Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Größe: px
Ab Seite anzeigen:

Download "Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz"

Transkript

1 Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05

2 Aufgabe Laurentreihe Entwickeln Sie die Funktion in Laurentreihen. Wie viele solcher Reihen gibt es und in welchen Gebieten sind sie jeweils gültig? Bestimmen Sie für jeden Fall die Koeffiienten der Reihe.Bestimmen Sie ferner die Residuen der Funktion in den Polen. Lösung:Um die Funktion besser untersuchen u können führen wir uerst eine Partialbrucherlegung durch und erhalten Die drei Summanden können wir nun unabhängig voneinander betrachten. erster Summand für < n Daraus folgt für die Koeffiienten a n, wenn n 0, sonst a n 0. für > n n n n Daraus folgt für die Koeffiienten a n, wenn n > 0, sonst a n 0. weiter Summand für < + n n n Daraus folgt für die Koeffiienten a n n, wenn n 0, sonst a n 0. für > + + n n n n n n Daraus folgt für die Koeffiienten a n n, wenn n > 0, sonst a n 0.

3 dritter Summand für < n n n 3n+ Daraus folgt für die Koeffiienten a n n 3 n+, wenn n 0, sonst a n 0. für > n 3 n n 3 n n n Daraus folgt für die Koeffiienten a n 3 n, wenn n > 0, sonst a n 0. Die einelnen Summanden können wir jett wieder usammenfügen und wir erhalten die Laurentreihe der Funktion: für < für < < 3 + n f + n 3 n+ n n + n f 3 n+ n + n n für 3 < + n f 3 n n Aufgabe Laurentreihe Man gebe für f alle möglichen Entwicklungen i nach Potenen von + i an. Welche Darstellung konvergiert für /? n Lösung: Der Integrand f i i i i ist holomorph in C\{0, i}. Die beiden Pole 0 und i bestimmen um den Entwicklungspunkt 0 i drei Kreisringgebiete, in denen f holomorph ist: + i <, < + i <, + i >. 3

4 Das sind die Konvergengebiete einer Laurententwicklung von f mit Entwicklungspunkt 0 i. + i < : Für beide Stammbrüche Taylor: i + i i i +i + i n, + i < + i <, i i i i + i i i +i + i n, + i < + i <. i i i i Damit erhalten wir die folgende Entwicklung für f: f [ n n ] + i n, + i <. i i < + i < : Für i Taylor, für Laurent: + i i + i i + i i i i i n, + i + i +i n siehe Rechnung für + i <. Damit erhalten wir die folgende Entwicklung für f: f + i n i n+ + i + i n i n mit a n für n und an Stammbrüche Laurent: i + i i + i i + i i i + i < + i >, a n + i n, < + i <. n für n 0. + i > : Für beide + i i i n i, < + i >, + i + i + i +i n siehe Rechnung für < + i <. Damit erhalten wir die folgende Entwicklung für f: f n i n i n, + i >. + i n+ Da in < +i < liegt, konvergiert für Entwicklung. die für diesen Bereich angegebene Aufgabe 3 Laurentreihe Man berechne die Laurentreihen von 4

5 3. cosh um 0 3. cos 3.3 e um für 0 < < π um 0 es reichen die ersten Summanden ungleich 0 Lösung:. Unter Verwendung der bekannten cosh-reihe erhält man mit w / : cosh w Diese Reihe konvergiert für > 0. n! wn, w C, cosh n! 4n.. Wir benuten die bekannte Entwicklung des Kosinus: cos! 4 4! + 6 6! +... n n n! n. Somit ist 0 weifache Nullstelle von cos, daher weifacher Pol von f. Da f eine gerade Funktion ist, kann man folgenden Ansat machen: Somit ist c f cos c c0 + c 4 c f c + c 0 + c + c c 0 + c + c c c c 70! 4 4! + 6 6! c4 c 4 + c 0 70 c 8! + Ein Koeffiientenvergleich liefert nun c, c 0 6, c 0, c Damit erhalten wir: f , 0 < < π Mit der bekannten Entwicklung der Exponentialfunktion gilt: e e e e n n! m e m +! m. 5

6 Aufgabe 4 Laurentreihe Bestimmen Sie jeweils die Laurentreihen von f mit dem Entwicklungspunkt 0 0 und geben Sie die Konvergengebiete an: 4. f f sin 3 Lösung:. Die Funktion f 3 + hat einfache Pole in, und ist somit um den Entwicklungspunkt 0 0 holomorph in den Kreisringgebieten < : Für beide Brüche Taylor: f <, < <, >. + n + n n+ n. < < : Für Taylor, für Laurent: f n n n n n n+. > : Für beide Brüche Laurent: f n n n n+.. Die Funktion f sin ! + 5 5! ! + 5! 4 7! +... hat das Konvergengebiet 0 < <, da die Sinusreihe in C konvergiert. Aus dem Hauptteil der Laurententwicklung ist abulesen, dass 0 ein Pol. Ordnung ist. 6

7 Aufgabe 5 Laurentreihe Die rationale Funktion f besite um 0 die Potenreihenentwicklung f n n mit Konvergenradius. Bestimmen Sie Res f. Tipp: Versuchen Sie die angegebene, unendliche Laurentreihe mithilfe der geometrischen Reihe in eine endliche Summe umuwandeln. Lösung: Die gegebene Potenreihe erinnert uns bereits grob an eine geometrische Reihe, nur das n stört uns. Wir verwenden den Ableitungstrick, um das n u beseitigen, dafür müssen wir die Reihe jedoch uerst umformen: f n n n + n n n + n n d n n d n d n n d Die beiden geometrischen Reihen können wir nun gan einfach umformen: Dadurch erhalten wir f d d n. Das ist bereits eine Laurentreihe um den Entwicklungspunkt! f k Z c k k Das Residuum können wir also einfach auf c ablesen: Res f c Aufgabe 6 Singularitäten und Residuen Bestimmen Sie für die folgenden Funktionen f Lage und Art der isolierten Singularitäten sowie die ugehörigen Residuen: 6. f f cos n 7

8 6.3 f cos 6.4 f cos / 6.5 f f sin Lösung: Man beachte unser Reept um Bestimmen des Residuums einer Funktion f.. Die Nullstellen des Nenners von f g h, ± und 3,4 ±i. 4 6 g h sind Wegen g k 0 und h k 0 sind die k einfache Pole von f, als Residuum erhalten wir daher in diesen vier Stellen: Res k f g k h k k 4k 3 { ± 8, k, 4 k 8 i, k 3, 4.. Wir bestimmen die Laurentreihenentwicklung von f cos und lesen daran n das Residuum ab: f n +! 4! ! n 4! 4 n + 6! 6 n Wir unterscheiden die folgenden Fälle: n, : Die Laurentreihe hat keine Glieder mit negativen Exponenten von. Somit ist 0 hebbare Singularität und Res 0 f 0. n 3: Aus der Laurentreihe liest man ab: f hat bei 0 einen Pol. Ordnung und Res 0 f /. n 4: Aus der Laurentreihe liest man ab: f hat bei 0 einen Pol. Ordnung und Res 0 f 0..3 Wieder bestimmen wir die Laurentreihe und entscheiden dann: f cos! + 4! 4! 3 + 4! 5 6! 7. Es ist damit 0 eine wesentliche Singularität, da der Hauptteil der Laurentreihe unendlich viele Glieder 0 enthält, und es gilt Res 0 f. 8

9 .4 Die Funktion f cos hat bei / k π/+kπ einfache Pole, die sich gegen 0 häufen. Somit ist 0 eine nicht isolierte Singularität und somit Res 0 f nicht erklärt, weiter erhalten wir: Res k f k sin k k k. π k + k.5 Die Nullstellen des Nenners h der Funktion f g h sind ,,3 ±3i je einfach. Wegen g k 0 sind k einfache Pole, wir erhalten: Res k f g k h k und Res f Res,3 f Wir betrachten die Nullstellen des Nenners h der Funktion f g h 0 ist hebbare Singularität, da lim 0 sin Res 0 f 0., daher gilt: sin : k kπ mit k Z \ {0}: Wegen h k cos kπ 0 und g k kπ 0 sind k Pole. Ordnung, wir erhalten: Res k f g k h k Aufgabe 7 Residuensat Berechnen Sie für kπ cos kπ k k π, k Z \ {0}. f 7. Res 0 f uerst durch expliite Integration, mithilfe der Formel für Brüche Res 0 g /h g 0 /h 0 und ulett mithilfe der Laurentreihe von f Konvergenbereich beachten!. 7. das Integral fd mithilfe des Residuensates und der Cauchy schen Integralformel. Lösung:. Durch expliite Integration kann man das gesuchte Residuum durch Res 0 f fd πi ρ 9

