Algorithmen und Datenstrukturen ITS(B)-B 2016

Größe: px
Ab Seite anzeigen:

Download "Algorithmen und Datenstrukturen ITS(B)-B 2016"

Transkript

1 Einführung Was ist (die) Informatik? Die Informatik und ihre Geschichte sowie ihre Abgrenzung von anderen Wissenschaften darzulegen gestaltet sich nicht ganz einfach (siehe dazu unter vielen Anderen ((GI) 2006) oder 1 ). Sicher ist jedoch dass die Informatik als Querschnitts-Materie der klassischen Wissenschaften Physik, Mathematik, Elektrotechnik und Logik verstanden werden kann.abbildung 1: Interdisziplinärer Charakter der Informatik aus Abbildung 1 verdeutlicht diese Interdisziplinarität. 1 https://de.wikipedia.org/wiki/informatik Simon Kranzer 1/6 Fachhochschule Salzburg

2 Abbildung 1: Interdisziplinärer Charakter der Informatik aus (Vornberger 2014) Um Informatik in der Wissenschaft einzusetzen oder sich mit der Informatik als Wissenschaft zu beschäftigen ist es anfangs besonders wichtig die notwendigen Werkzeuge (Betriebssysteme, Programmiersprachen, Editoren, Compiler etc.) kennen- und verwenden zu lernen und Methoden (Algorithmen, Datenstrukturen, Modelle) zu studieren die es ermöglichen weitergehende Erkenntnisse zu verstehen. Abbildung 2 veranschaulicht diese hierarchischen Zusammenhänge nochmals in Form einer Pyramide. Wissenschaftliche Arbeit Methoden Grundlagen Abbildung 2: Handwerk, Werkzeuge, Methoden, Wissenschaft Ohne ein solides Fundament an praktischen Fertigkeiten und theoretischem Wissen kann keine stabile Grundlage für Spitzenleistungen gelegt werden! Simon Kranzer 2/6 Fachhochschule Salzburg

3 Was ist ein Algorithmus? Als Algorithmus wird eine endlich lange Vorschrift die aus Einzelanweisungen besteht bezeichnet (Vornberger 2014). In der deutschsprachigen Ausgabe von (Cormen, et al. 2013) finden sich folgende Definitionen bzw. Fragestellungen: Gleich zu Beginn des ersten Kapitels geben die Autoren dieses Standardwerkes folgende Definitionen bzw. Antworten: Zusammengefasst handelt es sich bei einem Algorithmus also um ein Rezept, eine Handlungsvorschrift, die in (Prozess-)Schritte aufgeteilt angibt wie bei definiertem Input ein gewünschter Output erzeugt werden kann. Beschreibung von Algorithmen Es existiert eine Vielzahl von Möglichkeiten Algorithmen zu beschreiben. Wichtig ist es, dass eine möglichst eindeutige, der Aufgabenstellung angemessene, Form gefunden wird. Mögliche Beschreibungsformen beinhalten, ohne den Anspruch auf Vollständigkeit die, Text in einer natürlichen Sprache, gesprochene Sprache, mathematische Symbolik, Formeln und dgl., Diagramme, visuelle Beschreibungen (Bilder, Videos), Struktogramme, Programmiersprachen und viele mehr! Simon Kranzer 3/6 Fachhochschule Salzburg

4 Fragen 1. Warum existieren so viele verschiedene Beschreibungsformen von Algorithmen? 2. Welche Probleme entstehen durch diese Vielfalt? Welche Vorteile bietet sie? 3. Was ist der Vorteil von natürlicher Sprache, was der Vorteil von sehr eingeschränkten streng definierten Sprachen bzw. Beschreibungsformen? Beispiel Binärzahlen Text mit Formeln und Abbildungen Um eine Dezimalzahl in eine Binärzahl umzuwandeln existieren mehrere Möglichkeiten. Die einfachste Methode ist es eine gegebene Dezimalzahl solange mit Rest durch 2 zu teilen bis das Ergebnis 0 lautet. Der bei jeder Division entstandene Rest, entweder 0 oder 1, wird auf einen Stapel gelegt und es wird mit dem ganzzahligen Ergebnis der Division weitergerechnet bis dieses 0 ist. Gibt man nun die am Stapel befindlichen Einsen und Nullen in umgekehrter Reihenfolge aus ergibt sich die jeweilige binäre Zeichenkette. Will man nun die Dezimalzahl 6 in ihre binäre Repräsentation umwandeln ergeben sich folgende Schritte: 6 / R 3 / 2 1 1R 1 / 2 0 1R Auf dem Stapel (Last-In-First-Out-Speicher) liegen nach diesen Berechnungen die folgenden Reste : Werden zuletzt die Elemente von oben aus dem Stapel wieder herausgenommen erhält man als Resultat für die Dezimalzahl 6 die binäre Zeichenkette 110. Simon Kranzer 4/6 Fachhochschule Salzburg

5 Struktogramm (Nassi-Shneiderman-Diagramm) In diesem Beispiel müsste zuletzt S noch in umgekehrter Reihenfolge ausgegeben werden. Da dies das Diagramm unnötig komplex machen würde wurde darauf verzichtet. Bei Eingabe 6 für n gibt der oben dargestellte Algorithmus demnach 011 statt 110 aus. C-Programm Simon Kranzer 5/6 Fachhochschule Salzburg

6 Literaturverzeichnis (GI), Gesellschaft für Informatik e.v. Was ist Informatik? Unser Positionspapier. Bonn, Mai Cormen, Thomas H., Charles E. Leiserson, Ronald Rivest, und Clifford Stein. Algorithmen - Eine Einführung. 4., durchgesehene und korrigierte Auflage. Oldenbourg: De Gruyter Oldenbourg, Vornberger, Oliver. Begleitmaterial zum iversity-mooc im SS https://iversity.org/courses/algorithmen-und-datenstrukturen. Institut für Informatik, Fachbereich Mathematik/Informatik, Universität Osnabrück, April Simon Kranzer 6/6 Fachhochschule Salzburg

Diskrete Strukturen Kapitel 1: Einleitung

Diskrete Strukturen Kapitel 1: Einleitung WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele. 1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Einführende Beispiele 2. Algorithmen Täglich werden Verarbeitungsvorschriften

Mehr

Coma I. Einleitung. Computer und Algorithmen. Programmiersprachen. Algorithmen versus Programmiersprachen. Literaturhinweise

Coma I. Einleitung. Computer und Algorithmen. Programmiersprachen. Algorithmen versus Programmiersprachen. Literaturhinweise Coma I Einleitung 1 Computer und Algorithmen Programmiersprachen Algorithmen versus Programmiersprachen Literaturhinweise 2 Computer und Algorithmen Programmiersprachen Algorithmen versus Programmiersprachen

Mehr

Einführung in die Informatik I (autip)

Einführung in die Informatik I (autip) Einführung in die Informatik I (autip) Dr. Stefan Lewandowski Fakultät 5: Informatik, Elektrotechnik und Informationstechnik Abteilung Formale Konzepte Universität Stuttgart 24. Oktober 2007 Was Sie bis

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 9:45 11:15 Raum 1200 (Vorlesung) Do 8:00

Mehr

Algorithmen und Berechnungskomplexität I

Algorithmen und Berechnungskomplexität I Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik

Mehr

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr. Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet

Mehr

Amortisierte Laufzeitanalyse

Amortisierte Laufzeitanalyse Paris-Lodron Universität Salzburg 24 Januar, 2014 Inhaltsverzeichnis 1 Einführung Definition Beispiel:Stapeloperationen Beispiel: Binärzähler (1/2) Beispiel: Binärzähler (2/2) 2 Analyse der Stack mittels

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: otto@theory.informatik.uni-kassel.de

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik

Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Informatik Teil 1 Wintersemester 2011/2012 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen Inhalt 1. Algorithmen -

Mehr

Informatik 1. Teil 1 - Wintersemester 2012/2013. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik

Informatik 1. Teil 1 - Wintersemester 2012/2013. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Informatik 1 Teil 1 - Wintersemester 2012/2013 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen 0. Rechner und Programmierung

Mehr

ADS. 1. Vorlesung. Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm

ADS. 1. Vorlesung. Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm ADS 1. Vorlesung Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm 6.10.2016 ORGANISATORISCHES Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Der Dozent 2 Prof. Dr. Wolfgang Schramm

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Lösungsvorschlag zu 1. Übung

Lösungsvorschlag zu 1. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: otto@theory.informatik.uni-kassel.de

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 10:30-12:00 Raum 1200 (Vorlesung) Do 8:15-9:45 Raum 1200 (Vorlesung)

Mehr

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen Willkommen zur Vorlesung Algorithmen und Datenstrukturen Mein Name: Andreas Berndt Zum Dozenten Diplom-Informatiker (TU Darmstadt) Derzeit Software-Entwickler für Web- Applikationen Derzeitige Sprachen:

Mehr

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange Datenstrukturen Sommersemester 2010 Steffen Lange 1/1, Folie 1 2010 Prof. Steffen Lange - HDa/FbI - Datenstrukturen Organisatorisches Vorlesung wöchentlich; zwei Blöcke Folien im Netz (/* bitte zur Vorlesung

Mehr

Was ist ein Computer?

Was ist ein Computer? Grundlagen 1 Lernziel der Vorlesung: Einblicke und Überblicke zu den Mitteln der Informatik Hardware und Software den Methoden der Informatik Analysieren, Entwerfen, Algorithmieren, Programmieren, Testen,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge

Mehr

Grundlagen der Informatik Übungen 1.Termin

Grundlagen der Informatik Übungen 1.Termin : : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt

Mehr

Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt

Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 27. Mai 206 Programmieren II 2. Übungsblatt Hinweis: Auf diesem und den folgenden Übungsblättern

Mehr

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

Übungen zu Algorithmen

Übungen zu Algorithmen Institut für Informatik Universität Osnabrück, 08.11.2016 Prof. Dr. Oliver Vornberger http://www-lehre.inf.uos.de/~ainf Lukas Kalbertodt, B.Sc. Testat bis 16.11.2016, 14:00 Uhr Nils Haldenwang, M.Sc. Übungen

Mehr

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme Grundlagen der Informatik Übungen 1. Termin Zahlensysteme M. Sc. Yevgen Dorozhko dorozhko@hlrs.de Kurzvorstellung M. Sc. Yevgen Dorozhko Ausbildung: 2008: M. Sc. Systemprogrammieren, Nationale technische

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser. 1 Organisation

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser. 1 Organisation Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2014 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Organisation 2 Einführung Ziele und Inhalt

Mehr

Was ist Informatik? Alexander Lange

Was ist Informatik? Alexander Lange Was ist Informatik? Was ist Informatik? Alexander Lange 12.11.2003 Was ist Informatik? Inhalt 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Das Wort»Informatik«Die Idee Teilgebiete der Informatik Technische Informatik

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Programmieren I + II

Programmieren I + II Programmieren I + II Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2015/2016 Sommersemester 2016 Was ist Informatik? Die Informatik ist die Wissenschaft von Aufbau,

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

34. Algorithmus der Woche Hashing

34. Algorithmus der Woche Hashing 34. Algorithmus der Woche Hashing Autor Christian Schindelhauer, Universität Freiburg Um Hashing zu erklären, fangen wir mit einen Häschen an. Einen Hasen zu finden, ist nicht leicht. Diese scheuen Tiere

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum: Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Wintersemester 2016/2017 2V, Mittwoch, 12:00-13:30 Uhr, F303 2Ü, Dienstag, 12:00-13:30 Uhr, BE08 2Ü, Dienstag, 15:00-16:30 Uhr, B212 2Ü, Mittwoch, 8:30-10:00 Uhr, B312 Fachprüfung:

Mehr

Variablen und Datentypen

Variablen und Datentypen Programmieren mit Python Modul 1 Variablen und Datentypen Selbstständiger Teil Inhaltsverzeichnis 1 Überblick 3 2 Teil A: Geldautomat 3 2.1 Einführung.................................. 3 2.2 Aufgabenstellung...............................

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

EIDI 1 Einführung in die Informatik 1. PGdP Praktikum Grundlagen der Programmierung. Harald Räcke 2/217

EIDI 1 Einführung in die Informatik 1. PGdP Praktikum Grundlagen der Programmierung. Harald Räcke 2/217 EIDI 1 Einführung in die Informatik 1 PGdP Praktikum Grundlagen der Programmierung Harald Räcke 2/217 Wie löst man Probleme mithilfe von Computern? 0 Harald Räcke 3/217 Inhalte: EIDI 1 1. Was ist das Problem?

Mehr

Algorithmen und Berechnungskomplexität I

Algorithmen und Berechnungskomplexität I Algorithmen und Berechnungskomplexität I Prof. Dr. Institut für Informatik Wintersemester 2013/14 Organisatorisches Vorlesung Dienstag und Donnerstag, 12:30 14:00 Uhr (HS 1) Übungen 16 Übungsgruppen Anmeldung

Mehr

Informatikgrundlagen (WS 2015/2016)

Informatikgrundlagen (WS 2015/2016) Informatikgrundlagen (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Sommersemester 2004 Christoph Kreitz Theoretische Informatik, Raum 1.18, Telephon 3060 kreitz@cs.uni-potsdam.de http://www.cs.uni-potsdam.de/ti/kreitz 1. Themen und Lernziele 2.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmierübungen: Alexander Wolff (E29) Jan Haunert (E27) Markus Ankenbrand Titus Dose Alexej

Mehr

Einführung in die Informatik

Einführung in die Informatik Universität Innsbruck - Institut für Informatik Datenbanken und Informationssysteme Prof. Günther Specht, Eva Zangerle 24. November 28 Einführung in die Informatik Übung 7 Allgemeines Für die Abgabe der

Mehr

Praktische Informatik I

Praktische Informatik I Praktische Informatik I WS 2005/2005 Prof. Dr. Wolfgang Effelsberg Lehrstuhl für Praktische Informatik IV Universität Mannheim 1. Einführung 1-1 Inhaltsverzeichnis (1) 1. Einführung 1.1 Was ist Informatik?

Mehr

Algorithmen & Datenstrukturen

Algorithmen & Datenstrukturen Algorithmen & Datenstrukturen Prof. Dr. Gerd Stumme Universität Kassel FB Elektrotechnik/Informatik FG Wissensverarbeitung Sommersemester 2009 Ziele der Veranstaltung 1 Kennenlernen grundlegender Algorithmen

Mehr

1 Karol stellt sich vor

1 Karol stellt sich vor Kapitel 1 Karol stell sich vor Seite 1 1 Karol stellt sich vor 1.1 Algorithmus Fritz hat zum Geburtstag einen CD-Player als Geschenk erhalten. Natürlich will er sofort das Geschenk ausprobieren und legt

Mehr

Einführung in die Programmierung mit VBA

Einführung in die Programmierung mit VBA Einführung in die Programmierung mit VBA Vorlesung vom 07. November 2016 Birger Krägelin Inhalt Vom Algorithmus zum Programm Programmiersprachen Programmieren mit VBA in Excel Datentypen und Variablen

Mehr

Einige Teilgebiete der Informatik

Einige Teilgebiete der Informatik Einige Teilgebiete der Informatik Theoretische Informatik Formale Sprachen, Automatentheorie, Komplexitätstheorie, Korrektheit und Berechenbarkeit, Algorithmik, Logik Praktische Informatik Betriebssysteme,

Mehr

Einführung in die Computerlinguistik Berechenbarkeit, Entscheidbarkeit, Halteproblem

Einführung in die Computerlinguistik Berechenbarkeit, Entscheidbarkeit, Halteproblem Einführung in die Computerlinguistik Berechenbarkeit, Entscheidbarkeit, Halteproblem Dozentin: Wiebke Petersen 14.1.2009 Wiebke Petersen Einführung CL (WiSe 09/10) 1 Hinweis zu den Folien Der Text dieser

Mehr

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf Binärzahlen Vorkurs Informatik Institut für Informatik Heinrich-Heine-Universität Düsseldorf Sommersemester 2016 Gliederung 1 Das Binärsystem Einleitung Darstellung 2 Umrechen Modulo und DIV Dezimal in

Mehr

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

2. Algorithmenbegriff

2. Algorithmenbegriff 2. Algorithmenbegriff Keine Algorithmen: Anleitungen, Kochrezepte, Wegbeschreibungen,... Algorithmus: Berechnungsvorschrift, die angibt, wie durch Ausführung bestimmter Elementaroperationen aus Eingabegrößen

Mehr

Outline Automaten FSM Synthesis FSM in VHDL FSM auf FPGA. State Machines. Marc Reichenbach und Michael Schmidt

Outline Automaten FSM Synthesis FSM in VHDL FSM auf FPGA. State Machines. Marc Reichenbach und Michael Schmidt State Machines Marc Reichenbach und Michael Schmidt Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 05/11 1 / 34 Gliederung Endliche Automaten Automaten Synthese FSM Beschreibung in VHDL

Mehr

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen

Mehr

Lernziele Ablauf Übungsaufgaben Formalitäten. Programmierpraktika. Einführung in das Programmieren und Weiterführendes Programmieren

Lernziele Ablauf Übungsaufgaben Formalitäten. Programmierpraktika. Einführung in das Programmieren und Weiterführendes Programmieren Programmierpraktika Einführung in das Programmieren und Weiterführendes Programmieren Prof. H. G. Matthies, Dr. Elmar Zander Präsentation: Dr. Th. Grahs 7.4.2016 Programmierpraktika 7.4.2016 1/15 Lernziele

Mehr

Hochschule Niederrhein Einführung in die Programmierung Prof. Dr. Nitsche. Bachelor Informatik WS 2015/16 Blatt 3 Beispiellösung.

Hochschule Niederrhein Einführung in die Programmierung Prof. Dr. Nitsche. Bachelor Informatik WS 2015/16 Blatt 3 Beispiellösung. Zahldarstellung Lernziele: Vertiefen der Kenntnisse über Zahldarstellungen. Aufgabe 1: Werte/Konstanten Ergänzen Sie die Tabelle ganzzahliger Konstanten auf einem 16- Bit- System. Die Konstanten in einer

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

Formatvorgaben für die Ausarbeitung

Formatvorgaben für die Ausarbeitung Formatvorgaben für die Ausarbeitung - Ihre Ausarbeitung sollte 7-10 Seiten (exklusive Titelblatt, Inhaltsverzeichnis und Literaturverzeichnis) umfassen. - Der Rand sollte beidseitig ca. 2,5 cm betragen.

Mehr

Logik. Vorlesung im Wintersemester 2010

Logik. Vorlesung im Wintersemester 2010 Logik Vorlesung im Wintersemester 2010 Organisatorisches Zeit und Ort: Di 14-16 MZH 5210 Do 16-18 MZH 5210 Prof. Carsten Lutz Raum MZH 3090 Tel. (218)-64431 clu@uni-bremen.de Position im Curriculum: Modulbereich

Mehr

Klausur: Grundlagen der Informatik I, am 05. Februar 2008 Dirk Seeber, h_da, Fb Informatik

Klausur: Grundlagen der Informatik I, am 05. Februar 2008 Dirk Seeber, h_da, Fb Informatik Seite 1 von 8 Hiermit bestätige ich, dass ich die Übungsleistungen als Voraussetzung für diese Klausur in folgender Übung erfüllt habe. Jahr: Übungsleiter: Unterschrift: 1. Aufgabe ( / 15 Pkt.) Für eine

Mehr

Programmieren I + II

Programmieren I + II Programmieren I + II Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2012/2013 Sommersemester 2013 Was ist Informatik? Die Informatik ist die Wissenschaft von Aufbau,

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Praktikum zu Einführung in die Informatik für LogWings und WiMas Wintersemester 2013/14

Praktikum zu Einführung in die Informatik für LogWings und WiMas Wintersemester 2013/14 Praktikum zu Einführung in die Informatik für LogWings und WiMas Wintersemester 2013/14 Fakultät für Informatik Lehrstuhl 1 Dr. Lars Hildebrand Iman Kamehkhosh, Marcel Preuÿ, Henning Timm Übungsblatt 2

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

6. Lösungsblatt

6. Lösungsblatt TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK PROF. JOHANNES BUCHMANN DR. JULIANE KRÄMER Einführung in die Kryptographie WS 205/ 206 6. Lösungsblatt 9..205 Ankündigung Es besteht

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Definition: Algorithmus

Definition: Algorithmus Definition: Algorithmus Ein Algorithmus ist eine allgemeine Rechenvorschrift, die aus mehreren elementaren Instruktionen (Anweisungen bei Programmiersprachen, Befehlen bei Maschinensprachen) besteht, die

Mehr

Informatische Modellbildung

Informatische Modellbildung Informatische Modellbildung Informatik als Wissenschaft von der Herstellung ausführbarer Modelle bzw. der Simulation künstlicher Welten hier: formale Methoden zur Präzisierung des Modellbegriffs Begriffsdefinition

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 28 Einstieg in die Informatik mit Java Algorithmen Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 28 1 Überblick 2 Algorithmus 3 Grundalgorithmen in Java 4 Flussdiagramme

Mehr

Klausur: Grundlagen der Informatik I, am 05. Februar 2008 Dirk Seeber, h_da, Fb Informatik. Nachname: Vorname: Matr.-Nr.: Punkte:

Klausur: Grundlagen der Informatik I, am 05. Februar 2008 Dirk Seeber, h_da, Fb Informatik. Nachname: Vorname: Matr.-Nr.: Punkte: Seite 1 von 8 Hiermit bestätige ich, dass ich die Übungsleistungen als Voraussetzung für diese Klausur in folgender Übung erfüllt habe. Jahr: Übungsleiter: Unterschrift: 1. Aufgabe ( / 10 Pkt.) a) Geben

Mehr

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 6.1: Multiplikation von positiven Dualzahlen Berechnen

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

Einführung in die Informatik Turing Machines

Einführung in die Informatik Turing Machines Einführung in die Informatik Turing Machines Eine abstrakte Maschine zur Präzisierung des Algorithmenbegriffs Wolfram Burgard Cyrill Stachniss 1/14 Motivation und Einleitung Bisher haben wir verschiedene

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen

WURZEL Werkstatt Mathematik Polynome Grundlagen Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die

Mehr

Grundlagen der Informatik I (Studiengang Medieninformatik)

Grundlagen der Informatik I (Studiengang Medieninformatik) Grundlagen der Informatik I (Studiengang Medieninformatik) Thema: 3. Datentypen, Datenstrukturen und imperative Programme Prof. Dr. S. Kühn Fachbereich Informatik/Mathematik Email: skuehn@informatik.htw-dresden.de

Mehr

Algorithmik - Kompaktkurs

Algorithmik - Kompaktkurs Algorithmik - Kompaktkurs Sommersemester 2012 Steffen Lange 0/1, Folie 1 2012 Prof. Steffen Lange - HDa/FbI - Algorithmik Organisatorisches Vorlesung Folien im Netz (/* bitte zur Vorlesung mitbringen */)

Mehr

1. Einführung. Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen?

1. Einführung. Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen? 1. Einführung Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen? Wie beschreiben wir Algorithmen? Nach welchen Kriterien

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Interdisziplinäre fachdidaktische Übung: Formale Sprache Definitionen, Funktionen

Interdisziplinäre fachdidaktische Übung: Formale Sprache Definitionen, Funktionen Interdisziplinäre fachdidaktische Übung: Formale Sprache Definitionen, en SS 2013: Grossmann, Jenko 1 Definitionen Folgenden Begriffe werden oft synonym verwendet: Formale Sprache Programmiersprache Computersprache

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Schulcurriculum Städtisches Gymnasium Gütersloh: Umsetzung der Kernlehrpläne in Klasse 6 Stand: September 2015

Schulcurriculum Städtisches Gymnasium Gütersloh: Umsetzung der Kernlehrpläne in Klasse 6 Stand: September 2015 Schulcurriculum Städtisches Gymnasium Gütersloh: Umsetzung der Kernlehrpläne in Klasse 6 Stand: September 2015 Die angegebenen inhaltsbezogenen Kompetenzen orientieren sich am eingeführten Lehrwerk Fundamente

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Grundlagen der Modellierung und Programmierung, Übung

Grundlagen der Modellierung und Programmierung, Übung Grundlagen der Modellierung und Programmierung Übung Prof. Wolfram Amme LS Softwaretechnik Prof. Klaus Küspert LS Datenbanksysteme Prof. Birgitta König-Ries LS Verteilte Systeme Prof. Dr. Wilhelm Rossak

Mehr

Mengenlehre. Spezielle Mengen

Mengenlehre. Spezielle Mengen Mengenlehre Die Mengenlehre ist wie die Logik eine sehr wichtige mathematische Grundlage der Informatik und ist wie wir sehen werden auch eng verbunden mit dieser. Eine Menge ist eine Zusammenfassung von

Mehr

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Vorkurs Mathematik Vorlesung 5 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 2. Spezifikation Schrittweise Verfeinerung

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 2. Spezifikation Schrittweise Verfeinerung UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 2 Spezifikation Schrittweise Verfeinerung Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69,

Mehr