Grundlagen von Datenbanken. B-Bäume, B*-Bäume Normalisierung

Größe: px
Ab Seite anzeigen:

Download "Grundlagen von Datenbanken. B-Bäume, B*-Bäume Normalisierung"

Transkript

1 Grundlagen von Datenbanken B-Bäume, B*-Bäume Normalisierung

2 B-Bäume Definition: Seien k, h ganze Zahlen, h > 0, k > 0. Ein B-Baum B der Klasse τ(k,h) ist entweder ein leerer Baum oder ein geordneter Suchbaum mit folgenden Eigenschaften: Jeder Pfad von der Wurzel zu einem Blatt hat die gleiche Länge h-1. Jeder Knoten außer der Wurzel und den Blättern hat mindestens k+1 Söhne. Die Wurzel ist ein Blatt oder hat mindestens 2 Söhne. Jeder Knoten hat höchstens 2k+1 Söhne. Jeder Knoten mit Ausnahme der Wurzel hat mindestens k und höchstens 2k Einträge. L Knotenformat: bm K 1 D 1 K 2 D 2... K b D b freier Platz P 0 P 1 P 2 P b 2

3 B-Bäume In jedem Knoten stehen die Schlüssel in aufsteigender Ordnung mit K 1 <K 2 <...<K b. Jeder Schlüssel hat eine Doppelrolle als Identifikator eines Datensatzes und als Wegweiser im Baum. B-Baum der Klasse t(2,3):

4 B-Bäume (Beispiel-Splitten) Split-Faktor: Einfügen von 63 (Splitten)

5 B-Bäume (Beispiel-Einfügen bei doppeltem Überlauf) Split-Faktor: Einfügen von 42 (Überlauf)

6 B-Bäume (Beispiel-Einfügen bei doppeltem Überlauf) Split-Faktor: Einfügen von 29 (Splitten)

7 B-Bäume (Beispiel-Ausgleichen) Löschen von 42 (Ausgleichen)

8 B-Bäume (Beispiel-Mischen) Löschen von 8 (Mischen)

9 B*-Bäume Definition: Seien k, k* und h* ganze Zahlen, h* 0, k, k* > 0. Ein B*-Baum B der Klasse t (k,k*,h*) ist entweder ein leerer Baum oder ein geordneter Suchbaum, für den gilt: Jeder Pfad von der Wurzel zu einem Blatt besitzt die gleiche Länge h*-1. Jeder Knoten außer der Wurzel und den Blättern hat mindestens k+1 Söhne, die Wurzel mindestens 2 Söhne, außer wenn sie ein Blatt ist. Jeder innere Knoten hat höchstens 2k+1 Söhne. Jeder Blattknoten mit Ausnahme der Wurzel als Blatt hat mindestens k* und höchstens 2k* Einträge. Innere Knotenformat: M K 1... K b freier Platz L Blattknotenformat: M... freier Platz K 1 D 1 K 2 D 2 L K m D m P 0 P 1 P b P prior P next 9

10 B*-Bäume (Erklärungsmodell) Der B*-Baum lässt sich auffassen als eine gekettete sequentielle Datei von Blättern, die einen Indexteil besitzt, der selbst ein B-Baum ist. Im Indexteil werden insbes. beim Split-Vorgang die Operationen des B- Baums eingesetzt. B*-Baum der Klasse t(3, 2, 3):

11 B*-Bäume (Beispiel-Splitten) Split-Faktor: Einfügen von 41 (Splitten)

12 B*-Bäume (Beispiel-Einfügen bei doppeltem Überlauf) Split-Faktor: Einfügen von 39 (Überlauf)

13 B*-Bäume (Beispiel-Einfügen bei doppeltem Überlauf) Split-Faktor: Einfügen von 29 (Splitten)

14 B*-Bäume (Beispiel-Ausgleichen) Löschen von 64 (Ausgleichen)

15 B*-Bäume (Beispiel-Mischen) Löschen von 64 (Mischen)

16 Änderungsanomalien Bücherei ( KID, Signatur, KName, ISBN, Autor, Titel, Auflage, Bestand, Ausleihdatum, Leihdauer ) KID, Signatur Ausleihdatum, Leihdauer KID KName Signatur ISBN ISBN Autor, Titel Autor, Titel ISBN ISBN, Auflage Bestand Autor, Titel, Auflage Bestand 16

17 Änderungsanomalien Einfüge-Anomalie: ODER Es ist nicht möglich ein neues Buch einzufügen, wenn dieses nicht von einem Kunden ausgeliehen wird. Es ist nicht möglich, einen Kunden anzulegen ohne dass dieser ein Buch ausleiht. 17

18 Änderungsanomalien Lösch-Anomalie: ODER Wenn der Kunde das letzte Buch zurückgibt, gehen auch die Kundeninformationen verloren. Mit dem Löschen eines Kunden gehen auch die Informationen über ein Buch verloren, wenn dies von keinem anderen Kunden ausgeliehen ist. 18

19 Änderungsanomalien Modifikations-Anomalie: Um den Titel eines Buches zu korrigieren, müssen die Tupel für alle Leihverhältnisse desselben Buches aktualisiert werden. ODER: Ändert sich der Name eines Kunden, müssen die Tupel für alle Ausleihverhältnisse des Kunden aktualisiert werden. 19

20 Normalformen KID, Signatur Ausleihdatum, Leihdauer KID KName Signatur ISBN ISBN Autor, Titel Autor, Titel ISBN ISBN, Auflage Bestand Autor, Titel, Auflage Bestand 20

21 Normalformen 1. NF alle Attribute sind atomar. a b a b z b z X={a,b} Y={b} b z 21

22 Normalformen a b a b z b z X={a} Y={b} b z 22

23 a) Fkt. Abhängigkeiten FA1: Name Straße FA2: Name, Datum Treffpunkt 23

24 a) Fkt. Abhängigkeiten FA1: Name Straße FA2: Name, Datum Treffpunkt Schlüsselkandidaten: Name, Datum 24

25 a) Fkt. Abhängigkeiten FA1: Name Straße FA2: Name, Datum Treffpunkt Schlüsselkandidaten: Nicht-Primärattribute: Name, Datum Straße, Treffpunkt 25

26 a) Fkt. Abhängigkeiten FA1: Name Straße FA2: Name, Datum Treffpunkt Schlüsselkandidaten: Nicht-Primärattribute: Normalformen: Name, Datum Straße, Treffpunkt 1NF, aber da Straße partiell von Name, Datum abhängt ist die Relation bzgl. dieser Menge an funktionellen Abhängigkeiten nicht in 2NF. Folglich auch nicht in 3NF. 26

27 b) Fkt. Abhängigkeiten FA1: Name, Straße, Datum Treffpunkt 27

28 b) Fkt. Abhängigkeiten FA1: Name, Straße, Datum Treffpunkt Schlüsselkandidaten: Name, Straße, Datum 28

29 b) Fkt. Abhängigkeiten FA1: Name, Straße, Datum Treffpunkt Schlüsselkandidaten: Nicht-Primärattribute: Name, Straße, Datum Treffpunkt 29

30 b) Fkt. Abhängigkeiten FA1: Name, Straße, Datum Treffpunkt Schlüsselkandidaten: Nicht-Primärattribute: Normalformen: Name, Straße, Datum Treffpunkt Da nur eine funktionale Abhängigkeit existiert, kann es weder partielle noch transitive Abhängigkeiten geben. Die Relation ist bzgl. dieser Menge an funktionellen Abhängigkeiten somit in 3NF. 30

31 c) Fkt. Abhängigkeiten FA1: Name, Straße Datum, Treffpunkt FA2: Datum, Treffpunkt Name, Straße 31

32 c) Fkt. Abhängigkeiten FA1: Name, Straße Datum, Treffpunkt FA2: Datum, Treffpunkt Name, Straße Schlüsselkandidaten: Name, Straße oder Datum, Treffpunkt 32

33 c) Fkt. Abhängigkeiten FA1: Name, Straße Datum, Treffpunkt FA2: Datum, Treffpunkt Name, Straße Schlüsselkandidaten: Nicht-Primärattribute: Name, Straße oder Datum, Treffpunkt Ø 33

34 c) Fkt. Abhängigkeiten FA1: Name, Straße Datum, Treffpunkt FA2: Datum, Treffpunkt Name, Straße Schlüsselkandidaten: Nicht-Primärattribute: Normalformen: Name, Straße oder Datum, Treffpunkt Ø Da es keine Nicht-Primärattribute gibt, muss die Relation bzgl. dieser Menge an funktionellen Abhängigkeiten in 3NF sein. 34

35 d) Fkt. Abhängigkeiten FA1: Name, Straße Datum, Treffpunkt FA2: Datum Treffpunkt 35

36 d) Fkt. Abhängigkeiten FA1: Name, Straße Datum, Treffpunkt FA2: Datum Treffpunkt Schlüsselkandidaten: Name, Straße 36

37 d) Fkt. Abhängigkeiten FA1: Name, Straße Datum, Treffpunkt FA2: Datum Treffpunkt Schlüsselkandidaten: Nicht-Primärattribute: Name, Straße Datum, Treffpunkt 37

38 d) Fkt. Abhängigkeiten FA1: Name, Straße Datum, Treffpunkt FA2: Datum Treffpunkt Schlüsselkandidaten: Nicht-Primärattribute: Normalformen: Name, Straße Datum, Treffpunkt Es treten keine partiellen Abhängigkeiten auf. Die Relation ist somit in 2NF. Da Treffpunkt aber über Datum transitiv von Name, Straße abhängt, ist die Relation bzgl. dieser Menge an funktionellen Abhängigkeiten nicht in 3NF. 38

39 e) Fkt. Abhängigkeiten FA1: Name Datum FA2: Datum, Treffpunkt Straße FA3: Straße Name 39

40 e) Fkt. Abhängigkeiten FA1: Name Datum FA2: Datum, Treffpunkt Straße FA3: Straße Name Schlüsselkandidaten: Datum, Treffpunkt oder Name, Treffpunkt oder Straße, Treffpunkt 40

41 e) Fkt. Abhängigkeiten FA1: Name Datum FA2: Datum, Treffpunkt Straße FA3: Straße Name Schlüsselkandidaten: Datum, Treffpunkt oder Name, Treffpunkt oder Straße, Treffpunkt 41

42 e) Fkt. Abhängigkeiten FA1: Name Datum FA2: Datum, Treffpunkt Straße FA3: Straße Name Schlüsselkandidaten: Datum, Treffpunkt oder Name, Treffpunkt oder Straße, Treffpunkt 42

43 e) Fkt. Abhängigkeiten FA1: Name Datum FA2: Datum, Treffpunkt Straße FA3: Straße Name Schlüsselkandidaten: Nicht-Primärattribute: Datum, Treffpunkt oder Name, Treffpunkt oder Straße, Treffpunkt Ø 43

44 e) Fkt. Abhängigkeiten FA1: Name Datum FA2: Datum, Treffpunkt Straße FA3: Straße Name Schlüsselkandidaten: Nicht-Primärattribute: Normalformen: Datum, Treffpunkt oder Name, Treffpunkt oder Straße, Treffpunkt Ø Da es keine Nicht-Primärattribute gibt, muss die Relation bzgl. Dieser Menge an funktionellen Abhängigkeiten in 3NF sein. 44

45 f) Fkt. Abhängigkeiten FA1: Name Straße FA2: Datum Treffpunkt FA3: Straße, Datum Name 45

46 f) Fkt. Abhängigkeiten FA1: Name Straße FA2: Datum Treffpunkt FA3: Straße, Datum Name Schlüsselkandidaten: Name, Datum oder Straße, Datum 46

47 f) Fkt. Abhängigkeiten FA1: Name Straße FA2: Datum Treffpunkt FA3: Straße, Datum Name Schlüsselkandidaten: Nicht-Primärattribute: Name, Datum oder Straße, Datum Treffpunkt 47

48 f) Fkt. Abhängigkeiten FA1: Name Straße FA2: Datum Treffpunkt FA3: Straße, Datum Name Schlüsselkandidaten: Nicht-Primärattribute: Normalformen: Name, Datum oder Straße, Datum Treffpunkt 1NF, aber da Treffpunkt partiell von Straße, Datum und von Name, Datum abhängt ist die Relation bzgl. Dieser Menge an funktionellen Abhängigkeiten nicht in 2NF. Folglich auch nicht in 3NF. 48

49 g) Fkt. Abhängigkeiten FA1: Name, Straße Treffpunkt FA2: Datum Treffpunkt FA3: Treffpunkt Datum 49

50 g) Fkt. Abhängigkeiten FA1: Name, Straße Treffpunkt FA2: Datum Treffpunkt FA3: Treffpunkt Datum Schlüsselkandidaten: Name, Straße 50

51 g) Fkt. Abhängigkeiten FA1: Name, Straße Treffpunkt FA2: Datum Treffpunkt FA3: Treffpunkt Datum Schlüsselkandidaten: Nicht-Primärattribute: Name, Straße Datum, Treffpunkt 51

52 g) Fkt. Abhängigkeiten FA1: Name, Straße Treffpunkt FA2: Datum Treffpunkt FA3: Treffpunkt Datum Schlüsselkandidaten: Nicht-Primärattribute: Normalformen: Name, Straße Datum, Treffpunkt Es treten keine partiellen Abhängigkeiten auf. Die Relation ist bzgl. dieser funktionellen Abhängigkeiten somit in 2NF. Da Datum aber über Treffpunkt transitiv von Name, Straße abhängt, ist die Relation bzgl. dieser Menge an funktionellen Abhängigkeiten nicht in 3NF. 52

53 h) Fkt. Abhängigkeiten FA1: Treffpunkt Name FA2: Name Datum, Straße, Treffpunkt 53

54 h) Fkt. Abhängigkeiten FA1: Treffpunkt Name FA2: Name Datum, Straße, Treffpunkt Schlüsselkandidaten: Treffpunkt oder Name 54

55 h) Fkt. Abhängigkeiten FA1: Treffpunkt Name FA2: Name Datum, Straße, Treffpunkt Schlüsselkandidaten: Nicht-Primärattribute: Treffpunkt oder Name Straße, Datum 55

56 h) Fkt. Abhängigkeiten FA1: Treffpunkt Name FA2: Name Datum, Straße, Treffpunkt Schlüsselkandidaten: Nicht-Primärattribute: Normalformen: Treffpunkt oder Name Straße, Datum Da beide Schlüsselkandidaten einattributig sind, kann es keine partiellen Abhängigkeiten geben. Die Relation ist bzgl. dieser funktionellen Abhängigkeiten somit in 2NF. Da es sich bei Treffpunkt und Name jeweils um einen Schlüsselkandidaten handelt und somit Treffpunkt Name gilt, existieren auch keine transitiven Abhängigkeiten. Die Relation ist bzgl. dieser Menge an funktionellen Abhängigkeiten daher sogar in 3NF. 56

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 10. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Suchverfahren für große Datenmengen bisher betrachtete Datenstrukturen

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Informationssysteme SS 2013 Lösungsvorschläge zu Übungsblatt 2. Übungsblatt 2. Für die Übungen in der Woche vom 29. April bis 03.

Informationssysteme SS 2013 Lösungsvorschläge zu Übungsblatt 2. Übungsblatt 2. Für die Übungen in der Woche vom 29. April bis 03. Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Fachbereich Informatik Technische Universität Kaiserslautern Übungsblatt 2 Für die Übungen in der Woche vom 29. April bis 03. Mai 2013 Aufgabe

Mehr

Mehrwegbäume Motivation

Mehrwegbäume Motivation Mehrwegbäume Motivation Wir haben gute Strukturen (AVL-Bäume) kennen gelernt, die die Anzahl der Operationen begrenzen Was ist, wenn der Baum zu groß für den Hauptspeicher ist? Externe Datenspeicherung

Mehr

B / B* - Bäume. Guido Hildebrandt Seminar Datenbanksysteme

B / B* - Bäume. Guido Hildebrandt Seminar Datenbanksysteme B / B* - Bäume Guido Hildebrandt Seminar Datenbanksysteme 25.11.2010 Gliederung Einleitung Binärbaum B - Baum B* - Baum Varianten Zusammenfassung Quellen Gliederung Einleitung Binärbaum B - Baum B* - Baum

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 9 Übung zur Vorlesung Grundlagen: Datenbanken im WS4/5 Harald Lang (harald.lang@in.tum.de) http://www-db.in.tum.de/teaching/ws45/grundlagen/

Mehr

Eigenschaften von Datenbanken, insbesondere

Eigenschaften von Datenbanken, insbesondere Eigenschaften von Datenbanken In diesem Abschnitt beschreiben wir wünschenswerte Eigenschaften von Datenbanken, insbesondere Relationenschemata: Normalformen, die auf mathematischen Modellen beruhen und

Mehr

t-äre Bäume können - wie Binärbäume - degenerieren, d.h. durch ungünstige Einfügereihenfolge kann ein unausgewogener Baum mit großer Höhe entstehen.

t-äre Bäume können - wie Binärbäume - degenerieren, d.h. durch ungünstige Einfügereihenfolge kann ein unausgewogener Baum mit großer Höhe entstehen. .3 B-Bäume t-äre Bäume können - wie Binärbäume - degenerieren, d.h. durch ungünstige Einfügereihenfolge kann ein unausgewogener Baum mit großer Höhe entstehen. Wird der t-äre Baum zur Verwaltung von Daten

Mehr

Normalformen. Was sind Kriterien eines guten Entwurfs? So wenig Redundanz wie möglich. Keine Einfüge-, Lösch-, Änderungsanomalien

Normalformen. Was sind Kriterien eines guten Entwurfs? So wenig Redundanz wie möglich. Keine Einfüge-, Lösch-, Änderungsanomalien Normalformen Was sind Kriterien eines guten Entwurfs? So wenig Redundanz wie möglich Keine Einfüge-, Lösch-, Änderungsanomalien IX-19 Erste und Zweite Normalform Beispiel: (nicht 1. Normalform) vorrat

Mehr

Rückblick: Relationales Modell

Rückblick: Relationales Modell Rückblick: Relationales Modell Relationales Modell als vorherrschendes Datenmodell Relationen (Tabellen) besitzen Attribute (Spalten) mit Wertebereichen und beinhalten Tupel (Zeilen) Umsetzung eines konzeptuellen

Mehr

Relationale Datenbanken

Relationale Datenbanken Ramon A. Mata-Toledo, Pauline K. Cushman Relationale Datenbanken Schaum's Repetitorien Übersetzung aus dem Amerikanischen von G&U Technische Dokumentation GmbH Z Die Autoren 9 Vorwort 9 1 Ein Überblick

Mehr

D1: Relationale Datenstrukturen (14)

D1: Relationale Datenstrukturen (14) D1: Relationale Datenstrukturen (14) Die Schüler entwickeln ein Verständnis dafür, dass zum Verwalten größerer Datenmengen die bisherigen Werkzeuge nicht ausreichen. Dabei erlernen sie die Grundbegriffe

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/3, Folie 1 2010 Prof. Steffen Lange - HDa/FbI

Mehr

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y Die AVL-Eigenschaft soll bei Einfügungen und Streichungen erhalten bleiben. Dafür gibt es zwei mögliche Operationen: -1-2 Rotation Abbildung 3.1: Rotation nach rechts (analog links) -2 +1 z ±1 T 4 Doppelrotation

Mehr

Tag 4 Inhaltsverzeichnis

Tag 4 Inhaltsverzeichnis Tag 4 Inhaltsverzeichnis Normalformen Problem Formen (1-4) Weitere Formen Transaktionen Synchronisationsprobleme Überblick Autocommit Locking Savepoints Isolation levels Übungen RDB 4-1 Normalformen Problematik

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 2 Übung zur Vorlesung Grundlagen: Datenbanken im WS3/4 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws34/dbsys/exercises/

Mehr

Veranstaltung Pr.-Nr.: Normalisierung. Veronika Waue WS 07/08

Veranstaltung Pr.-Nr.: Normalisierung. Veronika Waue WS 07/08 Veranstaltung Pr.-Nr.: 101023 Normalisierung Veronika Waue WS 07/08 Veronika Waue: Grundstudium Wirtschaftsinformatik WS07/08 Normalformen...stellen ein formelles Maß für die Güte / Eignung / Qualität

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 11 Hausaufgabe 1 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe (muehe@in.tum.de)

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Normalisierung I. Ziele

Normalisierung I. Ziele Normalisierung I Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Formale Ermittlung von Schlüsselkandidaten Funktionale Abhängigkeiten Normalformen Lehr- und Forschungseinheit Datenbanken

Mehr

7.1.2 Membership-Test - fortgesetzt

7.1.2 Membership-Test - fortgesetzt 7. Formaler Datenbankentwurf 7.1. Funktionale Abhängigkeiten Seite 1 7.1.2 Membership-Test - fortgesetzt Membership-Test: X Y F +? (Attribut-)Hülle X + von X (bzgl. F) X + = {A A V und X A F + }. Membership-Test

Mehr

Datenbanken: Indexe. Motivation und Konzepte

Datenbanken: Indexe. Motivation und Konzepte Datenbanken: Indexe Motivation und Konzepte Motivation Warum sind Indexstrukturen überhaupt wünschenswert? Bei Anfrageverarbeitung werden Tupel aller beteiligter Relationen nacheinander in den Hauptspeicher

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 Bruder-Bäume, B-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei Wörterbuchoperationen

Mehr

Tag 4 Inhaltsverzeichnis

Tag 4 Inhaltsverzeichnis Tag 4 Inhaltsverzeichnis Normalformen Problem Formen (1-4) Weitere Formen Transaktionen Synchronisationsprobleme Überblick Autocommit Locking Savepoints Isolation levels Übungen RDB 4-1 Normalformen Problematik

Mehr

Musterlösung zur Finalklausur Datenbanksysteme am

Musterlösung zur Finalklausur Datenbanksysteme am Musterlösung zur Finalklausur Datenbanksysteme am 5.2.2003 Aufgabe 1 a) Anfragen: (20 Punkte) i.suchen Sie die Stücke (Titel), die Komponist Lennon erstellt hat und von der Musikfirma EMI veröffentlicht

Mehr

Kapitel 11. Normalisierung

Kapitel 11. Normalisierung Kapitel 11 Normalisierung Ziel: Ziel und Idee der Normalisierung Anpassen an die Erfordernisse des Relationenmodells (1. Normalform) Vermeidung von Redundanz (weitere Normalformen) Keine Fehler (Anomalien)

Mehr

Datenbanken 6: Normalisierung

Datenbanken 6: Normalisierung Datenbanken 6: Normalisierung 27 III 2017 Outline 1 SQL 2 Überblick Datenbankdesign 3 Anomalien 4 Datenbank Normalisierung Zerlegung von Relationen 5 Normalisierung Erste Normalform Zweite Normalform Dritte

Mehr

Universität Augsburg, Institut für Informatik WS 2009/2010 Prof. Dr. W. Kießling 15. Jan Dr. A. Huhn, F. Wenzel, M. Endres Lösungsblatt 10

Universität Augsburg, Institut für Informatik WS 2009/2010 Prof. Dr. W. Kießling 15. Jan Dr. A. Huhn, F. Wenzel, M. Endres Lösungsblatt 10 Universität Augsburg, Institut für Informatik WS 009/010 Prof. Dr. W. Kießling 15. Jan. 010 Dr. A. Huhn, F. Wenzel, M. Endres Lösungsblatt 10 Aufgabe 1: B-Bäume Datenbanksysteme I a) Abschätzen der Höhe

Mehr

3. Übungszettel (Musterlösung)

3. Übungszettel (Musterlösung) 3. Übungszettel (Musterlösung) Einführung in Datenbanksysteme Datenbanken für die Bioinformatik Heinz Schweppe, Jürgen Broß, Katharina Hahn Übungsaufgaben 1. Aufgabe (DDL + Constraints) XX Punkte Die Tabellen

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen Ordnungsrelationen auf Mengen! Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

d.h. zu Definitions-Stelle eindeutiger Funktionswert x X! y Y : (x,y) f umgekehrt: (x 1,y), (x 2,y) f ist o.k. X Y f(x) = y

d.h. zu Definitions-Stelle eindeutiger Funktionswert x X! y Y : (x,y) f umgekehrt: (x 1,y), (x 2,y) f ist o.k. X Y f(x) = y Kapitel 7 Normalformen und DB-Entwurf Kap. 7.1 Normalformen Theorie Funktionale Abhängigkeit: f X Y f als Relation, d.h. Menge von Paaren {(x,y)} x: Definitions-Stelle, y: Funktionswert f ist Funktion

Mehr

Profilunterricht Modul: Modellierung (IT & Medien) Normalisierung. Tobias Liebing 1

Profilunterricht Modul: Modellierung (IT & Medien) Normalisierung. Tobias Liebing 1 Profilunterricht Modul: Modellierung (IT & Medien) Normalisierung Tobias Liebing 1 Ablauf 1. Wiederholung des Stoffes aus der letzten Stunde 2. Normalisierung 3. ER-Modell 4. Datenbank mit Base Tobias

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Datenbanksysteme Übungsblatt 1

Datenbanksysteme Übungsblatt 1 Datenbanksysteme Übungsblatt 1 Sommersemester 2003 AIFB Institut für Angewandte Informatik und Formale Beschreibungsverfahren 1 Aufgabe 1a (1/2) Änderungsanomalie: Wenn eine Änderung nicht überall ordnungsgemäß

Mehr

4. Normalisierung von Relationenschemata

4. Normalisierung von Relationenschemata 4. Normalisierung von Relationenschemata Ziel: Vermeidung von Anomalien in Relationenschemata wird erreicht durch systematische Vorgehensweise beim Datenentwurf vom eerm zum Relationalen Modell (s. voriges

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 8 Übung zur Vorlesung Grundlagen: Datenbanken im WS14/15 Harald Lang (harald.lang@in.tum.de) http://www-db.in.tum.de/teaching/ws1415/grundlagen/

Mehr

Algorithmen und Datenstrukturen I Bruder-Bäume

Algorithmen und Datenstrukturen I Bruder-Bäume Algorithmen und Datenstrukturen I Bruder-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 11.12.2017 10:50 Algorithmen und Datenstrukturen I, Bruder-Bäume 1/24 Definition ein binärer Baum heißt ein Bruder-Baum,

Mehr

Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen. 1. Fall: zu löschendes Element ist Blatt: löschen

Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen. 1. Fall: zu löschendes Element ist Blatt: löschen Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen 3 1. Fall: zu löschendes Element ist Blatt: löschen 1 2 4 9 10 11 12 13 2. Fall: zu löschendes Element

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Wir haben folgende Ausprägung der Relation Studenten:

Wir haben folgende Ausprägung der Relation Studenten: Übungen Aufgabe Wir haben folgende Ausprägung der Relation Studenten: SID Name Email Age Note 2833 Jones jones@scs.ubbcluj.ro 9 9 2877 Smith smith@scs.ubbcluj.ro 2 8 2976 Jones jones@math.ubbcluj.ro 2

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Datenmanagement Übung 5

Datenmanagement Übung 5 Datenmanagement Übung 5 Normalisierung (1.-3. NF) AUFGABE 1 1 Definitionen 1. NF Eine Relation befindet sich in 1. NF, wenn jeder Attributwert atomar ist und alle Nicht-Schlüsselattribute funktional vom

Mehr

B*-BÄUME. Ein Index ist seinerseits wieder nichts anderes als eine Datei mit unpinned Records.

B*-BÄUME. Ein Index ist seinerseits wieder nichts anderes als eine Datei mit unpinned Records. B*-Bäume 1 B*-BÄUME Beobachtung: Ein Index ist seinerseits wieder nichts anderes als eine Datei mit unpinned Records. Es gibt keinen Grund, warum man nicht einen Index über einem Index haben sollte, und

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

Abhängigkeiten und Normalisierung

Abhängigkeiten und Normalisierung Abhängigkeiten und Abhängigkeiten als Ursachen für Inkonsistenzen Der sprozess Normalformen (1NF, 2NF, 3NF) Seite 1 Abhängigkeiten Funktionale Abhängigkeit Ein Attribut bzw. eine Attributkombination A

Mehr

Lösungen zu Aufgabenblatt 9

Lösungen zu Aufgabenblatt 9 Fachbereich Informatik Prof. Dr. Peter Becker Objektrelationale Datenbanksysteme Wintersemester 2011/ 14. Januar 2013 Lösungen zu Aufgabenblatt 9 Aufgabe 1 (Einfügen in B-Bäume) In einen leeren B-Baum

Mehr

Programmierung und Datenbanken II

Programmierung und Datenbanken II Programmierung und Datenbanken II Wiederholung Was haben wir bisher getan? Anwendungsbereich analysiert Datenobjekte + Beziehungen identifiziert Modelle erstellt Modellhafte Aufbereitung der Analyse (ERM/SERM)

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 07 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 8 Votierung in der Woche vom 25.06.0729.06.07 Aufgabe 22 AVL-Bäume (a) Geben

Mehr

Aufgabe 1) Übung 4: 1.2

Aufgabe 1) Übung 4: 1.2 Übung 4: Aufgabe 1) 1.2 Relation: Eine Relation besteht aus Attributen und Tupeln. Sie wird üblicherweise mit Hilfe einer Tabelle beschrieben, welche in zweidimensionaler Anordnung die Datenelemente erfasst.

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Dies bewirkt einen höheren Verzweigungsgrad und somit eine niedrigere Höhe des Baumes. Schnelleres Suchen und Manipulieren

Dies bewirkt einen höheren Verzweigungsgrad und somit eine niedrigere Höhe des Baumes. Schnelleres Suchen und Manipulieren 5.2 B*-Bäume In B-Bäumen spielen die Indexelemente (x; ) zwei ganz verschiedene Rollen: (i) Der Schlüssel x wird zusammen mit der assoziierten Information gespeichert. (ii) Der Schlüssel x wird zur Navigation

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

4. Normalformen. Qualitätsanforderungen an Tabellen. Klassische Normalformen (1,. 2., 3.) Spezielle Normalformen

4. Normalformen. Qualitätsanforderungen an Tabellen. Klassische Normalformen (1,. 2., 3.) Spezielle Normalformen 4. Normalformen Qualitätsanforderungen an Tabellen Klassische Normalformen (1,. 2., 3.) Spezielle Normalformen 79 Normalisierungsgründe Verständlicheres Datenmodell für Anwender und Entwickler Vermeidung

Mehr

Finalklausur zur Vorlesung Datenbanksysteme I Wintersemester 2003/2004 Prüfer: Prof. R. Bayer, Ph.D. Datum: Zeit: 16.

Finalklausur zur Vorlesung Datenbanksysteme I Wintersemester 2003/2004 Prüfer: Prof. R. Bayer, Ph.D. Datum: Zeit: 16. Finalklausur zur Vorlesung Datenbanksysteme I Wintersemester 2003/2004 Prüfer: Prof. R. Bayer, Ph.D. Datum: 13.02.2004 Zeit: 16. Uhr Hinweis: Die Bearbeitungszeit beträgt 90 Minuten. Bitte benutzen Sie

Mehr

Relationale Entwurfstheorie (Teil 2)

Relationale Entwurfstheorie (Teil 2) Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken (Teil 2) Dr. Gerd Gröner Wintersemester 2013/14 Gliederung Funktionale Abhängigkeiten Dekomposition der Relationenschemata:

Mehr

S.Müllenbach Datenbanken Informationsanalyse Normalformen- 1. Kurse. Name TNR ...

S.Müllenbach Datenbanken Informationsanalyse Normalformen- 1. Kurse. Name TNR ... S.Müllenbach Datenbanken Informationsanalyse Normalformen 1 Datenbanken Normalformentheorie Anomalien e EinfügeAnomalie Es soll ein neuer eingetragen werden : =, = V, ++ preis = ++ => Dies geht jedoch

Mehr

Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.

Kurs 1663 Datenstrukturen Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 18. März

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik Strukturelle Induktion Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 0 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 1:30-14:00 Uhr, o.n.v.

Mehr

Ziel: Schaffung einer zusätzlichen, schnellen Zugriffsmöglichkeit unabhängig von Primärorganisation der Datei

Ziel: Schaffung einer zusätzlichen, schnellen Zugriffsmöglichkeit unabhängig von Primärorganisation der Datei 3.1. Flache Indexe Ziel: Schaffung einer zusätzlichen, schnellen Zugriffsmöglichkeit unabhängig von Primärorganisation der Datei Mittel: Definition eines Index über ein (Zugriffs-) Attribut (Schlüssel

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2008 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:

Mehr

Suchbäume mit inneren Knoten verschiedener Knotengrade.

Suchbäume mit inneren Knoten verschiedener Knotengrade. Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in

Mehr

6. Formaler Datenbankentwurf 6.1. Rückblick. Datenbanken und Informationssysteme, WS 2012/13 22. Januar 2013 Seite 1

6. Formaler Datenbankentwurf 6.1. Rückblick. Datenbanken und Informationssysteme, WS 2012/13 22. Januar 2013 Seite 1 6. Formaler Datenbankentwurf 6.1. Rückblick 3. Normalform Ein Relationsschema R = (V, F) ist in 3. Normalform (3NF) genau dann, wenn jedes NSA A V die folgende Bedingung erfüllt. Wenn X A F, A X, dann

Mehr

Vorlesung Datenbanktheorie. Church-Rosser-Eigenschaft der Verfolgungsjagd. Berechnung von chase(t, t, Σ) Vorlesung vom Mittwoch, 05.

Vorlesung Datenbanktheorie. Church-Rosser-Eigenschaft der Verfolgungsjagd. Berechnung von chase(t, t, Σ) Vorlesung vom Mittwoch, 05. Vorlesung Datenbanktheorie Nicole Schweikardt Humboldt-Universität zu Berlin Sommersemester 2006 Vorlesung vom Mittwoch, 05. Juli 2006 Letzte Vorlesung: Kurze Bemerkungen zum Armstrong-Kalkül The Chase:

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Das relationale Datenmodell

Das relationale Datenmodell Das relationale Datenmodell Konzepte Attribute, Relationenschemata, Datenbank-Schemata Konsistenzbedingungen Beispiel-Datenbank Seite 1 Einführung Zweck datenmäßige Darstellung von Objekten und Beziehungen

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik - SS 0 Bäume Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

3. Normalform. Redundanz: Land mehrfach gespeichert Anomalien?

3. Normalform. Redundanz: Land mehrfach gespeichert Anomalien? 3. Normalform Motivation: Man möchte zusätzlich verhindern, dass Attribute von nicht-primen Attributen funktional abhängig sind. Beispiel: LieferAdr (LNr, LName, LStadt, LLand) 001 Huber München Deutschland

Mehr

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: 1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem

Mehr

Entwurf von Relationalen Datenbanken (1) (mit dem Entity-Relationship-Modell)

Entwurf von Relationalen Datenbanken (1) (mit dem Entity-Relationship-Modell) In der Regel werden Diskursbereiche durch mehrere Relationen (Tabellen) abgebildet. Ziele: Entwurf von Relationalen Datenbanken (1) (mit dem Entity-Relationship-Modell) Vermeiden von Redundanz in Relationen

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

Introduction to Data and Knowledge Engineering. 3. Übung. Funktionale Abhängigkeiten und Normalformen

Introduction to Data and Knowledge Engineering. 3. Übung. Funktionale Abhängigkeiten und Normalformen Introduction to Data and Knowledge Engineering 3. Übung Funktionale Abhängigkeiten und Normalformen Bemerkungen zu Normalformen 1NF 1NF: alle Attribute sind atomar. Bemerkungen: Nur teilweise formal überprüfbar:

Mehr

Matthias Schubert. Datenbanken. Theorie, Entwurf und Programmierung relationaler Datenbanken. 2., überarbeitete Auflage. Teubner

Matthias Schubert. Datenbanken. Theorie, Entwurf und Programmierung relationaler Datenbanken. 2., überarbeitete Auflage. Teubner Matthias Schubert Datenbanken Theorie, Entwurf und Programmierung relationaler Datenbanken 2., überarbeitete Auflage m Teubner Inhalt Wichtiger Hinweis 12 Vorwort 13 Wer sollte dieses Buch lesen? 13 Noch

Mehr

1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee

1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee AVL-Bäume. Aufgabentyp Fügen Sie in einen anfangs leeren AVL Baum die folgenden Schlüssel ein:... Wenden Sie hierbei konsequent den Einfüge /Balancierungsalgorithmus an und dokumentieren Sie die ausgeführten

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2013/14 Prof. Dr. Sándor Fekete 1 4.6 AVL-Bäume 2 4.8 Rot-Schwarz-Bäume Rudolf Bayer Idee: Verwende Farben, um den

Mehr

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen 4.4 MX-Quadtrees (I) MatriX Quadtree Verwaltung 2-dimensionaler Punkte Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1} rekursive Aufteilung des Datenraums in die Quadranten NW,

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/2, Folie 1 2014 Prof. Steffen Lange - HDa/FbI

Mehr

Datenbank Modellierung - Normalisierung

Datenbank Modellierung - Normalisierung Name Klasse Datum 1 Redundanzfreiheit als oberste Regel Ein sauber definiertes Datenmodell muss neben der korrekten Abbildung der realen Situation vor allem frei von allen Redundanzen sein. Dies bedeutet,

Mehr

Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen

Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl

Mehr

DBS1: Übungsserie Normalformen und relationale Algebra Structured Query Language (SQL)

DBS1: Übungsserie Normalformen und relationale Algebra Structured Query Language (SQL) DBS1: Übungsserie 3 + 4 Normalformen und relationale Algebra Structured Query Language (SQL) Sascha Szott Fachgebiet Informationssysteme Aufgabe 1a: Bestimmung von 2 gegeben: Relation R mit Attributen

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 10 Übung zur Vorlesung Grundlagen: Datenbanken im WS15/16 Harald Lang, Linnea Passing (gdb@in.tum.de)

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 20) Übungsblatt 8 Abgabe: Montag, 24.06.20, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes Gruppenmitglieds

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Zerlegung einer Relation

Zerlegung einer Relation Normalformen Normalisierung Normalformen definieren Qualitätskriterien (Vermeidung der Inkonsistenzen) Redundanz ist oft die Ursache von Schemata Probleme (keine FDs keine Redundanz) Normalisierung: Jede

Mehr

Organisationsformen der Speicherstrukturen

Organisationsformen der Speicherstrukturen Organisationsformen der Speicherstrukturen Bäume und Hashing 1 Motivation Ablage von Daten soll einfachen, schnellen und inhaltsbezogenen Zugriff ermöglichen (z.b. Zeige alle Schüler des Lehrers X am heutigen

Mehr

Universität Augsburg, Institut für Informatik WS 2007/2008 Prof. Dr. W. Kießling 18. Jan Dr. A. Huhn, M. Endres, T. Preisinger Übungsblatt 12

Universität Augsburg, Institut für Informatik WS 2007/2008 Prof. Dr. W. Kießling 18. Jan Dr. A. Huhn, M. Endres, T. Preisinger Übungsblatt 12 Universität Augsburg, Institut für Informatik WS 2007/2008 Prof Dr W Kießling 18 Jan 2008 Dr A Huhn, M Endres, T Preisinger Übungsblatt 12 Datenbanksysteme I Hinweis: Das vorliegende Übungsblatt besteht

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Dynamische Mengen. Realisierungen durch Bäume

Dynamische Mengen. Realisierungen durch Bäume Dynamische Mengen Eine dynamische Menge ist eine Datenstruktur, die eine Menge von Objekten verwaltet. Jedes Objekt x trägt einen eindeutigen Schlüssel key[x]. Die Datenstruktur soll mindestens die folgenden

Mehr

Datenbanksysteme und Datenmodellierung

Datenbanksysteme und Datenmodellierung Datenbanksysteme und Datenmodellierung Begleitende Übung zur Vorlesung von Prof. Dr. Uwe H. Suhl Normalisierung (2) und Weihnachts-Special (Termin #08: 15.12.2004) Wintersemester 2004 / 2005 Freie Universität

Mehr

ER-Modell, Normalisierung

ER-Modell, Normalisierung ER-Modell Mit dem Entity-Relationship-Modell kann die grundlegende Tabellen- und Beziehungsstruktur einer Datenbank strukturiert entworfen und visualisiert werden. Das fertige ER-Modell kann dann ganz

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n)

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) .6 Ausgeglichene Mehrweg-Suchbäume Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) Methoden: lokale Transformationen (AVL-Baum) Stochastische

Mehr

Baum-Indexverfahren. Einführung

Baum-Indexverfahren. Einführung Baum-Indexverfahren Prof. Dr. T. Kudraß 1 Einführung Drei Alternativen, wie Dateneinträge k* im Index aussehen können: 1. Datensatz mit Schlüsselwert k 2.

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Baum-Indexverfahren. Prof. Dr. T. Kudraß 1

Baum-Indexverfahren. Prof. Dr. T. Kudraß 1 Baum-Indexverfahren Prof. Dr. T. Kudraß 1 Einführung Drei Alternativen, wie Dateneinträge k* im Index aussehen können: 1. Datensatz mit Schlüsselwert k 2.

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (21 - Balancierte Bäume, AVL-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei

Mehr

B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write

B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write Thomas Maier Proseminar: Ein- / Ausgabe Stand der Wissenschaft Seite 1 von 13 Gliederung 1. Hashtabelle 3 2.B-Baum 3 2.1 Begriffserklärung 3 2.2

Mehr