Röntgenstrahlung für Nichtmediziner

Größe: px
Ab Seite anzeigen:

Download "Röntgenstrahlung für Nichtmediziner"

Transkript

1 1 Röntgenstrahlung für Nichtmediziner Vorbereitung: Erzeugung von Röntgenstrahlen, Funktionsweise einer Röntgenröhre, spektrale Zusammensetzung von Röntgenstrahlung, Eigenschaften von Röntgenstrahlung, Wechselwirkung mit Materie (Bragg-Reflexion bzw. Beugung, Absorption und Streuung), Nachweis von Röntgenstrahlung, Funktionsweise eines Zählrohrs, Anwendungsmöglichkeiten von Röntgenstrahlung. 1 Versuchsbeschreibung Abbildung 1: Einteilung elektromagnetischer Strahlung nach Frequenzen und Wellenlängen 1.1 Verwendung von Röntgenstrahlung Neben der bekannten Anwendung der R. in der Medizin, gibt es viele Bereiche der Materialforschung die auf Röntgenstrahlung angewiesen sind. Zuvorderst ist hier die Aufklärung der Struktur von Kristallen aber auch von großen Molekülen (Proteinen, DNA, etc.) zu nennen. Darüberhinaus gibt es natürlich auch Anwendungen ähnlich der in der Medizin, bei der man sich die Absorption von Röntgenstrahlung zu Nutze macht, um in verschlossene Behälter Einblick zu erlangen (Sicherheitstechnik). Röntgenstrahlen sind elektromagnetische Wellen (wie Licht), die in einem Wellenlängenbereich von ca m bis m liegen, wie in der Tabelle zu ersehen ist befindet sich dieser Teil zwischen dem Bereich des ultravioletten Lichts und der Gammastrahlung (Abb. 1). Röntgenstrahlen gehören zu ionisierenden Strahlen, was bedeutet, dass durch sie in Gasen aber auch biologischem Gewebe Ionen (Radikale) gebildet werden können. Auch sind Röntgenstrahlen in der Lage, Bindungen in Molekülen und damit auch das Erbgut zu zerstören. Daher gelten strenge Strahlenschutzvorschriften. Ist darf bei den Geräten, die im Praktikum verwendet werden, eine maximale Strahlungsbelastung ausserhalb nicht überschritten werden und es muss durch geeignete technische Maßnahmen (die man nicht umgehen darf) ausgeschlossen sein, dass Personen im Umfeld von der Röntgenstrahlung direkt getroffen werden.

2 2 Versuchsbeschreibung 1.2 Erzeugung von Röntgenstrahlung Röntgenstrahlen werden in einer hochevakuierten Röhre erzeugt; dabei werden Elektronen aus der Glühkathode herausgelöst und mittels einer anliegenden Spannung zwischen Kathode und Anode in Richtung der positiven Elektrode beschleunigt (Abb. 2). Nach dem Durchlauf der angelegten Hochspannung U A (ca. 10 kv kv) besitzen die Elektronen am Ende eine kinetische Energie (Gl. 1). E kin = e U (1) e: E kin : U: Ladung eines Elektrons kinetische Energie Beschleunigungsspannung e = 1, C [E kin ] = ev; 1 ev = 1, J [U] = V Abbildung 2: Schematischer Aufbau einer Röntgenröhre. Diese kinetische Energie wird beim Auftreffen auf die Anode hauptsächlich in Wärmeenergie (99%) umgewandelt und nur ein kleiner Rest wird als Röntgenstrahlung emittiert. Im Anodenmaterial verlieren die Elektronen Energie durch inelastische Stöße mit den Elektronen der Atome und durch Abstrahlung bei Ablenkung und Beschleunigung im Coulombfeld des Atomkerns. Bei diesem Vorgang entsteht ein kontinuierliches Spektrum, das Bremsspektrum. Dabei ist diese Röntgenstrahlung zusammengesetzt aus Röntgen-Bremsstrahlung und Charakteristischer Röntgenstrahlung, wobei die Entstehung der jeweiligen Art zur Namensgebung führte Röntgen-Bremsstrahlung (kontinuierliches Bremsspektrum) Röntgen-Bremsstrahlung entsteht, wenn Elektronen im elektrischen Feld eines Atomkernes abgebremst werden. Dabei verliert das Elektron durch den Abbremsvorgang Energie, die infolge des Energieerhaltungssatzes zum Großteil in Energie der entstehenden Photonen E Ph umgewandelt wird. Die Energieabgabe verläuft dabei in unterschiedlichen, kontinuierlichen Beträgen, wodurch ein kontinuierliches Spektrum entsteht. Die Photonenenergie E ph ist abhängig von der Wellenlänge bzw. der Frequenz der Strahlung. E Ph = h ν = h c λ (2)

3 3 λ: h: c: ν: Wellenlänge der Röntgenstrahlung Plank sches Wirkungsquantum Lichtgeschwindigkeit im Vakuum Frequenz der Röntgenstrahlung Nützlich: hc = 1, evm [λ] = m h = 6, Js = 4, evs c = m/s [ν] = Hz = 1,242 evµm Je größer also die Energie der Photonen, desto größer die Frequenz ν und desto kleiner die Wellenlänge λ der Röntgenstrahlung (vergl. Gl. 2). Die kürzeste Wellenlänge λ min ( höchste Energie) des Röntgenspektrums entsteht, wenn ein Elektron seine gesamte Energie in nur einem Prozeß beim Abbremsen abgibt (Gl. 3). λ min = h c e U (3) Die nachfolgende Abbildung zeigt verschiedene Bremsspektren in Abhängigkeit von den Beschleunigungsspannungen und dem Emissionsstrom. Abbildung 3: Links: Kontinuierliches Bremsspektrum für einen festen Emissionsstrom I 0 und verschiedene Beschleunigungsspannungen U A. Rechts: Kontinuierliches Bremsstrahlungsspektrum zweier Beschleunigungsspannungen, aber jeweils unterschiedlichen Emissionsstroms Die charakteristische Röntgenstrahlung Die Physik der Atome wird nur von der Quantenmechanik richtig beschrieben, das im folgenden verwendete Schalenmodell (Bohr sches Atommodell) der Elektronenhülle ermöglicht eine klassische Vorstellung davon, wie es im Atom zur Quantisierung von Energiewerten kommt. Allerdings darf man es nicht überstrapazieren: Elektronen sind keine Teilchen, die auf klassischen Kreisbahnen um den Atomkern kreisen! Nach dem Bohr schen Atommodell kreisen eine Anzahl von Elektronen auf ihren jeweiligen Bahnen um den Atomkern. Die Anzahl der Elektronen entspricht der Ordungszahl (= Kernladungszahl = Anzahl der Protonen im Kern) des jeweiligen Elementes, so dass das Atom elektrisch neutral ist. Die Quantenmechanik erklärt, dass sich bestimmte Bahnen zu einzelnen Gruppen, zu sogenannten Schalen, zusammenfassen lassen. Diese werden von innen nach außen mit Elektronen aufgefüllt (Pauliprinzip) und dementsprechend in diese Richtung durch Großbuchstaben gekennzeichnet (K, L, M, N,...). Die K Schale kann mit 2, die L Schale mit 8 und die M Schale mit 18 Elektronen gefüllt werden. Die Schalen sind Energieniveaus, die die Energie der Elektronen der Schale charakterisieren. Die Energie der Niveaus nimmt von innen nach außen zu.

4 4 Versuchsbeschreibung Ist die kinetische Energie der beschleunigten Elektronen groß genug, um ein Elektron beim Auftreffen aus der Atomhülle zu schlagen (ionisieren) dann kann ein Elektron aus einer weiter außen befindlichen Schale in die entstandene Lücke springen. Dabei sind nicht alle Übergänge erlaubt, sondern nur solche, welche bestimmte Auswahlregeln der Quantenmechanik erfüllen (Abb. 4 links). Dies ist abhängig von der Energie der beteiligten Energieniveaus. Die Differenzenergie E aussen E innen wird in Form elektromagnetischer Strahlung im Wellenlängenbereich der Röntgenstrahlung abgegeben (Gl. 4). Dieses Röntgenquant (= Photon) hat eine diskrete Energie: E Ph = E aussen E innen = hν = h c λ (4) Hierbei sind eine große Zahl von Übergängen möglich (Abb. 4 links). Es entsteht ein sogenanntes Linienspektrum, welches nur von der atomaren Zusammensetzung des Anodenmaterials abhängt. Die so entstandene Röntgenstrahlung wird deswegen Charakteristische Strahlung (Abb. 4 rechts) genannt. Abbildung 4: Links: Mögliche Übergänge beim Herrausschlagen eines Elektrons der inneren Schalen. Rechts: Charakteristische Röntgenstrahlung. Weitere Spezifikationen sind das Zusammenfassen der einzelnen Linien zu Serien. Übergänge von äußeren Schalen in die K- Schale werden als K-Serie bezeichnet, der Übergang L zu K bezeichnet man als K α -Strahlung, den Übergang von M zu K als K β usw. Für Molybdän als Beispiel liegen die Energien der charakteristischen Strahlung bei K α = 17, 4 kev bzw. K β = 19, 6 kev. 1.3 Nachweis von Röntgenstrahlung Abbildung 5: Funktionsprinzip des Geiger-Müller-Zählrohrs

5 5 Der Nachweis von Röntgenstrahlung erfolgt mit Hilfe des Geigerzählrohrs. Dies besteht im wesentlichen aus einem Metallrohr, in dessen Mitte sich ein dünner Draht befindet. Zwischen beiden liegt eine hohe Spannung an. Tritt nun durch das Fenster Röntgenstrahlung in das Zählrohr, so werden durch die Strahlung Ionen erzeugt, welche durch die anliegende Spannung zur jeweils gegenpoligen Elektrode beschleunigt werden. Die Spannung ist dabei so hoch, daß die entstandenen Ladungsträger soviel Energie gewinnen, um durch Stoßprozesse mit weiteren Gasmolekülen neue Ionen zu erzeugen (Elektronenlawine). Durch jeden so entstandenen Ladungsträger kommt es zu einem kurzen Stromstoß, der die anliegende Spannung zum Zusammenbruch bringt. Das Zusammenbrechen der Spannung (das Klicken des Zählrohrs bei einem akustischem Gerät) wird elektronisch gezählt. 1.4 Absorption von Röntgenstrahlen Wechselwirkung von Röntgenstrahlen mit Materie Zwei Prozesse werden bei der Wechselwirkung von Röntgenstrahlen mit Materie unterschieden: Vollständige Absorption, d.h. die gesamte Energie des Photons wird von den beteiligten Atomen aufgenommen; Durch verschiedene Prozesse, auch z.b. die Ionisierung der Atome, wird die Energie zuletzt in Wärme umgewandelt. Streuung, d.h. die Richtung der Photonen ändert sich; eventuell geht ein Teil der Energie verloren. Die Wechselwirkung mit Materie umfaßt: Klassische Streuung Photo-Effekt Compton-Effekt Paarbildung Elastische Streuung bedeutet, dass das Röntgenphoton seine Energie beibehält, aber aus der ursprünglichen Richtung ausgelenkt wird. Insbesondere zur Strukturuntersuchung wird dies verwendet um die Anordnung der Gitterebenen zu bestimmen (siehe Bragg-Reflexion). Die Paarbildung, bei der aus dem Röntgenphoton ein Elektron und Positron (Antiteilchen des Elektrons) erzeugt wird (gemäß der Äquivalenz von Masse und Energie) kann nur bei Photonenenergien > 1.02MeV auftreten, die natürlich im Versuch nicht erreicht werden. (Warum ist das gut so?) Der Photo-Effekt bezeichnet die Absorption der Röntgenstrahlen, bei der die gesamte Energie der Röntgenphotonen auf die Elektronen übertragen wird. Es entsteht ein freies Elektron, wenn beim Energieübertrag ein gewisser Schwellenwert, die Bindungsenergie E B (Abb. 6(a)) des Elektrons im Atom überschritten wird. Zurück bleibt ein positiv geladenes Atom (Ion) und das freie Elektron mit der kinetischen Energie E kin = hν E B. (a) (b) Abbildung 6: (a) Photo-Effekt, (b) Compton-Effekt Unter dem Compton-Effekt versteht man die Streuung eines Photons an den vergleichsweise schwach gebundenen Elektronen der äußeren Atomhülle (N, O,... Schale). Das Photon gibt dabei nur einen Teil seiner Energie (E γ = hν) an ein Elektron ab. Das Photon fliegt mit verringerter Energie (E γ = hν ) d.h. mit

6 6 Versuchsbeschreibung (a) (b) Abbildung 7: (a) Intensitätsverlauf in Abhängigkeit von der Dicke des Absorbermaterials; (b) Grafische Darstellung des Schwächungskoeffizienten aufgetragen über der Strahlungsenergie als Summe der einzelnen Prozesse größerer Wellenlänge und veränderter Richtung weiter (Abb. 6(b)). Das Elektron hat die Energiedifferenz E e = E γ E γ übernommen und wird mit der kinetischen Energie E kin = E γ E γ E B emittiert. Zurück bleibt ein ionisiertes Atom Das Schwächungsgesetz Alle vorher erwähnten Effekte führen zu einer Schwächung bzw. einer Absorption der ionisierenden elektromagnetischen Strahlung. Wird die Intensität vor dem Eintritt in die Materie gemessen (I 0 ) und nach dem Durchgang (I), so läßt sich die Schwächung durch das sogenannte Schwächungsgesetz beschreiben (Gl. 5). Die in der Materie verbleibende Energie wird in Wärme umgewandelt. Die (vereinfachte) Annahme hierfür ist, dass in einem homogenen Material der pro Schichtdicke dz absorbierte Anteil der Intensität di konstant ist und proportional zur einfallenden Intensität I ist (di = const I dz) Die Intensität nimmt daher exponentiell mit der Dicke des durchstrahlten Materials ab (Abb. 7). I = I 0 e κd (5) I: I 0 : κ: d: Intensität nach dem Materialdurchgang Intensität vor dem Materialdurchgang Schwächungs- (Extinktions-) koeffizient Dicke der absorbierenden Schicht [I] = W/cm 2 [I 0 ] = W/cm 2 [κ] = m 1 [d] = m Der Extinktions- oder Schwächungskoeffizient κ beinhaltet streng genommen die Summe zweier Beiträge, nämlich der Streuung und der Absorption der Strahlung, was aber nicht vertieft werden soll. Bei der Absorption durch Photo- und Compton-Effekt werden Elektronen aus der Atomhülle gelöst. Die Energie des Röntgenquants wird dabei auf das Elektron übertragen. Der Absorptionskoeffizient τ hängt von der Wellenlänge λ der Röntgenstrahlung, der Ordnungszahl Z des Absorbermaterials und dessen Dichte ρ ab. Dieser Zusammenhang wird angenähert durch die empirisch ermittelte Beziehung: κ = cρz 3 λ 3 (6) Bei Gleichung 7 ist der Faktor c eine dimensionsbehaftete Größe, die abschnittsweise konstant ist und bei einigen bestimmten Wellenlängen (= Absorptionskanten) springt, weil mit wachsender Energie plötzlich Elektronen einer tieferen Schale herausgeschlagen werden (Abb. 8). Für die Lage der kurzwelligsten dieser Kanten, der K-Kante, gilt: h ν = h c λ K = (13.6 ev) Z 2 (7) Dies entspricht der Rydberg-Gleichung für ein Atom der Ordnungszahl Z (Wasserstoff: Z = 1!) und gibt die Bindungsenergie eines 1s-Elektrons an.

7 7 Abbildung 8: Links: Dichtebezogener Schwächungskoeffizient in Abhängigkeit von der Ordnungszahl Z bei λ = konst. Rechts: Dichtebezogener Schwächungskoeffizient in Abhängigkeit von der Wellenlänge λ Diese Kanten sind ein Indiz für das Vorhandensein von diskreten Energiezuständen in der Atomhülle (Schalen gleicher Energie). 1.5 Bragg-Reflexion Bei der Bragg-Reflexion handelt es sich um die Beugung von Röntgenlicht an den Atomen, Molekülen bzw. Ionen von Kristallen und nachfolgender Interferenz der gebeugten Strahlung. H. Bragg und W. L. Bragg erkannten (1913), daß man die Beugung und Interferenz von Röntgenstrahlen auch als Reflexion an den Netzebenen von Kristallen deuten kann. Netzebenen sind gedachte, durch die Gitterbausteine gehende Ebenen. Der Abstand zweier benachbarter, zueinander paralleler Ebenen wird Netzabstand genannt. Um die sogenannte Bragg-Bedingung herzuleiten, wird eine Schar paralleler Abbildung 9: Herleitung der Bragg-Bedingung Netzebenen betrachtet, an denen das einfallende Röntgenlicht reflektiert werden soll. Der Gangunterschied (B 1 A 2 + A 2 B 2 ) zweier an benachbarten Netzebenen reflektierter Wellen beträgt, wie die Geometrie zeigt, am Ort des Detektors 2d sinθ. Damit dort ein Intensitätsmaximum wahrgenommen wird, muß der Gangunterschied nach dem Gesetz der Wellenmechanik ein ganzzahliges Vielfaches der Wellenlänge sein. Somit erhält man die Bragg-Bedingung: 2d sin θ = n λ; n = 1, 2, 3,... (8) Dabei ist θ der Glanzwinkel, unter dem das Röntgenlicht mit der Wellenlänge λ auf die reflektierenden Netzebenen fällt und d der Abstand dieser Ebenen. Obige Gleichung besagt, daß bei gegebenem Netzab-

8 8 Aufgaben stand jede Wellenlänge λ der einfallenden Strahlung nur unter einem ganz bestimmten Winkel reflektiert wird. Beugung und Interferenz von Röntgenstrahlung nach der Bragg-Bedingung ermöglicht den Bau von Spektralapparaten. Bei den folgenden Versuchen wird die Bragg-Reflexion an Einkristallen verwendet. 2 Aufgaben Bei der Untersuchung der Röntgenstrahlung mittels der Bragg-Reflexion wird der Kristall an der Aufnahme am Goniometer befestigt, danach wird am Bedienfeld der Scan-Modus COUPLED eingestellt. Bei dieser Einstellung wird der Arm des Goniometers im Verhältnis 2:1 betrieben, dies führt dazu, daß bei Drehung des Meßarmes und damit des auf ihm sitzenden Detektors um einen Winkel 2θ der Kristall genau um die Hälfte dieses Winkels mitgedreht wird. Dadurch ist die zum Nachweis der Bragg-Reflexion erforderliche Gleichheit des Ein- und Ausfallwinkels gewährleistet. Die vorliegende Röhre hat eine Molybdänanode und kann mit einer Anodenspannung U A zwischen 0 und 30 kv betrieben werden. Der Emissionsstrom I A ist von 0-1 ma einstellbar. 2.1 Untersuchung der spektralen Zusammensetzung der Röntgenstrahlung und Bestimmung der Gitterkonstante eines unbekannten Kristalls Mit Hilfe der Bragg-Reflexion soll zunächst die spektrale Zusammensetzung der in einer Röntgenröhre erzeugten Strahlung untersucht werden, sowie a) Nehmen Sie das Spektrum der Röntgenröhre (U = 30 kv; I = 1,0 ma) mit Hilfe der Bragg-Reflexion an einem LiF-Einkristall (d = 201 pm / gelb) auf. Der entsprechende Winkelbereich ist dabei zweckmäßig auf β Unten = 2,5, β Oben = 30 und einen Bereich von β = 0,1 einzustellen. Das Zeitintervall t ist auf 2 sec einzustellen. Bestimmen Sie hieraus mit Hilfe der Bragg-Beziehung die Wellenlänge der MoK α - Linie und der MoK β - Linie für alle Beugungsordnungen. b) Nehmen Sie nun das Spektrum für U = 25 kv auf und reduzieren den Winkelbereich auf 15. Alle anderen Einstellungen bleiben wie bei der vorhergehenden Messung eingestellt. Bestimmen Sie aus dem kurzwelligen Ende des Spektrums das Planksche Wirkungsquantum h. c) Tauschen Sie den LiF-Kristall gegen den unbekannten Kristall aus und nehmen Sie nun das Spektrum der Röntgenröhre mit den gleichen Einstellungen wie in b) auf. Durch Vergleich können Sie den Netzebenenabstand des unbekannten Kristalls bestimmen. Mit Hilfe der unteren Tabelle 1 können Sie feststellen, um welchen Einkristall es sich handelt. Einkristall LiF KCl NaCl RbCl Netzebenenabstand d in pm Tabelle 4: Netzebenenabstände einiger ausgesuchter Einkristalle 2.2 Absorption von Röntgenstrahlen Wie man aus obiger Aufgabe erkennen kann, entsteht in der Röntgenröhre sogenannte weiße Röntgenstrahlung, d.h. Röntgenstrahlung, die aus einem Kontinuum von Wellenlängen zusammengesetzt ist. Das Absorptionsgesetz ist aber nur für monochromatische Strahlung exakt erfüllt. Darum wird mit Hilfe der Bragg-Reflexion versucht nahezu monochromatische Strahlung zu erzeugen. Der gewählte Winkel bestimmt die Intensität I 0 und die Wellenlänge bzw. Energie der Strahlung, die auf den Absorber trifft Bestimmung des Schwächungskoeffizienten κ a) Setzen Sie den LiF-Einkristall ein, wählen Sie 30 kv Röhrenspannung, und stellen Sie den Winkel der MoK α - Linie ein. Messen Sie die Intensität I dieser monochromatischen Strahlung nach Durchdringung von Aluminiumfolien unterschiedlicher Dicke (0,1; 0,2; 0,3; 0,4; 0,5 mm). Dazu wählt man einen Winkelbereich von β = 0 und ein Zeitintervall von t = 10 s. Durch Drücken von COU- PLED, SCAN und REPLAY erhält man schließlich die mittlere Zählrate pro Sekunde. Zur Auswertung trage man ln(i 0 /I) = f(d) graphisch auf und bestimme den Schwächungskoeffizienten κ aus der Steigung des Graphen.

9 9 b) Die Absorption von Röntgenstrahlung nimmt mit der Dicke des durchstrahlten Elementes zu. Dies ist das Ergebnis aus der Teilaufgabe a). In der nächsten Aufgabe wird die Abhängigkeit des photoelektrischen Massenabsorptionskoeffizienten κ/ρ von der Ordnungszahl Z durch die Verwendung verschiedener Absorbermaterialien gezeigt. Bleiben Sie bei der Winkeleinstellung der MoK α - Linie. Bestimmen Sie die Intensität I der Strahlung nach dem Durchgang durch die verschiedenen Filter wie in Teilaufgabe a). Tragen Sie danach κ/ρ doppelt-logarithmisch gegen Z auf und überprüfen Sie, ob ein Potenzgesetz vorliegt. Element Ordnungszahl Z Dichte ρ in g/cm 3 Dicke in mm Fe Cu Zr Mo Ag In Tabelle 5: Dicken und Parameter der Absorber

Röntgenstrahlung (Mediziner)

Röntgenstrahlung (Mediziner) 1 Röntgenstrahlung (Mediziner) Versuchsziele: Physikalische Grundlagen der Röntgenstrahlung zeigen und somit die Wirkungsweise der Röntgenstrahlung in der Medizin erklären. Grundlagen: Vor dem Versuch

Mehr

Röntgenstrahlung. Abb. 1: Einteilung elektromagnetischer Strahlung nach Frequenzen und Wellenlängen. Röntgenstrahlung.

Röntgenstrahlung. Abb. 1: Einteilung elektromagnetischer Strahlung nach Frequenzen und Wellenlängen. Röntgenstrahlung. Röntgenstrahlung Vorbereitung: Erzeugung von Röntgenstrahlen, Funktionsweise einer Röntgenröhre, spektrale Zusammensetzung von Röntgenstrahlung, Eigenschaften von Röntgenstrahlung, Wechselwirkung mit Materie

Mehr

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #46 am 19.07.2007 Vladimir Dyakonov Atome und Strahlung 1 Atomvorstellungen J.J. Thomson 1856-1940

Mehr

Das Linienspektrum oder charakteristische Spektrum

Das Linienspektrum oder charakteristische Spektrum Das Linienspektrum oder charakteristische Spektrum Ein Linienspektrum weist - im Gegensatz zu einem kontinuierlichen Spektrum - nur bei bestimmten (diskreten) Wellenlängen Intensitätswerte auf. In Abb.9.6

Mehr

VL Physik für Mediziner 2009/10. Röntgenstrahlung

VL Physik für Mediziner 2009/10. Röntgenstrahlung VL Physik für Mediziner 2009/10 Röntgenstrahlung Peter-Alexander Kovermann Institut für Neurophysiologie Medizinische Hochschule Hannover Kovermann.Peter@MH-Hannover.DE Was ist Röntgenstrahlung und. wer

Mehr

Versuch 7 Röntgenspektrum und Röntgenabsorption

Versuch 7 Röntgenspektrum und Röntgenabsorption Versuch 7 Röntgenspektrum und Röntgenabsorption Aufbau einer Röntgenröhre Röntgenstrahlen entstehen in einer Röntgenröhre (Abb. 1). U h : Heizspannung U a : Anodenspannung (Größenordnung 100 kv) K: Kathode

Mehr

Die Arten der ionisierenden Strahlen. Strahlenquellen

Die Arten der ionisierenden Strahlen. Strahlenquellen Die Arten der ionisierenden Strahlen. Strahlenquellen Kernstr. Kernstrahlungen (4-21) Röntgenstrahlung (22-43) Anhang 1. Intensität (44) 2. Spektrum (45-47) 3. Atom (48-56) Repetitio est mater studiorum.

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

9.3 Der Compton Effekt

9.3 Der Compton Effekt 9.3 Der Compton Effekt Im Kapitel Photoelektrischer Effekt wurde die Wechselwirkung von Licht mit Materie untersucht. Dabei wird Licht einer bestimmten Wellenlänge beim Auftreffen auf eine lichtempfindliche

Mehr

Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung

Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung Erzeugung von Röntgenstrahlung Scanogramm Röntgen- Quelle Detektor Entwicklung Verarbeitung Tomogramm Erzeugung von Röntgenstrahlung: Grundprinzip: Photoelektrischer Effekt - Erzeugung freier Elektronen

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

Charakteristische Röntgenstrahlung von Molybdän

Charakteristische Röntgenstrahlung von Molybdän Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Charakteristische Röntgenstrahlung von Kupfer

Charakteristische Röntgenstrahlung von Kupfer Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

21-1. K=f c I=I0 e f c d

21-1. K=f c I=I0 e f c d 21-1 Lichtabsorption 1. Vorbereitung : Extinktions- und Absorptionskonstante, mittlere Reichweite, Unterscheidung zwischen stark und schwach absorbierenden Stoffen, Lambert-Beersches Gesetz, Erklärung

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell 1900: Entdeckung einer neuen Naturkonstanten: Plancksches Wirkungsquantum Was sind Naturkonstanten und welche Bedeutung

Mehr

Charakteristische Röntgenstrahlung von Eisen

Charakteristische Röntgenstrahlung von Eisen Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit)

Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit) Elektromagnetische Strahlung Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit) Röntgenstrahlung besteht aus elektromagnetischen Wellen. Der Wellenlängenbereich erstreckt sich von etwa 10 nm bis

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Atom- und Kernphysik. Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom. LD Handblätter Physik

Atom- und Kernphysik. Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom. LD Handblätter Physik Atom- und Kernphysik Röntgenphysik Physik der Atomhülle LD Handblätter Physik P6.3.3.2 Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom Versuchsziele

Mehr

Röntgenstrahlung. Beantworten Sie die folgenden Fragen (am besten schriftlich; Lit.: Lehrbücher der Oberstufe).

Röntgenstrahlung. Beantworten Sie die folgenden Fragen (am besten schriftlich; Lit.: Lehrbücher der Oberstufe). In diesem Versuch werden Sie sich mit hochenergetischer elektromagnetischer Strahlung, der, auseinandersetzen. In diesem Versuch nutzen Sie die Welleneigenschaften und die damit verbundenen Interferenzeffekte,

Mehr

GRUNDLAGEN Aufbau und Funktionsweise der Röntgenröhre, elektrische potentielle Energie, kinetische Energie Bohr sches Atommodell...

GRUNDLAGEN Aufbau und Funktionsweise der Röntgenröhre, elektrische potentielle Energie, kinetische Energie Bohr sches Atommodell... E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de R2 Röntgenstrahlung (Skript zur Vorbereitung auf Abfragung) München den 29. April 2009 GRUNDLAGEN... 2 Aufbau und Funktionsweise der Röntgenröhre,

Mehr

Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung.

Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung. Trennung der charakteristischen TEP Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung. Prinzip Die von einer Röntgenröhre

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV)

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) TV 3km 300m 30m 3m 30cm Radiowellen (TV, Radio) 300cm 30cm 300µm 3µm 0.7µm 0.5µm 0.3µm 30nm 3mm 0.4µm Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) Sichtbares Licht UV-Strahlung

Mehr

HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik. Physik. Der Franck-Hertz-Versuch

HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik. Physik. Der Franck-Hertz-Versuch Gruppe: HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik Physik Versuch-Nr.: Der Franck-Hertz-Versuch Gliederung: 1. Theoretische Grundlagen 2. Versuchsbeschreibung 3. Versuchsaufbau 4. Messungen

Mehr

Laborversuche zur Physik 2 II Röntgenemissionsspektrum und Gitterkonstanten

Laborversuche zur Physik 2 II Röntgenemissionsspektrum und Gitterkonstanten FB Physik Laborversuche zur Physik 2 II - 10 Versuche mit Röntgenstrahlen Reyher, 12.06.15 Röntgenemissionsspektrum und Gitterkonstanten Ziele Röntgenemissionsspektrum Bestimmung des Planckschen Wirkungsquantums

Mehr

Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008

Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008 Versuch A1 - Braggsche Reflexion und Röntgenspektrum Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Versuchsziel 3 2 Physikalischer Zusammenhang 3 2.1 Röntgenstrahlung...........................

Mehr

Röntgenstrahlung. Schriftliche VORbereitung:

Röntgenstrahlung. Schriftliche VORbereitung: In diesem Versuch werden Sie sich mit hochenergetischer elektromagnetischer Strahlung, der, auseinandersetzen. In diesem Versuch nutzen Sie die Welleneigenschaften und die damit verbundenen Interferenzeffekte,

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung

Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Kapitel 3.4. Röntgendiffraktometrie Lothar Schwabe, Freie Universität Berlin 1. Einleitung Die Eigenschaft der Röntgenstrahlen, unterschiedliche Materialien zu durchdringen und dabei mehr oder weniger

Mehr

Röntgenstrahlung. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: Jakob Krämer Aktualisiert: am 09. 12. 2013. Physikalisches Grundpraktikum

Röntgenstrahlung. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: Jakob Krämer Aktualisiert: am 09. 12. 2013. Physikalisches Grundpraktikum Röntgenstrahlung Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Jakob Krämer Aktualisiert: am 09. 12. 2013 Röntgenstrahlung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

12. Jahrgangsstufe Abiturvorberitung Musterprüfungsaufgaben. Elektrische und magnetische Felder

12. Jahrgangsstufe Abiturvorberitung Musterprüfungsaufgaben. Elektrische und magnetische Felder Elektrische und magnetische Felder 1. Die urspründlicheste Form des Milikanversuchs war die Idee, dass zwischen zwei Platten eines Kondensators mit dem Abstand d ein Öltröpfchen der Masse m und der Ladung

Mehr

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2)

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2) Blatt 1 (von 2) 1. Elektronenausbeute beim Photoeekt Eine als punktförmig aufzufassende Spektrallampe L strahlt eine Gesamt-Lichtleistung von P ges = 40 W der Wellenlänge λ = 490 nm aus. Im Abstand r =

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

Klausur 2 Kurs 12Ph1e Physik

Klausur 2 Kurs 12Ph1e Physik 2011-12-07 Klausur 2 Kurs 12Ph1e Physik Lösung 1 In nebenstehendem Termschema eines fiktiven Elements My sind einige Übergänge eingezeichnet. Zu 2 Übergängen sind die zugehörigen Wellenlängen notiert.

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

502 Röntgenstrahlung

502 Röntgenstrahlung 502 Röntgenstrahlung 1. Aufgaben 1.1 Messen Sie die Luftionisation zwischen den Platten eines Flächenkondensators als Funktion der Röntgenstrahlintensität. Stellen Sie das Ergebnis grafisch dar und interpretieren

Mehr

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen Strukturbestimmung von NaCl-Einkristallen TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Reziproke Gitter, Millersche- Indizes, Atomfaktor, Strukturfaktor,

Mehr

Versuch 28. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 28. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 28 Röntgenstrahlung Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop)

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop) Grundwissen Physik 9. Jahrgangsstufe Gymnasium Eckental I. Elektrik 1. Magnetisches und elektrisches Feld a) Elektrisches Feld Feldbegriff: Im Raum um elektrisch geladene Körper wirkt auf Ladungen eine

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

Atom- und Kernphysik. Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten. LD Handblätter Physik P

Atom- und Kernphysik. Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Schwächung von Röntgenstrahlung LD Handblätter Physik P6.3.2.2 Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten Versuchsziele Messung der Transmission

Mehr

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt Kanalstrahlexperimente hatten schwere, positiv geladene Teilchen beim Wasserstoff nachgewiesen Aufgrund von Streuexperimenten postulierte

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

Quantenphänomene und Strahlungsgesetze

Quantenphänomene und Strahlungsgesetze Quantenphänomene und Strahlungsgesetze Ludwig Prade, Armin Regler, Pascal Wittlich 17.03.2011 Inhaltsverzeichnis 1 Quantenphänomene 2 1.1 Ursprünge....................................... 2 1.2 Photoeffekt......................................

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 08/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Physikalisches Praktikum A 5 Balmer-Spektrum

Physikalisches Praktikum A 5 Balmer-Spektrum Physikalisches Praktikum A 5 Balmer-Spektrum Versuchsziel Es wird das Balmer-Spektrum des Wasserstoffatoms vermessen und die Rydberg- Konstante bestimmt. Für He und Hg werden die Wellenlängen des sichtbaren

Mehr

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2) Blatt 1 (von 2) 1. Leuchtelektronen-Modell des Na-Atoms 5 BE Berechne aus dem experimentellen Wert der Ionisierungsenergie von Natrium, 5, 12 ev, die effektive Kernladungszahl für das Leuchtelektron der

Mehr

Atome und Strahlung. Entwicklung der Atomvorstellung

Atome und Strahlung. Entwicklung der Atomvorstellung Atome und Strahlung Aufbau der Atome Atomvorstellungen Materiewellen Atomaufbau Elektromagnetische Strahlung Absorption und Emission Charakteristische Röntgenstrahlung Bremsstrahlung Röntgenstrahlung und

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Kolleg 1998/ Klausur aus der Physik Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1

Kolleg 1998/ Klausur aus der Physik Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1 Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1 1. Rutherfordsches Atommodell Im Jahr 1904 entwickelte Thomson ein Atommodell, bei dem das Atom aus einer positiv geladenen Kugel mit homogener Massenverteilung

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,

Mehr

v ist die Teilchengeschwindigkeit in grosser Entfernung vom Kern. Die Impulsänderung Δp ist daher

v ist die Teilchengeschwindigkeit in grosser Entfernung vom Kern. Die Impulsänderung Δp ist daher phys4.03 Page 1 Die kinetische Energie E kin des α-teilchens ist vor und nach dem Stoss erhalten, da der Kern in Ruhe bleibt. Daher gilt für den Impuls des α-teilchens p 1 vor dem Stoss und p 2 nach dem

Mehr

5.2.8 Schalenaufbau der Atomhülle und Periodensystem der Elemente; Röntgenspektren

5.2.8 Schalenaufbau der Atomhülle und Periodensystem der Elemente; Röntgenspektren 5..8 Schalenaufbau der Atomhülle und Periodensystem der Elemente; Röntgenspektren Der Schalenaufbau der Atomhülle Für die Beschreibung eines Elektrons im dreidimensionalen Raum braucht man auch drei voneinander

Mehr

Vorlesung Physik für Pharmazeuten PPh - 11

Vorlesung Physik für Pharmazeuten PPh - 11 Vorlesung Physik für Pharmazeuten PPh - 11 Optik &Atomphysik 09.07.2007 und 16.07.2007 Der Hertzsche Dipol Der Hertzér Original Aufbau Höchste Frequenzen lassen sich bei kleinsten Werten von L und C erzielen.

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG B. Kopka Labor für Radioisotope der Georg-August-Universität Göttingen 1. Aufbau der Materie 1.1. Die Atomhülle 1.2. Der Atomkern 2. Strahlenarten

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015 Q34 LK Physik 25. September 2015 Geschichte Antike Vorstellung von Leukipp und Demokrit (5. Jahrh. v. Chr.); Begründung des Atomismus (atomos, griech. unteilbar). Anfang des 19. Jahrh. leitet Dalton aus

Mehr

Welle-Teilchen-Dualismus

Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus Andreas Pfeifer Proseminar, 2013 Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April 2013 1 / 10 Gliederung 1 Lichttheorie, -definition Newtons Korpuskulatortheorie

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

2. Kapitel Der Photoeffekt

2. Kapitel Der Photoeffekt 2. Kapitel Der Photoeffekt 2.1 Lernziele Sie wissen, was allgemein unter dem Begriff Photoeffekt zu verstehen ist. Sie können den inneren Photoeffekt vom äusseren unterscheiden. Sie können das Experiment

Mehr

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie 7 Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie Umwandlung von Licht in Wärme Absorptions- und Emissionsvermögen 7.1 Umwandlung von Licht in Wärme Zur Umwandlung von Solarenergie in Wärme

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Eigenschaften der Röntgenstrahlen

Eigenschaften der Röntgenstrahlen Physikalische Grundlagen der Röntgentechnik und Sonographie Eigenschaften der Röntgenstrahlen PD Dr. Frank Zöllner Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University of Heidelberg

Mehr

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive

Mehr

Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre?

Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre? Spektren 1 Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre? Der UV- und höherenergetische Anteil wird fast

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Aufgabe: LB S.66/9 Durch eine Natriumdampflampe wird Licht der Wellenlänge 589 nm (gelbe Natriumlinien) mit einer Leistung von 75 mw ausgesendet. a) Berechnen Sie die Energie der betreffenden Photonen!

Mehr

Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet werden können.

Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet werden können. phys4.02 Page 1 1.5 Methoden zur Abbildung einzelner Atome Optische Abbildung: Kann man einzelne Atome 'sehen'? Auflösungsvermögen: Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet

Mehr

Versuch P2-82: Absorption von Beta- und Gammastrahlung

Versuch P2-82: Absorption von Beta- und Gammastrahlung Versuch P2-82: Absorption von Beta- und Gammastrahlung Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Einleitung und Grundlagen...2 1.1 Einleitung... 2 1.2 Beta-Strahlung...

Mehr

Röntgenstrahlung (X-ray)

Röntgenstrahlung (X-ray) (X-ray) Röntgenstrahlung Entdeckung der Strahlung 895 von WILHELM CONRAD RÖNTEN (845 923) (90 dafür den ersten Nobelpreis für Physik) Entstehung Lässt man Elektronen in einer Röntgenröhre mit großer kinetischer

Mehr

Der lichtelektrische Effekt (Photoeffekt)

Der lichtelektrische Effekt (Photoeffekt) Der lichtelektrische Effekt (Photoeffekt) Versuchsanordnung Zn-Platte, amalgamiert Wulfsches Elektrometer Spannung, ca. 800 V Knappe Erklärung des Versuches Licht löst aus der Zn-Platte Elektronen aus

Mehr

Materialanalytik. Praktikum

Materialanalytik. Praktikum Materialanalytik Praktikum Röntgenbeugung B503 Stand: 15.04.2015 Ziel: Anhand von Röntgenbeugungsuntersuchungen sollen folgende Bestimmungen durchgeführt werden: Identifikation zweier unbekannter Reinelemente

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

1.4. Aufgaben zum Atombau

1.4. Aufgaben zum Atombau 1.4. Aufgaben zum Atombau Aufgabe 1: Elementarteilchen a) Nenne die drei klassischen Elementarteilchen und vergleiche ihre Massen und Ladungen. b) Wie kann man Elektronen nachweisen? c) Welche Rolle spielen

Mehr

Elektronenmikrosonde/ Röntgenfluoreszenzspektrometer

Elektronenmikrosonde/ Röntgenfluoreszenzspektrometer Thema 3 Elektronenmikrosonde/ Röntgenfluoreszenzspektrometer Datum: 10.Juni 2008 SS Geowissenschaften Bella Agachanjan, Denise Danek, Nadine Krabbe, Edvard Friedrich Carl Fischer und Niels Weißenberg 1.

Mehr

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus! 1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

Das Periodensystem der Elemente

Das Periodensystem der Elemente Q34 LK Physik 17. November 2015 Aufbau Die ermittelten Zusammenhänge der Elektronenzustände in der Atomhülle sollen dazu dienen, den der Elemente zu verstehen. Dem liegen folgende Prinzipien zugrunde:

Mehr

Röntgenfluoreszenzspektroskopie und Compton- Streuung

Röntgenfluoreszenzspektroskopie und Compton- Streuung Röntgenfluoreszenzspektroskopie und Compton- Streuung Vorbereitung: Erzeugung von Röntgenstrahlen, Funktionsweise einer Röntgenröhre, spektrale Zusammensetzung von Röntgenstrahlung, Mosley-Gesetz, Wechselwirkung

Mehr