10 bestimmen. Wir parametrisieren ρ mit γt + ρe itπ t [0, ]. Durch Einseten der Parametrisierung in obige Formel erhalten wir Res 0 f fd πi γ fγt γdt πi 0 πi 0 0 ρe itπ ρeitπ iπdt ρe itπ eitπ ρdt Das gleiche Ergebnis erhalten wir unter Verwendeung der Formel aus der Vorlesung: Res 0 f Res 0 g h g 0 h 0 Wollen wir das Residuum aus der Laurentreihe ablesen, so müssen wir uerst den Term isolieren, um die Laurentreihe um den Entwicklungspunkt 0 u erhalten: + Der lette Ausdruck ist bereits eine Laurentreihe um den Entwicklungspunkt 0! Wir lesen also einfach ab c Res 0 f.. Wir Verwenden die Cauchy sche Integralformel: g 0 πi g d g, 0 0 πi πi d g 0 d πi Der Residuensat liefert unter Verwendung des uvor berechneten Residuums Res 0 f sofort d πires 0 f Ind 0 γ πi Aufgabe 8 Residuensat Berechnen Sie die folgenden Integrale für γφ 3 eiφ +, φ [0; π]. 0

11 γ γ e d γ cot πd sin π d Lösung:.Wir verwenden für beide Residuen die Formel aus der Vorlesung: und erhalten Res 0 f k! lim d k 0 d k 0 k f Res 0 f Res f e mit dem Residuensat ergibt sich der Wert des Integrals u πie..wir verwenden für beide Residuen die Formel aus der Vorlesung: Dau formen wir f um: Res 0 g h g 0 h 0 f cotπ cosπ sinπ g h Es gilt h cosππ. Daraus folgt für die Residuen in den Polen von f Res 0 f cosπ0 cosπ0π π Res f cosπ0 cosπ0π π mit dem Residuensat ergibt sich der Wert des Integrals u 4i..3Wir verwenden für das Residuum um die Formel und für das Residuum um 0 die Formel. Das Residuum um 0 können wir erst durch weimalige Anwendung von L Hospital auf den Grenwert angeben. Es ergibt sich: Res 0 f 0 Res f π mit dem Residuensat ergibt sich der Wert des Integrals u i.

12 Aufgabe 9 Residuensat Man berechne die folgenden Integrale: π 0 dx + x 6 dt sin t x x + 4 dx Lösung:. Die Singularitäten von f + 6 sind einfache Pole bei k e i π 6 +k π 3 für k 0,,..., 5. In der oberen Halbebene befinden sich 0 e i π 6, i, e i 5π 6. Als Residuen erhalten wir: Res k f 6 5 k Res 0 f 6 e i 5π 6 und Res f i 6 Res f 6 5π e i 6. Damit erhalten wir + x 6 dx πi i π 3 k0 Res k f πi 6 e i 5π 6 i + e i π 6 cos 5π 6 i sin 5π 6 i + cos π 6 i sin π 6 i π 3 i i i π 3.. Wir substituieren e iϕ, d ie iϕ dφ idφ, 0 ϕ π: I i i 3 + 0i 3. Die Singularitäten von f 3 +0i 3 sind die Nullstellen des Nenners: i 0, 5 3 i ± 4 3 i { 3 i 3i. Nur 0 i /3 liegt innerhalb des Einheitskreises. Das Residuum ermitteln wir mittels einer Partialbrucherlegung, es gilt 3 + 0i i 3 + 3i 4i + i. + 3i 3

13 Damit erhalten wir Res 0 f 4i. Es gilt: π 0 dt sint 4i πi π..3 Aus Aufgabe 6 kennen wir die Singularitäten und auch die Residuen. Daher erhalten wir: fxx πires i f πi i π 8 4. Aufgabe 0 Residuensat Man bestimme für die Funktion f e 0. Lage und Art der Singularitäten in C 0. den Wert von fd Lösung:. f besitt folgende Singularitäten: ist Nullstelle von Zähler und Nenner einfach, somit hebbare Singularität. 0 ist wesentliche Singularität.. Res f 0. Zur Ermittlung von Res 0 f werde f um 0 in eine Laurent- Reihe entwickelt, dau beachte man: e e e e n! n, e und e n! n Damit erhalten wir: f e Der Koeffiient von ist e Daher folgt n, <. n! n n, 0 < <. n n! e e Res 0 f. fd πi Res 0 f + Res f πi e. 3

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0 UNIVESITÄT KALSUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen Doppel-periodische Funktionen und die Weierstraßsche -Funktion Vortrag zum Seminar zur Funktionentheorie, 30.03.2009 Stefanie Kessler Die komplexen Zahlen als Erweiterung der reellen Zahlen ermöglichen

Mehr

Die Riemannsche Zetafunktion. 1 Einführung

Die Riemannsche Zetafunktion. 1 Einführung Die Riemannsche Zetafunktion Vortrag zum Seminar zur Funktionentheorie,..8 Michael Hoschek Mit meinem Vortrag möchte ich die wichtigste Dirichletsche Reihe, die Riemannsche Zetafunktion mit einigen besonderen

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: A. Kirchhoff, T. Pfrommer, M. Kutter, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Prof. Dr. M. Stroppel Prof. Dr. A. Sändig Lösungshinweise zu den Hausaufgaben: Aufgabe H.

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Analysis IV, SS 2012 Freitag $Id: residuum.tex,v /06/29 17:27:57 hk Exp $

Analysis IV, SS 2012 Freitag $Id: residuum.tex,v /06/29 17:27:57 hk Exp $ $Id: residuum.tex,v.6 202/06/29 7:27:57 hk Exp $ 6 Der Residuenkalkül 6. Der Residuensatz Am Ende der letzten Sitzung hatten wir den Begriff des Residuums einer holomorphen Funktion f : U C in einer isolierten

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 3. Gruppenübung zur Vorlesung Höhere Mathematik 2 Sommersemester 2009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Beispielaufgaben rund um Taylor

Beispielaufgaben rund um Taylor Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09 Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0,

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Modulformen, Teil 1. 1 Schwach modulare Funktionen

Modulformen, Teil 1. 1 Schwach modulare Funktionen Vortrag zum Seminar zur Funktionentheorie, 3.3.2 Robin Blöhm Dieser Vortrag führt uns zur Definition von Modulformen. Gemeinsam mit einem ersten Beispiel, den bereits bekannten Eisenstein-Reihen, ist sie

Mehr

Damian Rösslers Komplexe Analysis. SS 02 getext von Johannes Bader

Damian Rösslers Komplexe Analysis. SS 02 getext von Johannes Bader Damian Rösslers Komplexe Analysis SS 2 getext von Johannes Bader Copyright 22 Johannes Bader baderj@ee.ethz.ch Die Verteilung dieses Dokuments in elektronischer oder gedruckter Form ist nicht gestattet.

Mehr

Mathematik für Physiker IV

Mathematik für Physiker IV Mathematik für Physiker IV Universität Tübingen Sommersemester 2 Prof. Dr. Christian Hainzl vervollständigt und getext von Mario Laux und Simon Mayer Inhaltsverzeichnis Komplexe Analysis (Funktionentheorie)

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Doppelintegrale. rd dr. Folie 1

Doppelintegrale. rd dr. Folie 1 Doppelintegrale G fda f, dd R R G 1 f ( rcos, rsin) rd dr Folie 1 Doppelintegrale einführendes Beispiel Als Vorwissen sollten Sie die Grundlagen ur Integration mitbringen (s..b. L. Papula, Mathematik für

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Die alternierende harmonische Reihe.

Die alternierende harmonische Reihe. Die alternierende harmonische Reihe Beispiel: Die alternierende harmonische Reihe k k + = 2 + 3 4 + konvergiert nach dem Leibnizschen Konvergenzkriterium, und es gilt k k + = ln2 = 06934 für den Grenzwert

Mehr

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Die Weierstaÿ'sche -Funktion

Die Weierstaÿ'sche -Funktion Die Weierstaÿ'sche -Funktion Kapitel : Konstruktion Motivation: Ziel dieses Kapitels ist es ein möglichst einfaches Beispiel für eine elliptische Funktion zu nden.wir wissen bereits, dass keine elliptische

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Einführung in die Funktionentheorie 1

Einführung in die Funktionentheorie 1 Einführung in die Funktionentheorie Martin Ziegler Freiburg, WS 994/95, WS 2000/0, SS 2006 Literatur [] Klaus Jänich. Funktionentheorie. Springer Verlag, 993. [2] H.Behnke und F.Sommer. Theorie der analytischen

Mehr

Bernd Dreseler. Funktionentheorie I. Sommersemester Vorlesungsmitschrift von J.Breitenbach. Siegen 2002

Bernd Dreseler. Funktionentheorie I. Sommersemester Vorlesungsmitschrift von J.Breitenbach. Siegen 2002 Bernd Dreseler Funktionentheorie I Sommersemester 1991 Vorlesungsmitschrift von J.Breitenbach Siegen 2002 Inhaltsverzeichnis Vorbemerkung ii 0 Abbildungen f : U lc lc, (x, y) f(x, y) 2 1 Holomorphe Funktionen

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Lösungsvorschlag - Zusatzaufgaben (2)

Lösungsvorschlag - Zusatzaufgaben (2) HOCHSCHULE KARLSRUHE Sommersemester 014 Elektrotechnik - Sensorik Übung Mathematik I B.Sc. Paul Schnäbele Lösungsvorschlag - Zusatzaufgaben ) a) x ) fx) = D = R \ { } x + Es liegt keine gängige Symmetrie

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Pflicht- /Wahlteilaufgaben und Musterlösungen ur Integralrechnung Zielgruppe: Oberstufe Gymnasium Schwerpunkt: Stammfunktion, Flächenberechnung, Rotationsvolumen Aleander Schwar

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Ableitungsübungen. W. Kippels 16. Mai 2011

Ableitungsübungen. W. Kippels 16. Mai 2011 Ableitungsübungen W. Kippels 16. Mai 2011 Inhaltsverzeichnis 1 Einleitung 3 2 Übungsaufgaben 3 2.1 Funktion 1................................... 3 2.2 Funktion 2................................... 3 2.3

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

a n (z a) f (z) = für alle z K erfüllt ist. Dabei gilt a n = f (n) (a) für alle n N 0. Beispiel 1: Sei f (z) = z 3 3z + 4.

a n (z a) f (z) = für alle z K erfüllt ist. Dabei gilt a n = f (n) (a) für alle n N 0. Beispiel 1: Sei f (z) = z 3 3z + 4. Satz (VEKDF, Teil II) Sei D C und f : D C eine holomorphe Funktion. Dann ist f in einer Umgebung von jedem Punkt a D durch eine Potenzreihe darstellbar. Das bedeutet: Es gibt einen Kreis K um a und a 0,

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 015 Prof. Dr. A. Iske, Dr. P. Kiani Aufgabe 1: Komplexe Funktionen für Studierende der Ingenieurwissenschaften Blatt 4 : Hausaufgaben a) In welchem Gebiet

Mehr

Die Riemann'sche Vermutung

Die Riemann'sche Vermutung Die Riemann'sche Vermutung Julián Cancino (ETH Zürich) 7. Juni 7 Leonhard Euler (77-783) und Bernhard Riemann (86-866) sind sicher die bedeutendsten Mathematiker aller Zeiten für ihre Beiträge zu verschiedenen

Mehr

10 Potenz- und Fourierreihen

10 Potenz- und Fourierreihen 10 Potenz- und Fourierreihen 10.1 Konvergenzbegriffe für Funktionenfolgen Im letzten Kapitel soll es noch einmal um eindimensionale Analysis gehen. Speziell werden wir uns mit Folgen und Reihen reeller

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr