwas anders behandelt werden, wir werden ihn mit Hilfe der Rechenregeln für Grenzwerte auf den Fall c > zurückführen. Satz 4.6 (Rechenregeln für Folgengrenzwerte) Sei K {R, C} und seien (a n ) n N und (b n ) n N zwei konvergente Folgen in K. (a) Die Folge (a n + b n ) n N ist konvergent mit (a n + b n ) = a n + b n. (b) Für jedes c K ist die Folge (ca n ) n N konvergent mit (ca n) = c a n. 0-4

5 (c) Die Folge (a n b n ) n N ist konvergent mit ( ) ( ) (a nb n ) = a n b n. (d) Ist b n 0 und gilt b n 0 für alle n N, so ist die Folge (a n /b n ) n N konvergent mit a a n n = b n b. n Beweis: Seien a der Grenzwert von (a n ) n N und b der Grenzwert von (b n ) n N. (a) Die Folge ((a n + b n ) (a + b)) n N = ((a n a) + (b n b)) n N ist nach Lemma 4.(a,d) eine Nullfolge. (b) Die Folge (ca n ca) n N = (c(a n a)) n N ist nach Lemma 4.(b,d) eine Nullfolge. (c) Nach Lemma 2.(a) ist die Folge (a n ) n N beschränkt, und damit ist die Folge (a n b n ab) n N = (a n b n a n b + a n b ab) n N = (a n (b n b) + b(a n a)) n N nach Lemma 4.(a,b,c,d) eine Nullfolge. (d) Es gibt ein n 0 N mit b n b < b /2 für alle n N mit n n 0. Für jedes n N mit n n 0 folgen damit auch b n = b (b b n ) b b n b > b b 2 = b 2 und d.h. die Folge (/b n ) n N ist beschränkt. Damit ist die Folge ( an a ) = b n b n N ( ) an b ab n b n b n N nach Lemma 4.(a,b,c,d) eine Nullfolge. = b n < 2 b, ( ) an b ab + ab ab n = b n b n N ( = (a n a) a ) b n b n b (b n b) b n n N Die Forderung b n 0 für alle n N in Aussage (d) ist eigentlich nicht nötig. Im Beweis von (d) haben wir ja gesehen, dass es ein n 0 N mit b n > b /2 für alle n N mit n n 0 gibt, und damit ist insbesondere auch b n 0 für alle n N mit n n 0. Betrachten wir also wieder die Folge ab dem Startindex n 0, so ergibt sich (d) auch in diesem Fall, solange wir uns die Folge (a n /b n ) n n0 als ab dem Startindex n 0 definiert denken. Die Voraussetzung b 0 ist dagegen wirklich nötig. Wir wollen jetzt ein paar Beispiele zur Anwendung der Grenzwertregeln behandeln. 0-5

6 . Sei eine reelle Zahl c (0, ) gegeben. Dann ist /c > und somit folgt n c = n c = n c =, da wir den Grenzwert im Nenner bereits früher zu berechnet hatten. Insgesamt ist damit ( n c) n N für überhaupt jedes c R mit c > 0 gezeigt. 2. Wir wollen jetzt den schon recht kompliziert aussehenden Grenzwert 2n 3 2n + 7 n 3 + 3n + behandeln. Erweitern wir Zähler und Nenner mit /n 3 und erinnern uns an den schon bekannten Grenzwert /n 0, so rechnen wir mit den Grenzwertregeln 2n 3 2n + 7 n 3 + 3n + = n 2 n = n 2 n n 2 n = 2. n 2 n 3 Außerdem haben wir dabei die triviale Tatsache verwendet, dass konstante Folgen (c) n N gegen die entsprechende Konstante c konvergieren. 3. Ein ähnliches, scheinbar noch komplizierteres, Beispiel ist der Grenzwert Wir erweitern mit /n 2, und erhalten 2n 2 n cos(n) + 3 sin(n 4 + ). 3n 2 + n + ( ) n 2n 2 n cos(n) + 3 sin(n 4 + ) 3n 2 + n + ( ) n 2 cos n = + 3 sin(n4 +) n n ( )n n n 2. Nun ist (/n) n eine Nullfolge und (cos n) n N eine beschränkte Folge, da der Cosinus ja nur Werte zwischen und annimmt, also ist (cos(n)/n) n nach Lemma 4.(c) eine Nullfolge. Ebenso sind (3 sin(n 4 +)/n 2 ) n und (( ) n /n 2 ) n Nullfolgen, es gilt also 2n 2 n cos(n) + 3 sin(n 4 + ) 3n 2 + n + ( ) n 2 cos n = + 3 sin(n4 +) n n = 2 ( )n 3. n n 2 Als ein weiteres Beispiel zur Anwendung der Grenzwertregeln wollen wir die letzten beiden Beispiele noch etwas ausweiten, und allgemein den Grenzwert von Folgen berechenen die als rationale Ausdrücke in n gegeben sind, also als Quotient von Polynomen in n. Zur Vorbereitung beweisen wir ein kleines Lemma über das Wachstumsverhalten von Polynomen. 0-6

7 Lemma 4.7 (Wachstumsverhalten von Polynomen) Seien K {R, C}, n N, ɛ > 0 und a 0,..., a n K mit a n 0 gegeben. Dann existiert eine reelle Zahl r > 0 so, dass für jedes x K mit x r stets ( a n ɛ) x n n < a k x k < ( a n + ɛ) x n gilt. Beweis: Für n = 0 ist dies klar, wir können also n annehmen. Setze M := max{ a 0, a,..., a n } und r := + nm ɛ. Sei x K mit x r gegeben. Wegen r ist dann auch x und für jedes 0 k < n ist damit x k = x k x n. Damit folgt weiter n n n n a k x k a k x k = a k x k M x n = nm x n = nm x x n nm r x n < ɛ x n. Dies ergibt weiter n a k x k a n x n n + a k x k < a n x n + ɛ x n = ( a n + ɛ) x n, n a k x k a n x n n a k x k > a n x n ɛ x n = ( a n ɛ) x n. Damit ist das Lemma vollständig bewiesen. Das Lemma ist eine quantitavive Form der Aussage das Polynome wie ihr höchstes Glied wachsen. Wählen wir insbesondere ɛ = a n /2 > 0, so wird das Lemma zu a n 2 n x n < a k x k < 3 2 a n x n 2 a n x n für alle x K mit x r. Insbesondere gilt für x K mit x r > 0 damit a n x n + + a 0 0, die Nullstellen des Polynoms haben also alle einen Betrag kleiner als r. Mit diesem Lemma können wir jetzt allgemein die Konvergenz von Folgen behandeln deren n-tes Folgenglied eine rationale Funktion in n ist, also ein Quotient zweier Polynome in n. Das Konvergenzverhalten derartiger Folgen hängt hauptsächlich vom Grad der beiden Polynome ab, und es treten drei verschiedene Fälle auf je nachdem 0-7

8 ob der Zählergrad größer ist als der Nennergrad oder der Zählergrad kleiner ist als der Nennergrad oder ob die beiden gleich sind. Satz 4.8 (Rationale Folgen in n) Seien K {R, C}, r, s N und a 0,..., a r, b 0,..., b s K mit a r 0 und b s 0. Dann gelten: (a) Ist r < s, so ist (b) Ist r = s, so ist a r n r + a r n r + + a 0 = 0. b s n s + b s n s + + b 0 a r n r + a r n r + + a 0 b r n r + b r n r + + b 0 (c) Ist r > s, so ist die Folge ( ) ar n r + a r n r + + a 0 = a r b r. divergent. b s n s + b s n s + + b 0 n Beweis: Nach Lemma 7 gibt es reelle Konstanten t, t 2 > 0 mit a r (x K, x t ) : 2 r x r < a k x k < 2 a r x r und b s (x K, x t 2 ) : 2 s x s < b k x k < 2 b s x s. Nach.Lemma 5 existiert weiter ein n 0 N mit n 0 max{t, t 2 }. Insbesondere ist b s n s + + b 0 > 0 für alle n N mit n n 0, die Folge ist also ab dem Startwert n 0 überhaupt definiert. (a) Für jedes n N mit n n 0 gilt a r n r + a r n r + + a 0 b s n s + b s n s + + b 0 und die Behauptung folgt mit Lemma 4.(b,e). (b) Nach Satz 6.(a,b) gelten r also ist nach Satz 6.(d) auch = a rn r + a r n r + + a 0 b s n s + b s n s + + b 0 < 4 a r b s n, s r a k n r k = a r und a r n r + a r n r + + a 0 b r n r + b r n r + + b 0 r b k n r k = b r, a r + a r = + + a n 0 n r b r + b r + + b n 0 n r 0-8 = a r b r.

9 (c) Für jedes n N mit n n 0 gilt a r n r + a r n r + + a 0 b s n s + b s n s + + b 0 = a rn r + a r n r + + a 0 b s n s + b s n s + + b 0 > a r 4 b s nr s a r 4 b s n, und nach.lemma 5 ist dies nicht nach oben beschränkt. Die Behauptung folgt nun mit Lemma 2.(a). 0-9

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Die p-adischen Zahlen

Die p-adischen Zahlen Universität Bielefeld Algebra Die p-adischen Zahlen Seminararbeit von Denny Otten FAKULTÄT FÜR MATHEMATIK Datum: 29. Oktober 2006 Betreuung: Prof. Dr. Dr. K. Tent Dipl.-Math. G. Hainke Dipl.-Math. L. Scheele

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Prof. Dr. M. v. Golitschek Institut für Mathematik Universität Würzburg Literatur: Suchen Sie doch hin und wieder die Bibliotheken

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen,

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, 1 Die reellen Zahlen 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, präzise und logisch zu denken, komplexe Strukturen schnell und gründlich zu erfassen, Dinge kritisch zu hinterfragen

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43 Zahlenbereiche Jörn Loviscach Versionsstand: 20. Oktober 2009, 17:43 1 Natürliche, ganze und rationale Zahlen Zum Zählen benötigt man die positiven natürlichen Zahlen 1, 2, 3,... In der Informatik zählt

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Elementare Zahlentheorie (Version 1)

Elementare Zahlentheorie (Version 1) Elementare Zahlentheorie (Version (Winter Semester, 2005-6 Zur Notation N ist die Menge der natürlichen Zahlen:, 2, 3, 4, 5,... und so weiter. Z ist die Menge aller ganzen Zahlen:..., 4, 3, 2,, 0,, 2,

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

9. Anwendungen der Fundamentalgruppe

9. Anwendungen der Fundamentalgruppe 76 Andreas Gathmann 9. Anwendungen der Fundamentalgruppe Nachdem wir mit Hilfe von Überlagerungen nun in der Lage sind, Fundamentalgruppen zu berechnen, wollen wir in diesem abschließenden Kapitel noch

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Programmieren in JavaScript

Programmieren in JavaScript Lineare Programme 1. Euro a) Schreiben Sie ein Programm, dass Frankenbeträge in Euro umrechnet. Der Benutzer gibt dazu den aktuellen Kurs ein, worauf das Programm einige typische Werte (z.b. für Fr 10,

Mehr

Vorlesung Analysis I für Informatiker & Statistiker. Universität München, WS 11/12. Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin.

Vorlesung Analysis I für Informatiker & Statistiker. Universität München, WS 11/12. Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin. Vorlesung Analysis I für Informatiker & Statistiker Universität München, WS 11/12 Prof. Dr. Max v. Renesse mrenesse@math.tu-berlin.de Kapitel 1: Grundlagen 1.1 Aussagenlogik Elementare Aussagenlogik Definition

Mehr

Rekursion und Iteration - Folgen und Web-Diagramme

Rekursion und Iteration - Folgen und Web-Diagramme Rekursion und Iteration - Folgen und Web-Diagramme Ac Einführungsbeispiel Quadratpflanze Ein Quadrat mit der Seitenlänge m wächst wie in der Grafik beschrieben: Figur Figur2 Figur3 Täglich kommt eine Generation

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr