Berndt Klecker; Matthias Förster, Edita, Georgescu, Stein Haaland, Arpad Kis, Goetz Paschmann, Manfred Scholer, Hans Vaith

Größe: px
Ab Seite anzeigen:

Download "Berndt Klecker; Matthias Förster, Edita, Georgescu, Stein Haaland, Arpad Kis, Goetz Paschmann, Manfred Scholer, Hans Vaith"

Transkript

1 Cluster und Double Star: eine Flotte von 6 Satelliten zur Erforschung der Magnetosphäre der Erde Cluster and Double Star: A fleet of 6 satellites investigating Earth's magnetosphere Berndt Klecker; Matthias Förster, Edita, Georgescu, Stein Haaland, Arpad Kis, Goetz Paschmann, Manfred Scholer, Hans Vaith Max-Planck-Institut für extraterrestrische Physik, Garching Korrespondierender Autor berndt.klecker@mpe.mpg.de Zusammenfassung Die Missionen Cluster und Double Star ermöglichen erstmals koordinierte Messungen in der Magnetosphäre der Erde mit bis zu 6 Satelliten. Cluster liefert dabei Daten von 4 in einer Tetraeder-Formation fliegenden Satelliten für Abstände von ~100 bis ~20000 km. Diese werden durch die beiden Double Star-Satelliten in polarer und äquatorialer Umlaufbahn ergänzt. Summary With the missions Cluster and Double Star, coordinated measurements in Earth s magnetosphere with up to 6 spacecraft are now becoming available for the first time. Cluster, with its 4 spacecraft in tetraederconfiguration provides data for variable distances in the range ~100 to km. These are complimented by the measurements of the Two Double Star spacecraft in polar and equatorial orbit. Die Cluster Mission Die Cluster-Mission ([1], [2]) ist einer der Eckpfeiler des ESA-Wissenschaftsprogramms Horizon Sie besteht aus 4 Satelliten mit je 11 identischen Instrumenten zur und ihrer Grenzschichten. Dazu messen die Experimente die magnetischen und elektrischen Felder, sowie Plasma und energetische Ionen und Elektronen. Die Umlaufbahn ist stark exzentrisch mit einer Höhe zwischen und km und führt von der erdnahen Magnetophäre bis in den solaren Wind (Abb. 1). Der Abstand der 4 Satelliten wird entsprechend der wissenschaftlichen Zielsetzung zwischen ~100 und ~ km variiert, wobei die 4 Satelliten im jeweiligen Zielgebiet in einer Tetraeder-Konfiguration angeordnet sind. Durch den Einsatz von 4 Satelliten ist es mit Cluster erstmals möglich, Plasmastrukturen und Grenzschichten der Magnetosphäre in 3 Dimensionen zu studieren. Cluster wurde im Juli / August 2000 gestartet. Am wurde der wissenschaftliche Betrieb aufgenommen, die Laufzeit der Mission wurde in diesem Jahr bis Ende 2009 verlängert, wobei in 2007 eine weitere Beurteilung der Mission vorgesehen ist Max-Planck-Gesellschaft 1/6

2 Die Mission Double Star Mit der Mission Double Star wurde die Cluster-Flotte um zwei weitere Satelliten erweitert. Die Mission wurde im Rahmen eines Kooperationsvertrages zwischen ESA und CNSA (Chinese National Space Administration) durchgeführt. Der erste Satellit, Double Star TC-1, wurde am 29. Dezember 2003 mit einer Rakete vom Typ Langer Marsch 2C/SM erfolgreich in Xichuan in eine äquatoriale Umlaufbahn (570 x km) gestartet. Die Nutzlast von Double Star TC-1 besteht aus insgesamt 8 Experimenten, wobei 5 der Sensoren Ersatzexperimente der Cluster-Mission sind. Der zweite Satellit mit ebenfalls 8 Experimenten, davon ein Experiment aus der Cluster-Serie, wurde am 25. Juli 2004 in eine polare Umlaufbahn (690 x km) ge s ta rte t. Mit den vier Cluster Satelliten und den beiden Double Star-Satelliten können nun erstmals koordinierte Messungen in der Magnetosphäre der Erde mit bis zu 6 Satelliten durchgeführt werden. Um laufbahnen der 4 Cluster-Satelliten und der beiden Satelliten der Double Star Mission, m it einem schem atischen Bild der Magnetosphäre der Erde. Mit den Missionen Cluster und Double Star werden nun erstm alig koordinierte Messungen in der Magnetosphäre m it bis zu 6 Satelliten m öglich. ESA (European Space Agency) Die Experimente EDI und CIS auf Cluster Das MPE ist maßgeblich an den beiden Experimenten EDI (Electron Drift Experiment) und CIS (Cluster Ion Spectrometer) beteiligt. Das EDI- Experiment [3] misst die Ablenkung eines schwachen Strahls (+, He 2+, He +, und O + gestattet. Der Sensor HIA kommt auch auf dem Satelliten TC1 von Double Star zum Einsatz. Diffuse Ionen vor der Bugstoßwelle der Erde Cluster erlaubt zum ersten Mal die gleichzeitige Messung von energetischen Ionen vor der Bugstoßwelle der Erde bei verschiedenen Abständen. Es wurde in der Vergangenheit gezeigt, dass solche Ionen immer gleichzeitig mit niederfrequenten hydromagnetischen Wellen auftreten: Die Wellen werden durch die Strömung der Teilchen erzeugt, und diese Wellen streuen die Teilchen wieder. Dies führt zu einem diffusiven räumlichen Transport. Mit den Plasma-Sensoren auf Cluster 1 und 3 wurde die Dichte der Ionen im Energiebereich von 10 bis 32 kev gemessen [5] (Abb. 2 - links). Aus deren Differenz lässt sich mit den bekannten Abständen der 2005 Max-Planck-Gesellschaft 2/6

3 Satelliten der Dichtegradient bestimmen. Unter Benutzung eines Modells für die Geometrie der Bugstoßwelle wurde dann der Gradient der Teilchen bei verschiedenen Abständen von der Bugstoßwelle berechnet. Der Gradient fällt in dem untersuchten Energiebereich exponentiell ab, die Abfalllänge liegt zwischen 0.5 und 2.8 Erdradien und steigt linear mit der Energie der Ionen an (Abb. 2 - rechts). Aus der Abfalllänge lässt sich die freie Weglänge, l, und die charakteristische Zeit t acc für Stoßwellenbeschleunigung berechnen. Für 30 kev- Ionen ist die freie Weglänge etwa 2.4 Erdradien groß, und die charakteristische Beschleunigungszeit liegt bei 120 sec. Dies zeigt, dass der Transport der Ionen vor der Bugstoßwelle diffusiv ist, und dass die Beschleunigung an der Bugstoßwelle sehr effizient ist. Links: Die partielle Dichte im Energiebereich kev von Ionen vor der Bugstoßwelle der Erde am 18. Februar Rechts: Die charakteristische Distanz, m it welcher die Ionendichte als Funktion des Abstands abfällt, in vier Energiebereichen. MPI für Extraterrestrische Physik Bestimmung von Dicke und Geschwindigkeit der Magnetopause Die Magnetopause ist eine dünne Stromschicht, die den Sonnenwind vom Magnetfeld der Erde trennt. Wenn sich diese Schicht über einen Satelliten hinweg bewegt, dann zeigen dessen Instrumente abrupte Änderungen in den Magnetfeld- und Plasmaeigenschaften. Da die Geschwindigkeit dieser Bewegung a-priori unbekannt ist, kann man die Dicke der Schicht aus den Messungen mit nur einem Satelliten nicht bestimmen. Cluster erlaubt nun aber, aus den Durchgangszeiten der Magnetopause bei den vier Satelliten, deren Orientierung und Geschwindigkeit, und damit auch deren Dicke, direkt zu berechnen [6]. Abbildung 3 zeigt für 96 Magnetopausendurchgänge an der morgenseitigen Flanke der Magnetosphäre die Verteilung der Fälle auf bestimmte Intervalle von Dicke und Geschwindigkeit. Auffallend ist der große Bereich der Magnetopausendicke, von Hunderten bis Tausenden von km. In einfachen Modellen sollte die Dicke durch den Gyrationsradius der Ionen gegeben sein, denn dieser bestimmt, wie tief die Ionen in das Erdmagnetfeld eindringen können. Der Gyrationsradius betrug in den untersuchten Fällen aber nur etwa 50 km. Die Magnetopause ist also meist sehr viel dicker als einfache Überlegungen erwarten lassen. Auffallenderweise korrelieren die Dickenvariationen auch nicht mit irgendeiner der Größen des Sonnenwindes oder des interplanetaren Magnetfeldes. Abbildung 3 (rechts) zeigt den großen Bereich der Magnetopausengeschwindigkeit, von weniger als 10 km/s bis zu einigen Hundert km/s. Daraus wird deutlich, dass man aus der Dauer des Magnetopausendurchgangs allein nicht auf deren Dicke schließen kann Max-Planck-Gesellschaft 3/6

4 Links: Histogram m der Magnetopausendicke d für 96 Durchquerungen der m orgenseitigen Flanke der Magnetopause am 5. Juli Die Dickenbereiche sind logarithm isch gewählt. Rechts: Histogram m der Magnetopausengeschwindigkeit für dieselben 96 Durchquerungen wie rechts. MPI für Extraterrestrische Physik Konvektion in der polaren Magnetosphäre Die Sonne sendet kontinuierlich einen Strom geladener Teilchen, hauptsächlich Elektronen und Protonen, aus. Für diesen Sonnenwind stellt das Erdmagnetfeld ein Hindernis dar, welches er umströmen muss. Besonders wenn das interplanetare Magnetfeld (IMF), das vom Sonnenwind mitgeführt wird, eine südwärts gerichtete Komponente hat, kann es an der tagseitigen Magnetopause zu einer Verschmelzung mit dem Erdmagnetfeld kommen (Rekonnexion). Als Folge dieser Rekonnexion werden die nun mit dem interplanetaren Magnetfeld verbundenen Feldlinien des Erdmagnetfeldes vom Sonnenwind über beide Pole der Erde hinweg in Richtung des Schweifes der Magnetosphäre gezogen. Wegen der hohen Leitfähigkeit des Plasmas ist dieses im Inneren der Magnetosphäre an das Magnetfeld gekoppelt und gezwungen, die Konvektionsbewegung mitzumachen. Eine weitere Möglichkeit für Rekonnexion bei nordwärts gerichtetem IMF besteht schweifwärts der magnetischen Cusp (der Einkerbung, die tagseitige von nachtseitigen Feldlinien trennt, s.a. Abb. 1). Mit dem Elektronen-Drift Instrument (EDI) auf den vier Cluster-Satelliten lässt sich die Konvektionsgeschwindigkeit des magnetosphärischen Plasmas über den Polkappen im Vergleich zu den herkömmlichen Methoden, deren Genauigkeit unter der typischerweise geringen Plasmadichte in diesem Bereich leidet, besonders gut messen. Es wurden 20 Überquerungen der Polkappen statistisch untersucht [7]. Über 1.5 nt-intervalle gem ittelte 10-Minuten Mittelwerte der m it EDI über den Polkappen gem essenen norm ierten Konvektionsgeschwindigkeiten als Funktion der z-kom ponente des interplanetaren Magnetfeldes. Die zugehörigen Standardabweichungen sind als vertikale Balken dargestellt. MPI für Extraterrestrische Physik 2005 Max-Planck-Gesellschaft 4/6

5 Abbildung 4 zeigt 10-Minuten Mittel der Komponente der Konvektionsgeschwindigkeit in der (X,Z)-Ebene, deren Vorzeichen den Sinn der Konvektion sonnenwärts (+) oder schweifwärts (-) angibt, als Funktion der z-komponente des interplanetaren Magnetfeldes (IMF B z ). Da die Höhe der Satelliten bei der Überquerung der Polkappe nicht konstant ist und die Konvektionsgeschwindigkeit wegen der Divergenz der Feldlinien mit zunehmender Höhe ansteigen muss, wurden die Konvektionsgeschwindigkeiten auf eine einheitliche ionosphärische Höhe von etwa 100 km entsprechend einem Magnetfeld von 50 Mikro Tesla normiert, um die Höhenabhängigkeit zu eliminieren. Wie erwartet ist die Konvektion in Schweifrichtung umso stärker, je negativer IMF B z ist. Auch bei positivem IMF B z findet man eine im Durchschnitt schweifwärts gerichtete Konvektionsbewegung, jedoch treten hier verstärkt auch Fälle sonnenwärts gerichteter Konvektion auf. Die Ursache dafür liegt in den komplizierteren Konvektionsmustern, die bei Rekonnexion schweifwärts der Cusp für nordwärts gerichtetes IMF (B z > 0) auftreten. Mit der Mission Cluster mit ihren 4 in variabler Konfiguration fliegenden Satelliten konnten erstmals zeitliche und räumliche Variationen an Grenzschichten der Magnetosphäre der Erde detailliert untersucht werden. Mit d e r Erweiterung der Mission durch Double Star sind weitere wesentliche Fortschritte im Verständis der physikalischen Prozesse insbesondere an der Bugstoßwelle und im Schweif der Magnetosphäre der Erde zu e rw a rte n. Darüberhinaus sind Cluster und Double Star richtungsweisend für zukünftige Multi-Satelliten- Missionen, wie z.b. die Magnetospheric Multi Scale (MMS) Mission der NASA, für die in diesem Jahr das Auswahlverfahren abgeschlossen wurde. Originalveröffentlichungen Nach Erweiterungen suchenbilderweiterungchanneltickerdateilistehtml- ErweiterungJobtickerKalendererweiterungLinkerweiterungMPG.PuRe-ReferenzMitarbeiter (Employee Editor)PersonenerweiterungPublikationserweiterungTeaser mit BildTextblockerweiterungVeranstaltungstickererweiterungVideoerweiterungVideolistenerweiterungYouTube- Erweiterung [1] Escoubet, C.P., R. Schmidt, and M.L. Goldstein Cluster Science and Mission Overview Space Science Review 79, No. 1-2, ( 1997). [2] Credland, J., G. Mecker and J. Ellwood The Cluster Mission: ESA s Spacefleet to the Magnetosphere Space Science Review 79, (1997). [3] Paschmann, G., et al. The Electron Drift Instrument for Cluster Space Science Review 79, (1997). [4] Rème, H., et al. The Cluster Ion Spectrometry (CIS) Experiment Space Science Review 79, (1997) Max-Planck-Gesellschaft 5/6

6 [5] Kis, A., M. Scholer, B. Klecker, E. Möbius, E. A. Lucek, H. Rème, J. M. Bosqued, L. M. Kistler, and H. Kucharek Multi-spacecraft observations of diffuse ions upstream of Earth s bow shock Geophysical Research Letters 31, L20801 (2004). [6] Vaith, H., G. Paschmann, J. Quinn, M. Förster, E. Georgescu, S. Haaland, B. Klecker, C. Kletzing, P. Puhl-Quinn, H. Rème and R. Torbert Plasma convection across the polar cap, plasma mantle and cusp: Cluster EDI observations Annales Geophysicae 22, (2004). [7] G. Paschmann, S. Haaland, B.U. O. Sonnerup, H. Hasegawa, E. Georgescu, B. Klecker, T.D. Phan, H. Rème, and A. Vaivads Characteristics of the near-tail dawn magnetopause and boundary layer Annales Geophysicae 23, (2005) Max-Planck-Gesellschaft 6/6

Schlussbericht des Förderungsvorhabens 50 OC 0102 CIS / Cluster Datenphase. Zusammenfassung

Schlussbericht des Förderungsvorhabens 50 OC 0102 CIS / Cluster Datenphase. Zusammenfassung Schlussbericht des Förderungsvorhabens 50 OC 0102 CIS / Cluster Datenphase Zusammenfassung Das Projekt CIS / Cluster Datenphase wurde im Rahmen des Fachprogramms Weltraumforschung- und Technik (Förderbereich

Mehr

Wechselwirkung mit dem Weltraum: Sonnenwind und kosmische Strahlung

Wechselwirkung mit dem Weltraum: Sonnenwind und kosmische Strahlung Numerische Plasma Simulation @ TU Braunschweig Wechselwirkung mit dem Weltraum: Sonnenwind und kosmische Strahlung Uwe Motschmann Institut für Theoretische Physik, TU Braunschweig DLR Institut für Planetenforschung,

Mehr

4 Die Magnetosphäre. LANG, a. a. O., S. 157 f BERGMANN/SCHÄFER, a. a. O., S. 38 ff. 67 Zum Erdmagnetfeld vgl. besonders:

4 Die Magnetosphäre. LANG, a. a. O., S. 157 f BERGMANN/SCHÄFER, a. a. O., S. 38 ff. 67 Zum Erdmagnetfeld vgl. besonders: 4 Die Magnetosphäre Der Sonnenwind trifft auf seiner Reise durch das Sonnensystem auf ein Hindernis, und zwar auf das riesige, dipolare Magnetfeld der Erde 67. So als wäre im Erdinneren ein Stabmagnet,

Mehr

Merkur ein kurzer Steckbrief. Was ist eine Magnetosphäre? Einige Rätsel der Merkurmagnetosphäre. Die Messenger und BepiColombo Missionen

Merkur ein kurzer Steckbrief. Was ist eine Magnetosphäre? Einige Rätsel der Merkurmagnetosphäre. Die Messenger und BepiColombo Missionen Hier war die Macht der Phantasie bezwungen - Die unverstandene Magnetosphäre des Planeten Merkur - 8. 11. 2006 Merkur ein kurzer Steckbrief Was ist eine Magnetosphäre? Einige Rätsel der Merkurmagnetosphäre

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Planetare Magnetosphären

Planetare Magnetosphären Planetare Magnetosphären Übersicht: die Planeten, Topologie der Magnetophären, Planeten ohne Magnetfeld, Vergleich der Magnetosphären Größe, Upstream-Wellen, Plasmaquellen, Strahlungsgürtel. Voraussetzungen:

Mehr

Die Ionenladung solarer energetischer Teilchen: Ein Schlüssel zur

Die Ionenladung solarer energetischer Teilchen: Ein Schlüssel zur Die Ionenladung solarer energetischer Teilchen: Ein Schlüssel zur The Ionic Charge of Solar Energetic Particles: a Key for the Localisation of the Acceleration Region Klecker, Berndt Max-Planck-Institut

Mehr

Physik des Weltraumwetters: Der erdnahe Raum

Physik des Weltraumwetters: Der erdnahe Raum Physik des Weltraumwetters: Der erdnahe Raum Das Erdmagnetfeld: Entdeckungsgeschichte Magnetosphäre - offene und geschlossene Strukturen in Feld, Plasma Teilchen Diskontinuitäten: Stoßwellen und Grenzschichten

Mehr

Eine Präsentation zu Nordpolarlichtern

Eine Präsentation zu Nordpolarlichtern Eine Präsentation zu Nordpolarlichtern Von Theresa, Katharina und Mara Gliederung (1) Was sind Polarlichter? (2) Problemfrage: Warum sind Polarlichter verschiedenfarbig? (3) Die Arten von Polarlichtern

Mehr

Version 1.1 Einführung in die Physik der Atmosphäre

Version 1.1 Einführung in die Physik der Atmosphäre Version 1.1 MT Einführung in die Physik der Atmosphäre Inhalt: 1. Die Zusammensetzung der Atmosphäre 2. Unterteilung der Atmosphäre 3. Der vertikale Aufbau der Atmosphäre 1. Die Zusammensetzung der Atmosphäre

Mehr

1 Physikalische Grundbegriffe

1 Physikalische Grundbegriffe 1 Physikalische Grundbegriffe Um die Voraussetzungen der physikalischen Kenntnisse in den nächsten Kapiteln zu erfüllen, werden hier die dafür notwendigen Grundbegriffe 1 wie das Atom, das Proton, das

Mehr

Das Erdmagnetfeld. Vom Erdkern ins Weltall. 1. Einführung. 2. Quellen. 3. Vermessung

Das Erdmagnetfeld. Vom Erdkern ins Weltall. 1. Einführung. 2. Quellen. 3. Vermessung Das Erdmagnetfeld Vom Erdkern ins Weltall 1. Einführung 2. Quellen 3. Vermessung S. Koch, Oktober 2015 Erdmagnetfeld - Einführung Das Erdmagnetfeld - Einführung Das Erdmagnetfeld - Einführung Was ist ein

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Das Magnetfeld der Erde. Stephen Kimbrough Damjan Štrus Corina Toma

Das Magnetfeld der Erde. Stephen Kimbrough Damjan Štrus Corina Toma Das Magnetfeld der Erde Stephen Kimbrough Damjan Štrus Corina Toma Das Magnetfeld der Erde 65 1 Zusammenfassung Warum ist es so wichtig, die Werte des Magnetfelds der Erde zu kennen? Warum untersucht die

Mehr

DAS REICH DER SONNE UNSERE KOSMISCHE HEIMAT

DAS REICH DER SONNE UNSERE KOSMISCHE HEIMAT DAS REICH DER SONNE SOLAR TERRESTRIAL RELATIONS UNSERE KOSMISCHE HEIMAT Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, Garching, Deutschland Wochenendseminar Heimatplanet Erde - eine

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Diebesgut des Kometen Siding Spring [27. März] Erinnern Sie sich?

Diebesgut des Kometen Siding Spring [27. März] Erinnern Sie sich? Diebesgut des Kometen Siding Spring [27. März] Erinnern Sie sich? Am 19. Oktober 2014 flog der Komet c/2013 A1 (Siding Spring) [1, 2] in einem Abstand von lediglich rund 140.000 Kilometern am Planeten

Mehr

Neue Erkenntnisse über Venus mit der Raumsonde Venus Express

Neue Erkenntnisse über Venus mit der Raumsonde Venus Express Neue Erkenntnisse über Venus mit der Raumsonde Venus Express Magda Delva (1) & VEXMAG team (1) Institut für Weltraumforschung, ÖAW, Graz Planet Venus (1) Entstehung: Vor ca 4.5 Mrd. J., aus pre-solarem

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

JAHRESBERICHT 2005 / ANNUAL REPORT 2005

JAHRESBERICHT 2005 / ANNUAL REPORT 2005 JAHRESBERICHT 2005 / ANNUAL REPORT 2005 MPE REPORT 290 Max-Planck-Institut für extraterrestrische Physik Impressum Inhaltliche Verantwortung: Redaktion und Layout: Druck: Textbeiträge und Bildmaterial:

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

ÜBER DIE AKTIVITÄT DER SONNE UND DEREN EFFEKTE: DAS PHÄNOMEN POLARLICHT

ÜBER DIE AKTIVITÄT DER SONNE UND DEREN EFFEKTE: DAS PHÄNOMEN POLARLICHT ÜBER DIE AKTIVITÄT DER SONNE UND DEREN EFFEKTE: DAS PHÄNOMEN POLARLICHT SONNENKORONA DIE MASSE, DIE BEI DER KERNFUSION IM INNEREN DER SONNE VERLOREN GEHT, WIRD IN FORM VON ENERGIE RADIAL IN DEN WELTRAUM

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Wo ist der magnetische Nordpol der Erde?

Wo ist der magnetische Nordpol der Erde? Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen Seite 1 von 8 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen 1. Im Fadenstrahlrohr (siehe Abbildung 1) wird mit Hilfe einer

Mehr

Mission zum Planet Erde Geophysikalischen Phänomenen auf der Spur

Mission zum Planet Erde Geophysikalischen Phänomenen auf der Spur Mission zum Planet Erde Geophysikalischen Phänomenen auf der Spur Ulrich Schreiber FESG - Technische Universität München Fundamentalstation Wettzell Bestandsaufnahme Die Erde verändert sich fortwährend

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Die Sonnengranulation genauer betrachtet A close look at solar granulation

Die Sonnengranulation genauer betrachtet A close look at solar granulation Die Sonnengranulation genauer betrachtet A close look at solar granulation Kupka, Friedrich; Zaussinger, Florian Max-Planck-Institut für Astrophysik, Garching Korrespondierender Autor E-Mail: fkupka@mpa-garching.mpg.de

Mehr

Operationsplanung für Okkultationsexperimente im Rahmen der MarsExpress-Mission

Operationsplanung für Okkultationsexperimente im Rahmen der MarsExpress-Mission Technik Alexander Höhn Operationsplanung für Okkultationsexperimente im Rahmen der MarsExpress-Mission Diplomarbeit Operationsplanung für Okkultationsexperimente im Rahmen der MarsExpress-Mission Diplomarbeit

Mehr

Wieviele Dimensionen hat die Welt?

Wieviele Dimensionen hat die Welt? Wieviele Dimensionen hat die Welt? Prof. Carlo Ewerz ExtreMe Matter Institute EMMI, GSI & Universität Heidelberg Weltmaschine Darmstadt, 3. September 2011 by D. Samtleben by D. Samtleben by D. Samtleben

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Sonnenwinde. Ein Referat von Marco Link aus der 9b

Sonnenwinde. Ein Referat von Marco Link aus der 9b Sonnenwinde Ein Referat von Marco Link aus der 9b Gliederung: 1. Forschungsgeschichte 2. Form und Stärke des Erdmagnetfeldes 3. Entstehung und Aufrechterhaltung des Erdmagnetfeldes (Geodynamo) 4. Paläomagnetismus

Mehr

Neutrinos und die Suche nach neuer Physik Neutrinos and the search for new physics

Neutrinos und die Suche nach neuer Physik Neutrinos and the search for new physics Neutrinos und die Suche nach neuer Physik Neutrinos and the search for new physics Antusch, Stefan Max-Planck-Institut für Physik, München Korrespondierender Autor E-Mail: antusch@mppmu.mpg.de Zusammenfassung

Mehr

Mathematik und Astrophysik

Mathematik und Astrophysik Mathematik und Astrophysik Ralf Bender Sternwarte der Ludwig-Maximilians-Universität Max-Planck-Institut für extraterrestrische Physik 1 Die Welt ist alles, was der Fall ist. Wittgenstein Die physikalische

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Dom-Gymnasium Freising Grundwissen Natur und Technik Jahrgangsstufe 7. 1 Grundwissen Optik

Dom-Gymnasium Freising Grundwissen Natur und Technik Jahrgangsstufe 7. 1 Grundwissen Optik 1.1 Geradlinige Ausbreitung des Lichts Licht breitet sich geradlinig aus. 1 Grundwissen Optik Sein Weg kann durch Lichtstrahlen veranschaulicht werden. Lichtstrahlen sind ein Modell für die Ausbreitung

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

SONNENOFEN. Von Heiko Ritter REISE INS INNERE THERMISCHE TESTS FÜR

SONNENOFEN. Von Heiko Ritter REISE INS INNERE THERMISCHE TESTS FÜR SONNENOFEN 88 Von Heiko Ritter REISE INS INNERE THERMISCHE TESTS FÜR SONNENSYSTEM BEPICOLOMBO D ie Europäische Raumfahrtagentur ESA entwickelt derzeit unter dem Namen BepiColombo eine Mission zum Planeten

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation 22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

durch Teilungsversuche durch Spektraluntersuchungen Jedes Atom besitzt einen Atomkern, in dem fast die gesamte Masse vereinigt ist.

durch Teilungsversuche durch Spektraluntersuchungen Jedes Atom besitzt einen Atomkern, in dem fast die gesamte Masse vereinigt ist. 1. Kreuze die richtige Aussage über Atome an: Sie sind sehr kleine, unteilbare Körper aus einem einheitlichen (homogenen) Stoff. Sie sind so klein, dass man ihren Aufbau nicht erforschen kann. Sie sind

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Ionosphärenbestimmung mit verschiedenen geodätischen Weltraumverfahren

Ionosphärenbestimmung mit verschiedenen geodätischen Weltraumverfahren Ionosphärenbestimmung mit verschiedenen geodätischen Weltraumverfahren Todorova S. 1, Hobiger T. 2,1, Weber R. 1, Schuh H. 1 (1) Institut für Geodäsie und Geophysik, Technische Universität Wien, Österreich

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Solares Umfeld. Philip von Doetinchem

Solares Umfeld. Philip von Doetinchem Solares Umfeld Philip von Doetinchem 10.5.2006 Übersicht Einfluss der verschiedenen Umgebungen auf Weltrauminstrumente: Erdatmosphäre Magnetfelder der Erde und Sonne Sonnenplasma Kosmische Strahlung Philip

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Aufgabe III: Die Erdatmosphäre

Aufgabe III: Die Erdatmosphäre Europa-Gymnasium Wörth Abiturprüfung 212 Leistungskurs Physik LK2 Aufgabe III: Die Erdatmosphäre Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Taschenrechner

Mehr

Aufgabe I: Fusionsreaktor und Sonne

Aufgabe I: Fusionsreaktor und Sonne Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle

Mehr

Prozesse im erdnahen Weltraum und ihr Einfluss auf die Erde

Prozesse im erdnahen Weltraum und ihr Einfluss auf die Erde Prozesse im erdnahen Weltraum und ihr Einfluss auf die Erde Stefan Kiehas Graz in Space 2008 Universität Graz, 04.09.2008 Picture: 1 NASA Überblick Erdnaher Weltraum Plasma+ Erdmagnetfeld Sonnenwind Magnetosphäre

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Physik Q4 (sp, )

Physik Q4 (sp, ) DIE SONNE Physik Q4 (sp, 10.02.2017) SONNE UND SONNENSYSTEM I Sonne ist von erheblicher Bedeutung als Energiequelle Kernfusion im Innern enthält ca. 99 % der Masse des Sonnensystems da wir sie gut beobachten

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

GER_C1.0801R. Polarlichter. Learning Unit: "Interacting with nature" Reading & Writing Level C1 GER_C1.0801R.

GER_C1.0801R. Polarlichter. Learning Unit: Interacting with nature Reading & Writing Level C1 GER_C1.0801R. Polarlichter Learning Unit: "Interacting with nature" Reading & Writing Level C1 www.lingoda.com 1 Polarlichter Leitfaden Inhalt Polarlichter zählen wohl zu den beeindruckensten Naturphänomen unserer Erde.

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

Mittel- und Oberstufe - MITTEL:

Mittel- und Oberstufe - MITTEL: Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

Aufbruch des Menschen ins Universum

Aufbruch des Menschen ins Universum Aufbruch des Menschen ins Universum Historische Beschreibungen des Nordlichts 1750 Weltraumwetter Sonnensystem 9 7 1 Merkur 2 Venus 3 Erde K 5 3 2 1 4 4 Mars 5 Jupiter 6 Saturn 8 6 7 Uranus 8 Neptun 9

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Lösungen zu Übungsblatt 2

Lösungen zu Übungsblatt 2 PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 2 Lösungen zu Übungsblatt 2 Aufgabe 1 Koppelnavigation. a) Ein Schi bestimmt seine Position bei Sonnenuntergang durch den

Mehr

1 Debye-Abschirmung. 1.1 Grundlagen. Φ = q r exp ( r/λ D), λ D =

1 Debye-Abschirmung. 1.1 Grundlagen. Φ = q r exp ( r/λ D), λ D = 1 Debye-Abschirmung Bringt man eine zusätzliche estladung in ein Plasma ein, so wird deren elektrisches Feld durch die Ladungen des Plasmas mit entgegengesetztem Vorzeichen abgeschirmt. Die charakteristische

Mehr

Aufgaben zum Wasserstoffatom

Aufgaben zum Wasserstoffatom Aufgaben zum Wasserstoffatom Hans M. Strauch Kurfürst-Ruprecht-Gymnasium Neustadt/W. Aufgabenarten Darstellung von Zusammenhängen, Abgrenzung von Unterschieden (können u.u. recht offen sein) Beantwortung

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Dunkle Materie & Dunkle Energie: die unbekannten 95% des Universums

Dunkle Materie & Dunkle Energie: die unbekannten 95% des Universums Dunkle Materie & Dunkle Energie: die unbekannten 95% des Universums Dr. J. Olzem 1. Physikalisches Institut B, RWTH Aachen Abend der Naturwissenschaften Anne-Frank-Gymnasium Aachen 14. November 2008 Hubble

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Im vierten Aggregatzustand: Heliosphärische Plasmen. Jörg Büchner MPI für Sonnensystemforschung

Im vierten Aggregatzustand: Heliosphärische Plasmen. Jörg Büchner MPI für Sonnensystemforschung Im vierten Aggregatzustand: Heliosphärische Plasmen Jörg Büchner MPI für Sonnensystemforschung Lindau Im Plasma-Universum Die Sonne ist nur einer von unermeßlich vielen Bällen heisser Plasmen (Prof. Kersten

Mehr

Physik für Ingenieure

Physik für Ingenieure Physik für Ingenieure von Prof. Dr. Ulrich Hahn OldenbourgVerlag München Wien 1 Einführung 1 1.1 Wie wird das Wissen gewonnen? 2 1.1.1 Gültigkeitsbereiche physikalischer Gesetze 4 1.1.2 Prinzipien der

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Zusammenfassung des Vortrags vom 28. April 2012

Zusammenfassung des Vortrags vom 28. April 2012 Kathrin Altwegg, Forschung im luftleeren Raum 31 Kathrin altwegg 1 Forschung im luftleeren Raum Zusammenfassung des Vortrags vom 28. April 2012 «Warum hat es im Weltraum keinen Sauerstoff?» (Sol, 11 Jahre).

Mehr

Die Sonne ein Feuerball wird untersucht

Die Sonne ein Feuerball wird untersucht Die Sonne ein Feuerball wird untersucht Sonnenforschung in Südniedersachsen Andreas Lagg Max-Planck Planck-Institut für Sonnensystemforschung Katlenburg-Lindau Übersicht: Was wissen wir über die Sonne?

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2 THEMEN UND INHALTE Kapitel Themen Inhalte 1. Kapitel Made in Germany 1.1 Was in Ingenieurwesen? 1.2 Ingenieur Studium an der OTH Regensburg? 1.3 Überblick über die OTH Regensburg 1.4 Studienordnung: SWS,

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld Seite 1 von 10 Abiturprüfung 2009 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld Eine bewegte elektrische Ladung erfährt in Magnetfeldern bei geeigneten

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

LANDAU. Der elektrische Tornado. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht. Luca Markus Burghard

LANDAU. Der elektrische Tornado. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht. Luca Markus Burghard ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht LANDAU Der elektrische Tornado Luca Markus Burghard Schule: Konrad Adenauer Realschule plus Landau Jugend forscht 2015 Fachgebiet Physik

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Aufgabe 1 ( 3 Punkte)

Aufgabe 1 ( 3 Punkte) Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Parameter für die Habitabilität von Planeten - Atmosphäre

Parameter für die Habitabilität von Planeten - Atmosphäre Parameter für die Habitabilität von Planeten - Atmosphäre Gliederung Definition von Habitabilität Erdatmosphäre Zusammensetzung Aufbau Einfluss der Atmosphäre auf die Temperatur Reflexion Absorption Treibhauseffekt

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Gravitationswellen: Erschütterungen. Ewald Müller Max-Planck-Institut für Astrophysik

Gravitationswellen: Erschütterungen. Ewald Müller Max-Planck-Institut für Astrophysik Gravitationswellen: Erschütterungen der Raumzeit Ewald Müller Max-Planck-Institut für Astrophysik Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.v. - unabhängige gemeinnützige Forschungsorganisation

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr