Mathematische Methoden der VWL

Größe: px
Ab Seite anzeigen:

Download "Mathematische Methoden der VWL"

Transkript

1 Mathematische Methoden der VWL Kapitel 1: Maximierung ohne Nebenbedingungen Till Stowasser Klaus Schmidt, 2001 / Till Stowasser, 2014 LMU, Wintersemester 2014/ / 30

2 Syllabus Syllabus 1.1 Funktionen mit einer Variablen 1.2 Beispiel: Warum sind Lehrbücher so teuer? 1.3 Beispiel: Die Lafferkurve 1.4 Funktionen mit mehreren Variablen 1.5 Konkavität und Konvexität einer Funktion 2 / 30

3 1.1 Funktionen mit einer Variablen 1.1 Funktionen mit einer Variablen Betrachten Sie das folgende Maximierungsproblem: max z(x) x Dabei sei x eine reelle Zahl und z(x) eine reellwertige Zielfunktion, die wenigstens zweimal differenzierbar ist. Wenn x ein Maximum dieser Funktion ist, dann müsste die Steigung der Funktion an x genau gleich 0 sein. Warum? 3 / 30

4 1.1 Funktionen mit einer Variablen Bedingung erster Ordnung (BEO) Die BEO lautet: z(x ) x = 0 Die Bedingung erster Ordnung ist eine notwendige aber keine hinreichende Bedingung für ein Maximum. Was bedeutet das? 4 / 30

5 1.1 Funktionen mit einer Variablen Wenn die Bedingung erster Ordnung erfüllt ist, können wir also noch nicht sicher sein, dass tatsächlich ein Maximum vorliegt. Diese Bedingung ist auch bei einem Minimum oder einem Wendepunkt erfüllt. Beispiele: z(x) = 4x x 2 z(x) = 4x ln x z(x) = 2x 3 z(x) = 5 x 3 5 / 30

6 1.1 Funktionen mit einer Variablen z(x) = 4x x 2 6 / 30

7 1.1 Funktionen mit einer Variablen z(x) = 4x ln x 7 / 30

8 1.1 Funktionen mit einer Variablen z(x) = 2x 3 8 / 30

9 1.1 Funktionen mit einer Variablen z(x) = 5 x 3 9 / 30

10 1.1 Funktionen mit einer Variablen Bedingung zweiter Ordnung (BZO) für ein Maximum Die BZO lautet: 2 z(x) x 2 < 0 Diese Bedingung zweiter Ordnung ist eine hinreichende Bedingung für ein Maximum. Wenn die Bedingung zweiter Ordnung an der Stelle x erfüllt ist, können wir sicher sein, dass es sich um ein lokales Maximum handelt. Ein globales Maximum liegt an der Stelle x vor, wenn die Funktion z(x) global (d.h. für alle möglichen Werte von x) die BZO erfüllt. 10 / 30

11 1.1 Funktionen mit einer Variablen Bedingung zweiter Ordnung (BZO) für ein Minimum Die BZO lautet: 2 z(x) x 2 > 0 Diese Bedingung zweiter Ordnung ist eine hinreichende Bedingung für ein Minimum. Wenn die Bedingung zweiter Ordnung an der Stelle x erfüllt ist, können wir sicher sein, dass es sich um ein lokales Minimum handelt. Ein globales Minimum liegt an der Stelle x vor, wenn die Funktion z(x) global (d.h. für alle möglichen Werte von x) die BZO erfüllt. 11 / 30

12 1.1 Funktionen mit einer Variablen Bedingung erster und zweiter Ordnung für ein Maximum Theorem (1.1 Bedingungen für ein Maximum) Die Funktion z(x) hat an der Stelle x ein globales Maximum, wenn und wenn für alle x R. z(x ) x = 0 2 z(x) x 2 < 0 12 / 30

13 1.1 Funktionen mit einer Variablen Bedingung erster und zweiter Ordnung für ein Minimum Theorem (1.2 Bedingungen für ein Minimum) Die Funktion z(x) hat an der Stelle x ein globales Minimum, wenn und wenn für alle x R. z(x ) x = 0 2 z(x) x 2 > 0 13 / 30

14 1.2 Beispiel: Warum sind Lehrbücher so teuer? 1.2 Beispiel: Warum sind Lehrbücher so teuer? Modell-Setup Sei: x Anzahl der verkauften Bücher p(x) inverse Nachfragefunktion, p(x) = a bx C(x) Kostenfunktion, C(x) = cx t Tantiemensatz: Erlösanteil, den der Autor erhält Mit a, b, c > 0 sowie 0 < t < 1 Wir fragen jetzt, welche Menge für den Autor bzw. für den Verlag optimal wäre. 14 / 30

15 1.2 Beispiel: Warum sind Lehrbücher so teuer? Welche Menge würde der Autor wählen? Maximiere Gewinnfunktion des Autors: max Π A = t (a bx) x x Bedingung erster Ordnung impliziert (Ausrechnen, Produktregel): x A = a 2b Bedingung zweiter Ordnung ist für alle x R erfüllt (Prüfen). Fazit: x A = a 2b ist die Verkaufsmenge, bei der der Autor seine Tantiemen maximiert. 15 / 30

16 1.2 Beispiel: Warum sind Lehrbücher so teuer? Welche Menge würde der Verlag wählen? Maximiere Gewinnfunktion des Verlags: max Π V = (1 t) (a bx) x cx x Bedingung erster Ordnung impliziert (Ausrechnen, Produktregel): x V = a c 1 t 2b Bedingung zweiter Ordnung ist für alle x R erfüllt (Prüfen). Fazit: x V = a c 1 t 2b ist die Verkaufsmenge, bei der der Verlag seinen Gewinn maximiert. 16 / 30

17 1.2 Beispiel: Warum sind Lehrbücher so teuer? Beachten Sie Die gewinnmaximale Menge des Verlages ist kleiner als die optimale Menge für den Autor. Der gewinnmaximale Preis des Verlages ist höher als der optimale Preis für den Autor. Was ist die ökonomische Intuition für dieses Ergebnis? Argumentieren Sie mit Grenzerlös und Grenzkosten für den Autor und für den Verlag. 17 / 30

18 1.3 Beispiel: Die Lafferkurve 1.3 Beispiel: Die Lafferkurve Modell-Setup Gelegentlich wird argumentiert, dass eine Senkung der Steuersätze zu einer Erhöhung des Steueraufkommens führen würde. Kann das tatsächlich passieren? Einfaches Beispiel mit Einkommensteuer. Sei: x Beschäftigungsmenge in Stunden w Bruttolohn pro Stunde s Steuersatz pro Stunde (Stücksteuer!) N Arbeitsnachfrage, N(w) = a bw A Arbeitsangebot, A(w) = c + d(w s) Mit a, b, c, d, w > 0 sowie 0 < s < w 18 / 30

19 1.3 Beispiel: Die Lafferkurve Gleichgewicht auf dem Arbeitsmarkt N(w ) = A(w ) impliziert (ausrechnen!): w = a c b+d + d b+d s und x Beachten Sie: = N(w ) = A(w ) = a b w (s) s = d x (s) s b+d > 0 = bd b+d < 0 ( ) a c b+d + d b+d s 19 / 30

20 1.3 Beispiel: Die Lafferkurve Bei welchem Steuersatz sind die Steuereinnahmen maximal? Maximiere Steuereinnahmen-Funktion : Die BEO impliziert: T s = a max T (s) = s x (s) s b(a c) b + d 2s bd b + d = 0 s ad + bc = 2bd Bedingung zweiter Ordnung ist global erfüllt. Prüfen! Fazit: Wenn der Steuersatz höher ist als s, dann führt eine Senkung des Steuersatzes tatsächlich zu einer Erhöhung des Steueraufkommens. Was ist die ökonomische Intuition? 20 / 30

21 1.4 Funktionen mit mehreren Variablen 1.4 Funktionen mit mehreren Variablen Betrachten Sie das folgende Maximierungsproblem: max x 1,...,x n z(x 1,..., x n ) Dabei seien x 1,..., x n reelle Zahlen und f ( ) : R n R sei eine reellwertige, multivariate Funktion, die wenigstens zweimal differenzierbar ist. Alternative Vektor-Schreibweise: x = (x 1,..., x n ), z(x). Wenn (x 1,..., x n ) ein Maximum dieser Funktion ist, dann muss die Steigung der Funktion an der Stelle x in allen Richtungen genau gleich 0 sein. Warum? 21 / 30

22 1.4 Funktionen mit mehreren Variablen Bedingungen erster Ordnung Die BEO lauten: z 1 (x ) = z(x ) x 1 = 0 z 2 (x ) = z(x ) x 2 = 0. z n (x ) = z(x ) x n = 0 Wieder gilt, dass die Bedingung erster Ordnung eine notwendige aber keine hinreichende Bedingung für ein Maximum ist. 22 / 30

23 1.4 Funktionen mit mehreren Variablen Bedingungen zweiter Ordnung Die BZO verlangt, dass die Hesse-Matrix (Matrix aller zweiten partiellen Ableitungen)......negativ definit ist für ein Maximum....positiv definit ist für ein Minimum. Exkurs: Definitheit der Hesse-Matrix ( ) z11 z Eine Hesse-Matrix H = 12 ist z 21 z 22 negativ definit, wenn z 11 < 0 und z 22 < 0 und H > 0 positiv definit, wenn z 11 > 0 und z 22 > 0 und H > 0 23 / 30

24 1.4 Funktionen mit mehreren Variablen Alternative Formulierung der Bedingung zweiter Ordnung Die Bedingung zweiter Ordnung verlangt, dass die Funktion z(x) an der Stelle x konkav ist, damit ein Maximum vorliegt. Wenn die Funktion z(x) an der Stelle x konkav ist, können wir sicher sein, dass es sich um ein lokales Maximum handelt. Wenn die Funktion z(x) überall konkav ist, können wir sicher sein, dass es sich um ein globales Maximum handelt. Analog: Für ein Minimum muss die Funktion konvex sein. 24 / 30

25 1.5 Konkavität und Konvexität einer Funktion 1.5 Konkavität und Konvexität einer Funktion Konkavität (bei Maximierungsproblemen) Was genau bedeutet Konkavität und was hat das mit der Bedingung zweiter Ordnung zu tun? Definition (1.1 Konkavität) Eine Funktion z(x) : R N R ist konkav, genau dann wenn für alle k (0, 1) und alle x, x R N gilt: z(kx + (1 k)x ) kz(x ) + (1 k)z(x ) 25 / 30

26 1.5 Konkavität und Konvexität einer Funktion Eine konkave Funktion z(x) 0 x 26 / 30

27 1.5 Konkavität und Konvexität einer Funktion Konvexität (bei Minimierungsproblemen) Die Definition von Konvexität ist analog: Definition (1.2 Konvexität) Eine Funktion z(x) : R N R ist konvex, genau dann wenn für alle k (0, 1) und alle x, x R N gilt: z(kx + (1 k)x ) kz(x ) + (1 k)z(x ) 27 / 30

28 1.5 Konkavität und Konvexität einer Funktion Eine konvexe Funktion z(x) 0 x 28 / 30

29 1.5 Konkavität und Konvexität einer Funktion Bemerkungen 1 Versuchen Sie sich klar zu machen, was diese Bedingung anschaulich verlangt. Warum muss die Funktion z(x) an der Stelle x konkav sein, wenn die Funktion an der Stelle x ein Maximum hat? 2 Eine Funktion ist streng konkav, wenn durch > ersetzt werden kann. 3 Wir wissen bereits, dass eine differenzierbare Funktion mit einer Veränderlichen genau dann (streng) konkav ist, wenn z (x) (<) 0. Anschaulich: Wenn man eine Tangente an die Funktion anlegt, dann biegt sich eine konkave Funktion nach allen Richtungen von der Tangente nach unten weg. 29 / 30

30 1.5 Konkavität und Konvexität einer Funktion 4 Für eine Funktion mit mehreren Veränderlichen gilt ganz analog: Wenn man eine Tangentialebene an dieser Funktion betrachtet, und wenn sich die Funktion in allen Richtungen nach unten von der Tangentialebene wegbiegt, dann ist die Funktion konkav. 5 Perfekt Analog gelten die gleichen Zusammenhänge für Konvexität und die Existenz von Minima. 30 / 30

1 Maximierung ohne Nebenbedingungen

1 Maximierung ohne Nebenbedingungen VWL III 1-1 Prof. Ray Rees 1 Maximierung ohne Nebenbedingungen Literatur: Schulbücher zur Mathematik ab der 10. Klasse Hoy et.al. (2001), Chapter 4-6, 11, 12. Chiang (1984), Chapter 9-11. Binmore (1983),

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Aufgabe des Monats Januar 2012

Aufgabe des Monats Januar 2012 Aufgabe des Monats Januar 2012 Ein Unternehmen stellt Kaffeemaschinen her, für die es jeweils einen Preis von 100 Euro (p = 100) verlangt. Die damit verbundene Kostenfunktion ist gegeben durch: C = 5q

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

3 Komparative Statik. 3.1 Einführung. Literatur: Hoy et.al. (2001), Chapter 14. Chiang (1984), Chapter 6-8.

3 Komparative Statik. 3.1 Einführung. Literatur: Hoy et.al. (2001), Chapter 14. Chiang (1984), Chapter 6-8. VWL III 3-1 Prof. Ray Rees 3 Komparative Statik Literatur: Hoy et.al. (2001), Chapter 14. Chiang (1984), Chapter 6-8. 3.1 Einführung Ökonomen interessieren sich häufig dafür, welche Auswirkungen die Veränderung

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

11 Optimierung von Funktionen einer Veränderlichen

11 Optimierung von Funktionen einer Veränderlichen 11 Optimierung von Funktionen einer Veränderlichen In diesem Kapitel werden die bis hier behandelten Grundlagen der Analysis genutzt, um Methoden aus der Optimierungstheorie für eindimensionale Entscheidungsmengen

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Aufgabe des Monats Mai

Aufgabe des Monats Mai Aufgabe des Monats Mai 2013 1 Ein Monopolist produziere mit folgender Kostenfunktion: K(x) = x 3 12x 2 + 60x + 98 und sehe sich der Nachfragefunktion (Preis-Absatz-Funktion) p(x) = 10, 5x + 120 gegenüber.

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

bx = a p p(x) = a bx.

bx = a p p(x) = a bx. Aufgabe 7 (a) Das Gleichgewicht liegt im Schnittpunkt von Angebot und Nachfrage. Da im Gleichgewicht x N = x A = x gelten muss, erhalten wir 10 + x = 50 10x 1x = 40 x = 0. Einsetzen der GG - Menge liefert

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

BWL-Crash-Kurs Mathematik

BWL-Crash-Kurs Mathematik Ingolf Terveer BWL-Crash-Kurs Mathematik UVK Verlagsgesellschaft mbh Vorwort 9 1 Aufgaben der Linearen Wirtschaftsalgebra 13 Aufgaben 17 2 Lineare Gleichungssysteme 19 2.1 Lineare Gleichungssysteme in

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x)

Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x) 3.2.4. Analyse von Funktionen Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. Begriffe: Die Funktion f hat in x 0 I eine stationäre Stelle,

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

Kurvendiskussion für Funktionen mit einer Variablen

Kurvendiskussion für Funktionen mit einer Variablen Kurvendiskussion für Funktionen mit einer Variablen Unter der Kurvendiskussion einer Funktionsgleichung versteht man die Zusammenstellung der wichtigsten Eigenschaften ihres Bildes mit anschließender Zeichnung.

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

Formelsammlung Wirtschaftsmathematik

Formelsammlung Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Strobel Stefan 29. Januar 2006 Inhaltsverzeichnis I. Mathematik 2 1. Umrechnung von Dezimalzahlen in Brüche 2 2. Differentiationsregeln 2 2.1. Summenregel..................................

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Mathematik EF. Bernhard Scheideler

Mathematik EF. Bernhard Scheideler Mathematik EF Bernhard Scheideler Stand: 7. September 20 Inhaltsverzeichnis Die Kurvendiskussion. Stetigkeit und Differenzierbarkeit:....................2 Standardsymmetrie:............................

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Gradient, Hessematrix, Definitheit, Taylorentwicklung und Extremwertaufgaben von Funktionen mehrerer Variabler

Gradient, Hessematrix, Definitheit, Taylorentwicklung und Extremwertaufgaben von Funktionen mehrerer Variabler Rolf Haftmann Gradient, Hessematri, Definitheit, Talorentwicklung und Etremwertaufgaben von Funktionen mehrerer Variabler Gradient: Spaltenvektor der partiellen Ableitungen f 1 f f 1 f = grad f = 2 = f

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 1

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 1 Georg Nöldeke Frühjahrssemester 2009 VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt Siehe Abbildung x 2 m p = 25 2 Budgetgerade: { xpx + px 2 2 = m} Budgetmenge: { xpx + px 2 2 m} 0 0 m p = 20 x

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Differentialrechnung

Differentialrechnung Dr. Heidemarie Borgwadt Differentialrechnung Springer Fachmedien Wiesbaden 1994 Ursprünglich erschienen bei Betriebswirtschaftlicher Verlag Dr. Th. Gabler GmbH, Wiesbaden 1994. Lektorat: Annegret Dorn

Mehr

Mathematik - Antwortblatt Klausur

Mathematik - Antwortblatt Klausur Mathematik - Antwortblatt Klausur 30..09 Aufgabe: 0 Punkte a) Allgemein heißt eine Funktion f (x) stetig an der Stelle x 0, wenn die folgenden Bedingungen erfüllt sind (2 Punkte): f (x 0 )=lim h 0 f (x

Mehr

Lernzettel Mathe Inhaltsverzeichnis

Lernzettel Mathe Inhaltsverzeichnis Lernzettel Mathe Inhaltsverzeichnis Aufgabe 1 - Vollständige Induktion 2 Aufgabe 2 - Grenzwertbestimmung 2 Aufgabe 3 - Lin/Log 2 Aufgabe 4 - Barwert/Endwert 3 Aufgabe 5 - Maximalstellen, steigend/fallend

Mehr

26. Höhere Ableitungen

26. Höhere Ableitungen 26. Höhere Ableitungen 331 26. Höhere Ableitungen Im letzten Kapitel haben wir gesehen, wie man für Abbildungen zwischen mehrdimensionalen Räumen das Konzept der Differenzierbarkeit definieren und für

Mehr

Mathematik-Klausur vom 10. Februar 2003

Mathematik-Klausur vom 10. Februar 2003 Mathematik-Klausur vom 10. Februar 2003 Aufgabe 1 Für eine Hausrenovierung wurde ein Kredit von 25 000 bei einem Zinssatz von,5% (p.a.) aufgenommen. Die Laufzeit soll 30 Jahre betragen. a) Berechnen Sie

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

INGENIEURMATHEMATIK. 9. Differentialrechnung für Funktionen mehrerer Variablen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 9. Differentialrechnung für Funktionen mehrerer Variablen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 9. Differentialrechnung für Funktionen mehrerer Variablen Prof. Dr. Gunar Matthies Sommersemester

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Konvexe Funktionen und Legendre-Transformation

Konvexe Funktionen und Legendre-Transformation Konvexe Funktionen und Legendre-Transformation Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x, y auch stets deren Verbindungsstrecke xy = {x +t xy 0 t 1} = {(1 t)x +ty 0 t 1} enthält.

Mehr

7 Kartelle und Fusionen. 7.1 Kartellabsprachen

7 Kartelle und Fusionen. 7.1 Kartellabsprachen Wettbewerbstheorie und -politik 7-1 Dr. Florian Englmaier 7 Kartelle und Fusionen 7.1 Kartellabsprachen Da sich im (Mengen- und Preis-)Wettbewerb niedrigere Preise und geringere Gesamtgewinne als beim

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Mikroökonomische Theorie: Gewinnmaximierung

Mikroökonomische Theorie: Gewinnmaximierung Mikroökonomische Theorie: Dr. Jan Heufer TU Dortmund 5. Juli 2011 Übersicht sproblem 1 / 37 Wirtschaftskreislauf sproblem Konsumgüter Nachfrage Konsumenten Haushalte Markt Angebot Produzenten Firmen Angebot

Mehr

WIRTSCHAFTLICHES RECHNEN

WIRTSCHAFTLICHES RECHNEN Wirtschaftliches Rechnen Herbert Paukert 1 WIRTSCHAFTLICHES RECHNEN Eine Einführung, Version 2.0 Herbert Paukert Betriebswirtschaftliche Funktionen [ 01 ] Formeln zur Kosten- und Preistheorie [ 08 ] Zwei

Mehr

Beschäftigungstheorie

Beschäftigungstheorie Prof. Dr. Oliver Landmann SS 2008 Beschäftigungstheorie Nachholklausur vom 7. Oktober 2008 Aufgabe 1 (20%) Beantworten Sie jeweils in wenigen Sätzen: a) Unter welchen Bedingungen wird eine Person statistisch

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung

Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Jörn Loviscach Versionsstand: 29. Juni 2009, 18:41 1 Partielle Ableitungen, Gradient Die Ableitung einer Funktion f an einer

Mehr

3. Unter welcher Bedingung wird genau das produziert, was auch nachgefragt wird?

3. Unter welcher Bedingung wird genau das produziert, was auch nachgefragt wird? Allgemeines Gleichgewicht Ziel: Darstellung aller Märkte (Güter- und Faktormärkte) einer Volkswirtschaft einschl. aller Interdependenzen. Anwendung: Wohlfahrtsüberlegungen (z.b. bei der Evaluierung von

Mehr

Mikroökonomik. Monopol und Monopson. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Monopol und Monopson 1 / 53

Mikroökonomik. Monopol und Monopson. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Monopol und Monopson 1 / 53 Mikroökonomik Monool und Monoson Harald Wiese Universität Leizig Harald Wiese (Universität Leizig) Monool und Monoson 1 / 53 Gliederung Einführung Haushaltstheorie Unternehmenstheorie Vollkommene Konkurrenz

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Das Monopol. Prof.Dr.M.Adams Wintersemester 10/11 Wahlschwerpunkt VI : Ökonomische Analyse des Rechts

Das Monopol. Prof.Dr.M.Adams Wintersemester 10/11 Wahlschwerpunkt VI : Ökonomische Analyse des Rechts Marktmacht: Das Monopol Prof.Dr.M.Adams Wintersemester 10/11 Wahlschwerpunkt VI : Ökonomische Analyse des Rechts Institut für Recht der Wirtschaft Vollkommener Wettbewerb (1) Wiederholung des vollkommenen

Mehr

1. Einleitung: Markt und Preis

1. Einleitung: Markt und Preis 1. Einleitung: Markt und Preis Georg Nöldeke WWZ, Universität Basel Mikroökonomie (FS 10) Einleitung 1 / 31 1. Einleitung 1.1. Was ist Mikroökonomie? Ziel der Mikroökonomie ist es, menschliches Verhalten

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2 Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr