Beweis durch vollständige Induktion

Größe: px
Ab Seite anzeigen:

Download "Beweis durch vollständige Induktion"

Transkript

1 Skriptteil zur Vorlesung: Proinformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 4.Juli 009 Beweis durch vollständige Induktion Die fünf Peano-Axiome Grundlage für die vollständige Induktion sind die natürlichen Zahlen. Es folgt eine Denition der Menge der natürlichen Zahlen N durch die fünf Peano-Axiome, die erstmals 1889 von Giuseppe Peano angegeben wurden: 1) 0 ist eine natürliche Zahl. ) Zu jeder natürlichen Zahl n gibt es genau einen Nachfolger S(n), der ebenfalls eine natürliche Zahl ist. 3) Es gibt keine natürliche Zahl, deren Nachfolger 0 ist. 4) Jede natürliche Zahl ist Nachfolger höchstens einer natürlichen Zahl. 5) Von allen Mengen X, welche die Zahl 0 und mit jeder natürlichen Zahl n auch stets deren Nachfolger S(n) enthalten, ist die Menge der natürlichen Zahlen die kleinste. Beweiskonzept Um für alle natürlichen Zahlen zu beweisen, dass eine Aussage P gilt, genügt es zwei Dinge zu zeigen (1) (Induktionsanker) Zeige, dass P (0) gilt () (Induktionsschritt) Zeige, dass die Aussage P gilt, n N : P (n) P (n + 1) Schritt läÿt sich noch verallgemeinern zu () n N : (P (0) P (1)... P (n) P (n + 1) Um den zweiten Schritt P (n + 1) anwenden zu können, setzen wir voraus, dass P (n) gelten muss (Induktionsvoraussetzung). Wird eine korrekte Reduktion von n + 1 nach n vorgenommen, muss nur noch gezeigt werden, dass n auf n 1 usw. reduzierbar ist. Es lässt sich aber zeigen, dass es genügt, den Induktionanker und den Induktionsschritt zu beweisen, damit es für alle natürlichen Zahlen gilt. Dieses Prinzip wollen wir zunächst einmal mit Beispielen untersuchen und anwenden. Beispiele zur vollständigen Induktion 1) A(n) : n = n (n+1) IA(n = 1): 1 (1+1) = 1 = 1 IS(n n + 1): wenn für ein beliebiges aber festes n A(n) gälte: (n+1) i=1 i = n + (n + 1) = IV n (n+1) + (n + 1) = n (n+1) + (n+1) = (n+1) (n+) 1

2 ) B(n) : n = n+1 1 IA(n = 1): = 3 = 1 IS(n n + 1) wenn für ein beliebiges aber festes n B(n) gälte: n + n+1 = IV n 1 + n+1 = n+ 1 3) C(n) : n 1 n IA(n = 1): (trivial) IA(n = ): ( ) = (nicht notwendig) IS(n n + 1) wenn für ein beliebiges aber festes n C(n) gälte: n + ( 1 n n+1 ) IV 1 + n 1 + ( 1 n + n n 1 + n 1 n + n = 1 + n = 1 + (n + 1) 1 n + n ) = 4) D(n) : (n 1) = n IA(n = 1): 1 = 1 IS(n n + 1) wenn für ein beliebiges aber festes n D(n) gälte: (n 1) + ((n + 1) 1) = IV n + ((n + 1) 1) = n + n + 1 = (n + 1) 5) E(n) : (5 + 3n) = 5(n + 1) + 3 n (n+1) IA(n = 1): = 13 = = = (1+1) IS(n n + 1) wenn für ein beliebiges aber festes n E(n) gälte: (5 + 3n) + (5 + 3(n + 1)) = IV 5(n + 1) + 3 n (n+1) + (5 + 3(n + 1)) = 5(n + ) + 3 n (n+1) + 3(n + 1) = 3( n (n+1) + (n + 1)) = 3( n (n+1) + (n+1) ) = 5(n + ) + 3 (n+1) (n+) 6) F (n) : n < n (n+1) (ACHTUNG! nur Schritt zeigen) IS(n n + 1) wenn für ein beliebiges aber festes n F (n) gälte: (n+1) i=1 i = n + (n + 1) < IV n (n+1) + (n + 1) = n (n+1) + (n+1) = (n+1) (n+) Schritt funktioniert, obwohl die Aussage (siehe A(n)) falsch ist. 7) G(n) : n n + 1 ab einem bestimmten n IA(n = 3): 3 = 9 7 = IS(n n + 1) wenn für ein beliebiges aber festes n (n 3) E(n) gälte: (n + 1) = n + n + 1 IV n n + 1 = (n + ) + n (n + 1) + 1

3 8) H(n) : n Pferde haben die gleiche Farbe IA(n = 1): trivialerweise richtig IS(n n + 1) wenn für ein beliebiges aber festes n H(n) gälte: Man nehme aus einer Herde von n + 1 Pferden ein beliebiges heraus. Nach Induktionsvoraussetzung haben die verbliebenen n Pferde die gleiche Farbe. Man tue das weggenommene Pferd wieder zur Herde und nehme ein anderes weg. Die nun verbliebenen n Pferde haben wieder nach Induktionsvoraussetzung die gleiche Farbe. Insgesamt haben also alle n + 1 Pferde die gleiche Farbe. FRAGE: Wo liegt der Fehler? Beispiel: Bezug zu Programmen Satz: Für jedes n N mit n > 0 berechnet die Funktion fakultaet n den Wert n n = 0 den Wert 1. Die Funktion facultaet ist dabei wie folgt deniert i=1 i und für fakultaet :: Int -> Int fakultaet n n <0 = error " n. d. " -- ( fac.0) n ==0 = 1 -- ( fac.1) otherwise = n * fakultaet (n -1) -- ( fac.) Die Bezeichnungen der Zeilen werden uns helfen, die Beweisschritte anzugeben. Per Denition sei 0 = 1. Beweis: Induktionsanker(n=0): Zunächst wollen wir den Induktionsanker mit n = 0 zeigen fakultaet 0 = 1 (faku.1) Der Induktionsanker ist erfüllt. Induktionsvoraussetzung(n): Wir setzen voraus, dass für ein beliebiges aber festes n erfüllt ist. fakultaet n = n Induktionsschritt(n+1): Die Aussage für n + 1, mit fakultaet n+1 = n+1 gilt unter der Induktionsvoraussetzung. fakultaet (n+1) = (n+1) fakultaet((n+1)-1) Damit ist der Satz bewiesen. (faku.) = (n+1) fakultaet n Ind.Vor. = (n+1) n = n+1 Häuge Fehler beim Induktionsbeweis Der Induktionsschritt funktioniert zwar, die Behauptung gilt für die Anfangsbedingung aber nicht. Der Induktionsschritt ist nicht für alle n gültig, d. h., es gibt mindestens ein n n 0 (der Verankerung), für das er nicht anwendbar ist. 3

4 Vollständige Induktion über Listen Bei Listen können wir uns die Tatsache zu Nutze machen, dass die Länge einer Liste eine natürliche Zahl ist. Um nun die vollständige Induktion auf Listen anwenden zu können, ändern wir das Konzept in der Art, dass die Induktion über die Struktur vorgenommen wird. In diesem Fall reden wir auch von einer strukturellen Induktion. Beispiel 1 Satz: Für alle Listen xs (endliche Länge) und ys von ganzen Zahlen gilt elem z (xs ++ ys) = elem z xs elem z ys Dabei sind (++) und elem wie folgt deniert (++) :: [ a ] -> [ a ] -> [ a ] [] ++ vs = vs -- (++.1) ( u : us ) ++ vs = u :( us ++ vs ) -- (++.) elem :: Eq a = > a -> [ a ] -> Bool elem u [] = False -- ( elem.1) elem u ( v : vs ) = ( u==v ) elem u vs -- ( elem.) Auch an dieser Stelle sind die Bezeichnungen der Zeilen für die Beweisführung nützlich. Beweis: An dieser Stelle soll die strukturelle Induktion über die Länge der Liste xs vorgenommen werden. Allgemein soll n die Länge der Liste xs sein. Induktionsanker(n=0, xs=[]): Wir setzen xs=[] und zeigen, dass der Anker gilt (1) elem z ([] ++ ys) = elem z ys (++.1) () elem z [] elem z ys = False elem z ys (elem.1), = elem z ys False x=x Der Induktionsanker ist erfüllt, (1) und () liefern das gleiche Ergebnis. Induktionsvoraussetzung(n, xs): Wir setzen voraus, dass für eine beliebige aber feste Liste xs mit der Länge n die Aussage erfüllt ist. elem z (xs ++ ys) = elem z xs elem z ys Induktionsschritt(n+1, (x:xs)): Für (x:xs) mit der Listenlänge n + 1 gilt die Aussage elem z ((x:xs) ++ ys) = elem z (x:xs) elem z ys unter der Induktionsvoraussetzung. elem z ((x:xs) ++ ys) = elem z (x:(xs++ys)) (++.) = (z==x) elem z (xs++ys) (elem.) = (z==x) (elem z xs elem z ys) I.V. = (z==x) elem z xs elem z ys Assoz. = elem z (x:xs) elem z ys Damit ist der Satz bewiesen. 4

5 Beispiel Satz: Für alle Listen xs (endliche Länge) und ys von ganzen Zahlen gilt summe (xs ++ ys) = summe xs + summe ys Dabei ist summe deniert über summe=frechts (+) 0 nitionen für (++) und frechts -- (summe). Gegeben seien folgende De- (++) :: [ a ] -> [ a ] -> [ a ] [] ++ vs = vs -- (++.1) ( u : us ) ++ vs = u :( us ++ vs ) -- (++.) frechts :: ( b -> a -> a ) -> a -> [ b ] -> a frechts _ s [] = s -- ( fr.1) frechts f s ( x : xs ) = f x ( faltenrechts f s xs ) -- ( fr.) Beweis: An dieser Stelle soll die strukturelle Induktion über die Länge der Liste xs vorgenommen werden. Allgemein soll n die Länge der Liste xs sein. Induktionsanker(n=0, xs=[]): Wir setzen xs=[] und zeigen, dass der Anker gilt (1) summe ([] ++ ys) = summe ys (++.1) () summe [] + summe ys = frechts (+) 0 [] + summe ys (summe) = 0 + summe ys (fr.1) = summe ys neut.ele.add. Der Induktionsanker ist erfüllt, (1) und () führen zum gleichen Ergebnis. Induktionsvoraussetzung(n, xs): Wir setzen voraus, dass für eine beliebige aber feste Liste xs mit der Länge n die Aussage erfüllt ist. summe (xs ++ ys) = summe xs + summe ys Induktionsschritt(n+1, (x:xs)): Für (x:xs) mit der Listenlänge n + 1 gilt die Aussage summe((x:xs)++ys) = summe (x:xs) + summe ys unter der Induktionsvoraussetzung. summe((x:xs)++ys) = frechts (+) 0 ((x:xs)++ys) (summe) = x + (frechts (+) 0 (xs ++ ys)) (fr.) = x + (summe (xs ++ ys)) (summe) = x + (summe xs + summe ys) I.V. = (x + summe xs) + summe ys Ass. Add. = (x + frechts (+) 0 xs) + summe ys (summe) = (frechts (+) 0 (x:xs)) + summe ys (fr.) = summe (x:xs) + summe ys Damit ist der Satz bewiesen. 5

6 Literatur [1] O'Neill M.E.: The Genuine Sieve of Eratosthenes, unpublished draft, siehe: [] Block M.: Java Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren, Springer-Verlag 007 [3] Dankmeier D.: Grundkurs Codierung: Verschlüsselung, Kompression, Fehlerbeseitigung., 3.Auage, Vieweg-Verlag, 006 [4] Schulz R.-H.: Codierungstheorie: Eine Einführung,.Auage, Vieweg+Teubner, 003 [5] Schöning U.: Algorithmik, ISBN-13: , Spektrum Akademischer Verlag, 001 [6] Pope B.: A tour of the Haskell Prelude, unpublished ( ), 001 [7] Hudak P., Peterson J., Fasel J.: A gentle introduction to Haskell Version 98, unpublished ( ), 000 [8] Cormen T.H., Leiserson C.E., Rivest R.L.: Introduction to Algorithms, MIT-Press, 000 [9] Gibbons J., Jones G.: The Under-Appreciated Unfold, Proceedings of the third ACM SIG- PLAN international conference on Functional programming, pp , United States, 1998 [10] Haskell-Onlinereport 98: [11] Data.Char: [1] Webseite der Helium-IDE: [13] Wikibook zur Datenkompression: Datenkompression [14] Haskell-Funktionen: index.html [15] Webseite des Euler-Projekts: [16] Webseite Haskellprojekte: pkg-list.html [17] Projektwebseite Frag: [18] Projektwebseite Monadius: monadius_en.html [19] Haskell-Suchmaschine Hoogle: [0] Wikipedia: 6

Einfache Datenstrukturen

Einfache Datenstrukturen Skriptteil zur Vorlesung: Proinformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 22.Juli 2009 Einfache Datenstrukturen Durch geeignete Kombinationen aus den Basisdatentypen lassen sich neue,

Mehr

Motivation und Einführung

Motivation und Einführung Skriptteil zur Vorlesung: Proinformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 20.Juli 2009 Motivation und Einführung In der heutigen Zeit müssen wir uns in so vielen Bereichen auf computerbasierte

Mehr

Notation und Einführung

Notation und Einführung Skriptteil zur Vorlesung: Proinformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 30.Juli 2009 Notation und Einführung Der folgende Abschnitt gibt eine kurze Einführung in die Codierungstheorie.

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften. In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 2. Beweistechniken Malte Helmert Gabriele Röger Universität Basel 18. Februar 2015 Beweis Beweis Ein Beweis leitet die Korrektheit einer mathematischen Aussage aus einer Menge von

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Dr. Michael Savorić Hohenstaufen-Gymnasium (HSG) Kaiserslautern Version 20120622 Überblick Wichtige Eigenschaften Einführungsbeispiele Listenerzeugung und Beispiel

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Gliederung. Algorithmen und Datenstrukturen I. Listen in Haskell: Listen in Haskell: Listen in Haskell. Datentyp Liste Strings Listenkomprehension

Gliederung. Algorithmen und Datenstrukturen I. Listen in Haskell: Listen in Haskell: Listen in Haskell. Datentyp Liste Strings Listenkomprehension Gliederung Algorithmen und Datenstrukturen I D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Winter 2009/10, 16. Oktober 2009, c

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

1 Übersicht Induktion

1 Übersicht Induktion Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Induktion und Rekursion WS 2012/2013 Vollständige Induktion (Mafi I) Die Vollständige Induktion ist eine mathematische Beweistechnik, die auf die Menge der natürlichen Zahlen spezialisiert ist. Vorgehensweise:

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Viel Spaÿ! Aufgabe 0.1. Laufzeit unter Verdoppelung (-)

Viel Spaÿ! Aufgabe 0.1. Laufzeit unter Verdoppelung (-) Datenstrukturen (DS) Sommersemester 2015 Prof. Dr. Georg Schnitger Dipl-Inf. Bert Besser Hannes Seiwert, M.Sc. Institut für Informatik AG Theoretische Informatik Übung 0 Ausgabe: 14.04.2015 Abgabe: - Wenn

Mehr

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Lars Hupel, Lars Noschinski, Dr. Jasmin Blanchette Wintersemester 2013/14 Abschlussklausur 21. Februar 2014 Einführung

Mehr

Funktionale Programmierung

Funktionale Programmierung Schleifen 1 Funktionale Programmierung Jörg Kreiker Uni Kassel und SMA Solar Technology AG Wintersemester 2011/2012 3 Teil I Jedem Anfang wohnt ein Zauber inne 4 Über mich Diplom in Informatik in Saarbrücken

Mehr

3.3 Laufzeit von Programmen

3.3 Laufzeit von Programmen 3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Programmieren in Haskell. Abstrakte Datentypen

Programmieren in Haskell. Abstrakte Datentypen Programmieren in Haskell Abstrakte Datentypen Einführung Man unterscheidet zwei Arten von Datentypen: konkrete Datentypen: beziehen sich auf eine konkrete Repräsentation in der Sprache. Beispiele: Listen,

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 2. Induktion Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Induktion Zentrale Rolle Wesentliches Beweisprinzip in Mathematik

Mehr

1 - FortProg ist: [ ] objekt-orientiert; [ ] funktional; [ ] logisch; [ ] manchmal nicht auszuhalten

1 - FortProg ist: [ ] objekt-orientiert; [ ] funktional; [ ] logisch; [ ] manchmal nicht auszuhalten 1 - FortProg ist: [ ] objekt-orientiert; [ ] funktional; [ ] logisch; [ ] manchmal nicht auszuhalten Java-1. a), e) Java-2. --- gestrichen --- Java-3. keine Antwort ist richtig Java-4. a) Java-5. a), b)

Mehr

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken Beweistechniken Ronja Düffel WS2014/15 13. Januar 2015 Warum ist Beweisen so schwierig? unsere natürliche Sprache ist oft mehrdeutig wir sind in unserem Alltag von logischen Fehlschlüssen umgeben Logik

Mehr

Vollständige Induktion

Vollständige Induktion Vollständige Induktion F. Lemmermeyer. Januar 04 Aussagen, die für alle natürlichen Zahlen gelten, kann man oft mit vollständiger Induktion beweisen. Das Vorgehen ist dabei folgendes:. Man zeigt, dass

Mehr

Vollständige Induktion

Vollständige Induktion Vollständige Induktion Aussageformen mit natürlichen Zahlen als Parametern kann man mit vollständiger Induktion beweisen. Ist A(n) eine von n N abhängige Aussage, so sind dazu die folgenden beiden Beweisschritte

Mehr

Musterlösung zur 2. Aufgabe der 4. Übung

Musterlösung zur 2. Aufgabe der 4. Übung Musterlösung zur 2. Aufgabe der 4. Übung Da viele von Euch anscheinend noch Probleme mit dem Entfalten haben, gibt es für diese Aufgabe eine Beispiellösung von uns. Als erstes wollen wir uns noch einmal

Mehr

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen 6. Zahlen Vom lieben Gott gemacht Menschenwerk: operativ oder Klassen äquivalenter Mengen oder axiomatisch (Peano 1889) 6. Zahlen GM 6-1 GM 6- Peano sche Axiome der natürlichen Zahlen Definition 6.1.1:

Mehr

Induktion nach der Länge n von x

Induktion nach der Länge n von x Allgemeiner: app (rev x) y = rev1 x y füralle Listenx, y. Beweis: n = 0 : Induktion nach der Länge n von x Dann gilt: x = []. Wirschließen: app (rev x) y = app (rev []) y = app (match [] with [] -> []...)

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Gliederung. Algorithmen und Datenstrukturen I. Eine wichtige Frage. Algorithmus. Materialien zur Vorlesung. Begriffsbestimmung EUKLID Primzahltest

Gliederung. Algorithmen und Datenstrukturen I. Eine wichtige Frage. Algorithmus. Materialien zur Vorlesung. Begriffsbestimmung EUKLID Primzahltest Gliederung Algorithmen und Datenstrukturen I Materialien zur Vorlesung D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Winter 2009/10,

Mehr

Programmierung 1 (Wintersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 8 (Kapitel 9)

Programmierung 1 (Wintersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 8 (Kapitel 9) Fachrichtung 6. Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung Programmierung (Wintersemester 5/6) Lösungsblatt: Aufgaben für die Übungsgruppen: 8 (Kapitel 9) Hinweis: Dieses

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

2 Die naturlichen Zahlen

2 Die naturlichen Zahlen 2 Die naturlichen Zahlen 2.1 Historisches Schon fruh in der Kulturgeschichte stellte man die Frage nach dem Wesen der Zahlen. Wahrend sich jedoch die Agypter und Babylonier mit einer hoch entwickelten

Mehr

Programmieren in Haskell Programmiermethodik

Programmieren in Haskell Programmiermethodik Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:

Mehr

Tutoraufgabe 1 (Auswertungsstrategie):

Tutoraufgabe 1 (Auswertungsstrategie): Prof. aa Dr. J. Giesl Programmierung WS12/13 M. Brockschmidt, F. Emmes, C. Otto, T. Ströder Tutoraufgabe 1 (Auswertungsstrategie): Gegeben sei das folgende Haskell-Programm: absteigend :: Int - > [ Int

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Übung Grundbegriffe der Informatik 15. und letzte Übung Karlsruher Institut für Technologie Matthias Janke, Gebäude 50.34, Raum 249 email: matthias.janke ät kit.edu Matthias Schulz, Gebäude 50.34, Raum

Mehr

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker MATHEMATISCHES INSTITUT WS 006/07 DER UNIVERSITÄT MÜNCHEN Prof. Dr. M. Schottenloher Dr. S. Tappe Version 5.. Lösungen zur. Klausur zur MIA: Analysis I für Mathematiker vom 6..06 Aufgabe. ( + Punkte) a)

Mehr

Diskrete Strukturen Endterm

Diskrete Strukturen Endterm Technische Universität München Winter 201/16 Prof. H. J. Bungartz / Dr. M. Luttenberger, J. Bräckle, C. Uphoff Lösung HA-Lösung LÖSUNG Diskrete Strukturen Endterm Beachten Sie: Soweit nicht anders angegeben,

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Übungen zu Grundlagen der Logik in der Informatik - WS15/16

Übungen zu Grundlagen der Logik in der Informatik - WS15/16 Übungen zu Grundlagen der Logik in der Informatik - WS15/16 1 / 11 Übungen zu Grundlagen der Logik in der Informatik - WS15/16 Donnerstag 14:15-15:45, Cauerstraße 7/9, Raum 0.154-115 Freitag 14:15-15:45,

Mehr

WS 2011/2012. RobertGiegerich. November 12, 2013

WS 2011/2012. RobertGiegerich. November 12, 2013 WS 2011/2012 Robert AG Praktische Informatik November 12, 2013 Haskell-Syntax: Ergänzungen Es gibt noch etwas bequeme Notation für Fallunterscheidungen, die wir bisher nicht benutzt haben. Bisher kennen

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Funktionale Programmierung. Das Funktionale Quiz. Das Funktionale Quiz. Das Funktionale Quiz

Funktionale Programmierung. Das Funktionale Quiz. Das Funktionale Quiz. Das Funktionale Quiz Funktionale Programmierung Das Funktionale Quiz 31.5.2005 Nenne eine Gemeinsamkeit zwischen Typklassen und OO-Klassen Das Funktionale Quiz Das Funktionale Quiz Nenne einen Unterschied zwischen Typklassen

Mehr

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen 1 Grundlagen 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen Die Überlegungen dieses Kapitels basieren auf der Informationstheorie von Shannon. Er beschäftigte

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

2 Klassische Induktion über natürliche Zahlen

2 Klassische Induktion über natürliche Zahlen Vollständige Induktion 1 Einführung Dieses Handout soll dem Zweck dienen, vollständige Induktion über natürliche Zahlen und Induktion über den Aufbau einer Formel möglichst ausführlich und anschaulich

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

1 Fibonacci-Zahlen und Teilbarkeit

1 Fibonacci-Zahlen und Teilbarkeit 3. Juli 2002 Fabian Meier Fibonacci-Zahlen und Teilbarkeit Dies ist das Skript zu dem Vortrag, den ich auf der Sommerakademie 200 und 2002 gehalten habe. Fehler bitte an folgende Adresse: an@fabianmeier.de..

Mehr

MafI 1 Repetitorium Übungen

MafI 1 Repetitorium Übungen MafI 1 Repetitorium Übungen M. Sc. Dawid Kopetzki KW 18 (29.04.2015) M. Sc. Dawid Kopetzki MafI 1 Repetitorium Übungen 1 / 13 Intro Info zur ersten Abgabe Erinnerung: Am 06.05. zwischen 1416 Uhr ist Fachschaftsvollversammlung

Mehr

Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift

Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2008/09 Einführung in die Informatik 2 Klausur Prof. Dr. Helmut Seidl, T. M. Gawlitza, S. Pott,

Mehr

1 Das Prinzip der vollständigen Induktion

1 Das Prinzip der vollständigen Induktion 1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Prof. Dr. Martin Schmollinger Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 22.03.2010) Sommersemester 2010 1 / 61 Foliensatz

Mehr

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T )

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T ) Formale Methoden 2 LVA 703019, 703020 (http://clinformatik.uibk.ac.at/teaching/ss06/fmii/) Georg Moser (VO) 1 Martin Korp (UE) 2 Friedrich Neurauter (UE) 3 Christian Vogt (UE) 4 1 georg.moser@uibk.ac.at

Mehr

Programmieren in Haskell Einstieg in Haskell

Programmieren in Haskell Einstieg in Haskell Programmieren in Haskell Einstieg in Haskell Peter Steffen Universität Bielefeld Technische Fakultät 24.10.2008 1 Programmieren in Haskell Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Theorembeweiserpraktikum SS 2016

Theorembeweiserpraktikum SS 2016 Institut für Programmstrukturen und Datenorganisation Lehrstuhl Programmierparadigmen Am Fasanengarten 5 76131 Karlsruhe http://pp.ipd.kit.edu/ Theorembeweiserpraktikum SS 2016 http://pp.ipd.kit.edu/lehre/ss2016/tba

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

Lösung: InfA - Übungsblatt 07

Lösung: InfA - Übungsblatt 07 Lösung: InfA - Übungsblatt 07 Michele Ritschel & Marcel Schilling 23. Dezember 2008 Verwendete Abkürzungen: Beweis, vollständige Induktion, IA: Induktionsanfang/Induktionsanker, IS: Induktionsschritt/Induktionssprung,

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 1 -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 1 - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 1 - Dozent: Prof. Dr. G. Rote Tutoren: J. Fleischer, T. Haimberger, N. Lehmann, C. Pockrandt, A. Steen 18.10.2011 Ziele

Mehr

Funktionen höherer Ordnung

Funktionen höherer Ordnung Eine Funktion wird als Funktion höherer Ordnung bezeichnet, wenn Funktionen als Argumente verwendet werden, oder wenn eine Funktion als Ergebnis zurück gegeben wird. Beispiel: twotimes :: ( a -> a ) ->

Mehr

TU8 Beweismethoden. Daniela Andrade

TU8 Beweismethoden. Daniela Andrade TU8 Beweismethoden Daniela Andrade daniela.andrade@tum.de 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2

Mehr

Beispiel: Hamming-Folge Erzeuge eine Folge X = x 0,x 2,... mit folgenden Eigenschaften: 1. x i+1 > x i für alle i

Beispiel: Hamming-Folge Erzeuge eine Folge X = x 0,x 2,... mit folgenden Eigenschaften: 1. x i+1 > x i für alle i Beispiel: Hamming-Folge Erzeuge eine Folge X = x 0,x 2,... mit folgenden Eigenschaften: 1. x i+1 > x i für alle i FP-8.7 2. x 0 = 1 3. Falls x in der Folge X auftritt, dann auch 2x, 3x und 5x. 4. Nur die

Mehr

Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen

Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Rev. 1152 1 [23] Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Christoph Lüth & Dennis Walter Universität Bremen Wintersemester 2010/11

Mehr

Programmierparadigmen

Programmierparadigmen in Haskell Programmierparadigmen in Haskell D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Sommer 2011, 4. April 2011, c 2011 D.Rösner

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Programmiermethodik Programmieren in Haskell 1 Was wir heute machen Spezifikation Strukturelle Rekursion Strukturelle Induktion Programmieren in Haskell 2 Spezifikation sort [8,

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler wi Wirtschaft Pearson Studium Mathematik für Wirtschaftswissenschaftler Das Übungsbuch von Nils Heidenreich, Fred Böker, Britta Schnoor 1. Auflage Mathematik für Wirtschaftswissenschaftler Heidenreich

Mehr

Mehr Erfolg in Mathematik, Abitur: Analysis 1

Mehr Erfolg in Mathematik, Abitur: Analysis 1 Mehr Erfolg in... Mehr Erfolg in Mathematik, Abitur: Analysis 1 Funktionen, Grenzwerte, Stetigkeit, Exponential- und Logarithmusfunktionen Bearbeitet von Helmuth Preckur 1. Auflage 009. Taschenbuch. 160

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 15 In dieser Vorlesung besprechen wir, wie sich im Dezimalsystem der Nachfolger, die Größergleichrelation und die Addition darstellen.

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

ALP I. Funktionale Programmierung

ALP I. Funktionale Programmierung ALP I Funktionale Programmierung Sortieren und Suchen (Teil 1) WS 2012/2013 Suchen 8 False unsortiert 21 4 16 7 19 11 12 7 1 5 27 3 8 False sortiert 2 4 6 7 9 11 12 18 21 24 27 36 Suchen in unsortierten

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr