Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada"

Transkript

1 Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada

2 Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C)

3 Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) d.h. A = (a ij ) N i,j= mit Zufallsvariablen als Einträgen a ij : Ω C ( i, j N) 2

4 Was will man über Zufallsmatrizen wissen? Verhalten der Eigenwerte, insbesondere lokale Eigenschaften, z.b. Statistik des Abstandes benachbarter Eigenwerte oder des größten Eigenwertes globale Eigenschaften, z.b. Eigenwertverteilung oder globale Fluktuationen 3

5 Was will man über Zufallsmatrizen wissen? Verhalten der Eigenwerte, insbesondere lokale Eigenschaften, z.b. Statistik des Abstandes benachbarter Eigenwerte oder des größten Eigenwertes globale Eigenschaften, z.b. Eigenwertverteilung oder globale Fluktuationen Insbesondere Grenzwert N liefert interessante Struktur 4

6 Gaußsche Zufallsmatrizen A N = (a ij ) N i,j= : Ω M N(C) wobei 5

7 Gaußsche Zufallsmatrizen A N = (a ij ) N i,j= : Ω M N(C) wobei a ij = ā ji (d.h. A N = A N ) 6

8 Gaußsche Zufallsmatrizen A N = (a ij ) N i,j= : Ω M N(C) wobei a ij = ā ji (d.h. A N = A N ) {a ij } i j N sind unabhängige Gauß-verteilte Zufallsvariable mit E[a ij ] = E[ a ij 2 ] = N 7

9 Gaußsche Zufallsmatrizen A N = (a ij ) N i,j= : Ω M N(C) wobei die gemeinsame Verteilung der Einträge a ij gegeben ist durch Z N e NTr(A2 N ) da N da N = i j dra ij k>l dia kl 8

10 eine Realisierung zweite Realisierung dritte Realisierung 9

11 eine Realisierung N= zweite Realisierung N= dritte Realisierung N=

12 eine Realisierung N= N= zweite Realisierung N= N= dritte Realisierung N= N=

13 eine Realisierung N= N= N= zweite Realisierung N= N= N= dritte Realisierung N= N= N= 2

14 Wignersches Halbkreisgesetz N = one realization another realization yet another one... 3

15 Wignersches Halbkreisgesetz: Seien λ (ω),..., λ N (ω) die Eigenwerte der Gaußschen Zufallsmatrix A N (ω) (gezählt mit Vielfachheit) und sei µ N (ω) := N (δ λ (ω) + + δ λ N (ω) ) die Eigenwertverteilung von A N (ω). Dann gilt fast sicher µ N 4 t 2 dt für N 2π 4

16 Beachte: die Eigenwerte von A N sind nicht unabhängig; sondern die gemeinsame Eigenwertverteilung von A N ist gegeben durch Dichte Z N e N(λ2 + +λ2 N ) i<j (λ i λ j ) 2 dλ dλ N, Eigenwerte wechselwirken wie 2-dimensionales Coulomb-Gas-System 5

17 5 independent eigenvalues with semicircular distribution eigenvalues of a 5 x 5 Gaussian random matrix

18 2 5 independent eigenvalues with semicircular distribution eigenvalues of a 5 x 5 Gaussian random matrix

19 Fragestellungen direkte stochastische Beschreibung des Grenzwertes N = insbesondere Existenz und Eigenschaften des Limes N von Multi-Matrix-Modellen der Form Z N e NTr(P(A,...,A m )) da da m Art der Konvergenz Fluktuationen große Abweichungen 8

20 Dynamische Beschreibung: Dyson Modell unabhängige Gaußvariable unabhängige Brownsche Bewegungen wobei A N (t) = (a ij (t)) N i,j= a ij (t) = ā ji (t) {a ij ( )} i j N sind unabhängige Brownsche Bewegungen 9

21 Übergang zu Prozessen erlaubt Realisierung von Verteilungen als Gleichgewichtsverteilungen eines Prozesses Beschreibung infinitesimaler Änderungen Benutzung von stochastischem Kalkül 2

22 Beschreibung des Grenzwertes N = von A N (t) als Limes N von N diffundierenden wechselwirkenden Eigenwerten dλ i (t) = N db i (t) + N j N j i λ i λ j dt 2

23 Beschreibung des Grenzwertes N = von A N (t) als Limes N von N diffundierenden wechselwirkenden Eigenwerten dλ i (t) = N db i (t) + N j N j i λ i λ j dt als McKean-Vlasov-Gleichung für die Dynamik der Eigenwertdichte µ t von A N (t) für N = 22

24 Beschreibung des Grenzwertes N = von A N (t) als Limes N von N diffundierenden wechselwirkenden Eigenwerten dλ i (t) = N db i (t) + N j N j i λ i λ j dt als McKean-Vlasov-Gleichung für die Dynamik der Eigenwertdichte µ t von A N (t) für N = f(λ)µ t (dλ) = lim N N N i= f(λ t (t)) 23

25 Beschreibung des Grenzwertes N = von A N (t) als Limes N von N diffundierenden wechselwirkenden Eigenwerten dλ i (t) = N db i (t) + N j N j i λ i λ j dt als McKean-Vlasov-Gleichung für die Dynamik der Eigenwertdichte µ t von A N (t) für N = d dt f(λ)µ t (dλ) = µt (dy) λ y f (λ)µ t (dλ) 24

26 Vollständige stochastische Beschreibung des Prozesses A N (t) im Limes N erfordert nicht nur Kenntnis von Marginalverteilungen µ t = lim N Vert(A(t)), sondern auch gemeinsame Verteilung zu verschiedenen Zeiten. 25

27 Vollständige stochastische Beschreibung des Prozesses A N (t) im Limes N erfordert nicht nur Kenntnis von Marginalverteilungen µ t = lim N Vert(A(t)), sondern auch gemeinsame Verteilung zu verschiedenen Zeiten. Aber: A N (t)a N (s) A N (s)a N (t), d.h. gemeinsame Eigenwertverteilung von A N (t) und A N (s) macht keinen Sinn. 26

28 Vollständige stochastische Beschreibung des Prozesses A N (t) im Limes N erfordert nicht nur Kenntnis von Marginalverteilungen µ t = lim N Vert(A(t)), sondern auch gemeinsame Verteilung zu verschiedenen Zeiten. Aber: A N (t)a N (s) A N (s)a N (t), d.h. gemeinsame Eigenwertverteilung von A N (t) und A N (s) macht keinen Sinn. Es gilt: λ m µ t (dλ) = lim N N N i= λ i (t) m = lim N N Tr( A N (t) m ) 27

29 Vollständige stochastische Beschreibung des Prozesses A N (t) im Limes N erfordert nicht nur Kenntnis von Marginalverteilungen µ t = lim N Vert(A(t)), sondern auch gemeinsame Verteilung zu verschiedenen Zeiten. Aber: A N (t)a N (s) A N (s)a N (t), d.h. gemeinsame Eigenwertverteilung von A N (t) und A N (s) macht keinen Sinn. Allgemeiner betrachte lim N N Tr( A N (t ) A N (t m ) ) t,..., t m R + 28

30 Die freie Brownsche Bewegung {S(t) t } ist definiert als der Grenzwert von den N N-matrixwertigen Brownschen Bewegungen {A N (t) t } durch nicht-kommutierende Variable S(t) (t ) Zustand E auf der von den S(t) erzeugten Algebra, definiert durch E [ S(t ) S(t m ) ] := lim N N Tr( A N (t ) A N (t m ) ) 29

31 Die freie Brownsche Bewegung kann beschrieben werden abstrakt als GNS Konstruktion bzgl. E konkret durch Operatoren auf Fockräumen 3

32 Realisierung auf Fockraum H = L 2 (R + ), F(H) = ΩC H n n= Für g H haben wir zugehörigen Erzeugungsoperator l (g): l (g)ω = g l (g)h h n = g h h n Dann realisiert S(t) = l ( [,t] ) + l( [,t] ) und E[a] = Ω, aω die freie Brownsche Bewegung. 3

33 Auf der von S(t) (t ) erzeugten Algebra haben wir die L p - Normen bzgl. E, insbesondere L 2 -norm a 2 := E[aa ] /2 L -Norm = Operatornorm a = a = lim p E[(aa ) p ] /2p Beachte: Verteilung von S(t) ist Halbkreis mit Radius 2 t, d.h. S(t) = 2 t 32

34 Ito-Kalkül für freie Brownsche Bewegung Prozess {A(t) t } heißt adaptiert, falls A(t) nur von S(τ) (τ t) abhängt. Für adaptierte Prozesse {A(t) t } und {B(t) t } definiere stochastisches Integral A(t)dS(t)B(t) [ Definition für stückweise konstante Prozesse: A(t)dS(t)B(t) := i A(t i ) ( S(t i+ ) S(t i ) ) B(t i ) ] 33

35 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt 34

36 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt 35

37 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ds(t) = dt 36

38 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ads(t) =?? 37

39 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ads(t) = E[A]dt 38

40 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ads(t) = E[A]dt Chaos-Zerlegung, Skorohod-Integral,... 39

41 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ads(t) = E[A]dt stochastische Analysis auf Wignerraum 4

42 Anwendungen des freien stochastischen Kalküls freie Diffusionsgleichungen (Biane, Speicher 2) Existenz des Grenzwertes von Multi-Matrix-Modellen der Form Z N e NTr(P(A,...,A m )) da da m und Zusammenhang mit diagrammatischen Entwicklungen für konvexe Potentiale (Guionnet, Shlyakhtenko 27) 42

43 Theorem [Biane, Speicher]: Sei V eine Operator Lipschitz Funktion. Betrachte die freie stochastische Differentialgleichung Dann gilt dx t = 2 V (X t )dt + ds t Existenz, Eindeutigkeit der Lösung; Stetigkeit von t X t dµ t (x) = p t dx, wobei p t beschränkt und p t L 3 (R) freie Fokker-Planck-Gleichung: [H Hilbert-Transformierte] p t (x) t = x [(Hp t(x) 2 V (x))p t (x)],

44 Definiere relative freie Entropie R2 Σ(µ) := log x y dµ(x)dµ(y) V (x)dµ(x) R und relative freie Fisher Information ( I(µ) = 4 Hp(x) R 2 V (x) ) 2 p(x)dx. Dann gilt d dt Σ(µ t) = 2 I(µ t). Für freien Ornstein Uhlenbeck Prozess (V (x) = λx 2 ) haben wir freie log Sobolev Ungleichung 4λ I(µ) Σ(µ ) Σ(µ) 43

45 Globale Fluktuationen der Eigenwerte Sei A N Gaußsche Zufallsmatrix. Wignersches Halbkreisgesetz sagt N Tr(Ak N ) 2π 2 2 tk 4 t 2 dt, also z.b. N Tr(A N) N Tr(A2 N ) N Tr(A4 N ) 2 44

46 Skalierte Fluktuationen um diesen Grenzwert Tr(A k N ) N 2π 2 2 tk 4 t 2 dt sind, für N, Gauß-verteilt mit berechenbarer Varianz 45

47 Example: Gaussian random matrix A (N = 4, trials=5.) Var(Tr(A)) = Var(Tr(A 2 )) = 2 Var(Tr(A 4 )) = 36 Normal Probability Plot Normal Probability Plot Normal Probability Plot Probability Probability Probability cov= cov= cov= Data Data Data 46

48 Problem: Betrachte andere Zufallsmatrizenmodelle, insbesondere Multi-Matrix-Modelle. Zeige, dass auch dort Fluktuationen von Spuren normalverteilt sind und beschreibe ihre Varianz! Ergebnisse: Gaußsche Zufallsmatrizen (Johansson 998; Cabanal-Duvillard 2) Wishart Zufallsmatrizen (Jonsson 982; Kusalik, Mingo, Speicher 26) unitäre Zufallsmatrizen (Diaconis, Shahshahani 994; Mingo, Sniady, Speicher 26, Radulescu 26) 47

49 Theorem [Mingo, Sniady, Speicher]: Betrachte unabhängige Folgen {U } N,..., {U r } N von Haar verteilten unitären N N- Zufallsmatrizen. Dann konvergiert die Familie Tr[U k() i() Uk(n) i(n) ] von Spuren in zyklisch reduzierten Wörtern in diesen Zufallsmatrizen gegen eine Gaußsche Familie von zentrierten Zufallsvariablen, wobei die Kovarianz gegeben ist durch die zyklischen Matchings zwischen den zwei reduzierten Wörtern lim N cov{ Tr[U k() i() Uk(m) i(m) ],Tr[Ul(n) j(n) Ul() j() ]} = δ mn # { r {,..., n} i(s) = j(s + r), k(s) = l(s + r) s =,..., n } 48

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 9 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 40: Es sei (X t ) t 0 ein

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Fortgeschrittene Mathematik Raum und Funktionen

Fortgeschrittene Mathematik Raum und Funktionen Fortgeschrittene Mathematik Raum und Funktionen Thomas Zehrt Universität Basel WWZ Thomas Zehrt (Universität Basel WWZ) R n und Funktionen 1 / 33 Outline 1 Der n-dimensionale Raum 2 R 2 und die komplexen

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung Brownsche Bewegung M. Gruber SS 2016, KW 11 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Grundlagen der Mathematik 2 Nachklausur

Grundlagen der Mathematik 2 Nachklausur Andreas Gathmann und Yue Ren Sommersemester 6 Grundlagen der Mathematik Nachklausur Bearbeitungszeit: 8 Minuten Aufgabe (6 Punkte): Es sei f : R R, (x,y) xye (x+y). (a) Bestimme alle lokalen Maxima und

Mehr

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Thomas Steinle Seminar Zufällige Felder Universität Ulm 18. November, 2008 Einleitung Inhalt Einleitung Wiederholung und Themenvorstellung Wichtiges

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten

Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten Andreas Fröhlich, Thomas Selhorst, Christoph Staubach FLI-Wusterhausen DVG Tagung Graz, September 2008 Institut für Epidemiologie Gliederung

Mehr

Approximationstheorie und Approximationspraxis

Approximationstheorie und Approximationspraxis Approximationstheorie und Approximationspraxis Martin Wagner Bergische Universität Wuppertal Fachbereich C - Mathematik und Naturwissenschaften AG Optmierung und Approximation 3. Februar 2010 1 / 20 Motivation

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben 9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Theorie zufälliger Matrizen

Theorie zufälliger Matrizen Theorie zufälliger Matrizen Susanna Röblitz (geb. Kube) Disputationsvortrag Berlin, 17. Dezember 2008 1,000,000 $ Kernphysik Multivariate Statistik 17.12.2008 2/29 Susanna Röblitz 1,000,000 $ Kernphysik

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung Brownsche Bewegung M. Gruber 19. März 2014 Zusammenfassung Stochastische Prozesse, Pfade; Brownsche Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit, quadratische

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Das Gauss-Integral e x2 dx TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (nalysis 3 http://www.ma.tum.de/hm/m924 2W/

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Das Prinzip der Suchmaschine Google TM

Das Prinzip der Suchmaschine Google TM /9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie VARIOUS KINDS OF CONVERGENCES OF SEQUENCES OF RANDOM VARIABLES 10 Dezember, 2012 1 Bekannte Konvergenzarten 2 3 1 Bekannte Konvergenzarten 2 3 Wahrscheinlichkeitsraum Im Folgenden betrachten wir immer

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr