Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Größe: px
Ab Seite anzeigen:

Download "Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada"

Transkript

1 Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada

2 Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C)

3 Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) d.h. A = (a ij ) N i,j= mit Zufallsvariablen als Einträgen a ij : Ω C ( i, j N) 2

4 Was will man über Zufallsmatrizen wissen? Verhalten der Eigenwerte, insbesondere lokale Eigenschaften, z.b. Statistik des Abstandes benachbarter Eigenwerte oder des größten Eigenwertes globale Eigenschaften, z.b. Eigenwertverteilung oder globale Fluktuationen 3

5 Was will man über Zufallsmatrizen wissen? Verhalten der Eigenwerte, insbesondere lokale Eigenschaften, z.b. Statistik des Abstandes benachbarter Eigenwerte oder des größten Eigenwertes globale Eigenschaften, z.b. Eigenwertverteilung oder globale Fluktuationen Insbesondere Grenzwert N liefert interessante Struktur 4

6 Gaußsche Zufallsmatrizen A N = (a ij ) N i,j= : Ω M N(C) wobei 5

7 Gaußsche Zufallsmatrizen A N = (a ij ) N i,j= : Ω M N(C) wobei a ij = ā ji (d.h. A N = A N ) 6

8 Gaußsche Zufallsmatrizen A N = (a ij ) N i,j= : Ω M N(C) wobei a ij = ā ji (d.h. A N = A N ) {a ij } i j N sind unabhängige Gauß-verteilte Zufallsvariable mit E[a ij ] = E[ a ij 2 ] = N 7

9 Gaußsche Zufallsmatrizen A N = (a ij ) N i,j= : Ω M N(C) wobei die gemeinsame Verteilung der Einträge a ij gegeben ist durch Z N e NTr(A2 N ) da N da N = i j dra ij k>l dia kl 8

10 eine Realisierung zweite Realisierung dritte Realisierung 9

11 eine Realisierung N= zweite Realisierung N= dritte Realisierung N=

12 eine Realisierung N= N= zweite Realisierung N= N= dritte Realisierung N= N=

13 eine Realisierung N= N= N= zweite Realisierung N= N= N= dritte Realisierung N= N= N= 2

14 Wignersches Halbkreisgesetz N = one realization another realization yet another one... 3

15 Wignersches Halbkreisgesetz: Seien λ (ω),..., λ N (ω) die Eigenwerte der Gaußschen Zufallsmatrix A N (ω) (gezählt mit Vielfachheit) und sei µ N (ω) := N (δ λ (ω) + + δ λ N (ω) ) die Eigenwertverteilung von A N (ω). Dann gilt fast sicher µ N 4 t 2 dt für N 2π 4

16 Beachte: die Eigenwerte von A N sind nicht unabhängig; sondern die gemeinsame Eigenwertverteilung von A N ist gegeben durch Dichte Z N e N(λ2 + +λ2 N ) i<j (λ i λ j ) 2 dλ dλ N, Eigenwerte wechselwirken wie 2-dimensionales Coulomb-Gas-System 5

17 5 independent eigenvalues with semicircular distribution eigenvalues of a 5 x 5 Gaussian random matrix

18 2 5 independent eigenvalues with semicircular distribution eigenvalues of a 5 x 5 Gaussian random matrix

19 Fragestellungen direkte stochastische Beschreibung des Grenzwertes N = insbesondere Existenz und Eigenschaften des Limes N von Multi-Matrix-Modellen der Form Z N e NTr(P(A,...,A m )) da da m Art der Konvergenz Fluktuationen große Abweichungen 8

20 Dynamische Beschreibung: Dyson Modell unabhängige Gaußvariable unabhängige Brownsche Bewegungen wobei A N (t) = (a ij (t)) N i,j= a ij (t) = ā ji (t) {a ij ( )} i j N sind unabhängige Brownsche Bewegungen 9

21 Übergang zu Prozessen erlaubt Realisierung von Verteilungen als Gleichgewichtsverteilungen eines Prozesses Beschreibung infinitesimaler Änderungen Benutzung von stochastischem Kalkül 2

22 Beschreibung des Grenzwertes N = von A N (t) als Limes N von N diffundierenden wechselwirkenden Eigenwerten dλ i (t) = N db i (t) + N j N j i λ i λ j dt 2

23 Beschreibung des Grenzwertes N = von A N (t) als Limes N von N diffundierenden wechselwirkenden Eigenwerten dλ i (t) = N db i (t) + N j N j i λ i λ j dt als McKean-Vlasov-Gleichung für die Dynamik der Eigenwertdichte µ t von A N (t) für N = 22

24 Beschreibung des Grenzwertes N = von A N (t) als Limes N von N diffundierenden wechselwirkenden Eigenwerten dλ i (t) = N db i (t) + N j N j i λ i λ j dt als McKean-Vlasov-Gleichung für die Dynamik der Eigenwertdichte µ t von A N (t) für N = f(λ)µ t (dλ) = lim N N N i= f(λ t (t)) 23

25 Beschreibung des Grenzwertes N = von A N (t) als Limes N von N diffundierenden wechselwirkenden Eigenwerten dλ i (t) = N db i (t) + N j N j i λ i λ j dt als McKean-Vlasov-Gleichung für die Dynamik der Eigenwertdichte µ t von A N (t) für N = d dt f(λ)µ t (dλ) = µt (dy) λ y f (λ)µ t (dλ) 24

26 Vollständige stochastische Beschreibung des Prozesses A N (t) im Limes N erfordert nicht nur Kenntnis von Marginalverteilungen µ t = lim N Vert(A(t)), sondern auch gemeinsame Verteilung zu verschiedenen Zeiten. 25

27 Vollständige stochastische Beschreibung des Prozesses A N (t) im Limes N erfordert nicht nur Kenntnis von Marginalverteilungen µ t = lim N Vert(A(t)), sondern auch gemeinsame Verteilung zu verschiedenen Zeiten. Aber: A N (t)a N (s) A N (s)a N (t), d.h. gemeinsame Eigenwertverteilung von A N (t) und A N (s) macht keinen Sinn. 26

28 Vollständige stochastische Beschreibung des Prozesses A N (t) im Limes N erfordert nicht nur Kenntnis von Marginalverteilungen µ t = lim N Vert(A(t)), sondern auch gemeinsame Verteilung zu verschiedenen Zeiten. Aber: A N (t)a N (s) A N (s)a N (t), d.h. gemeinsame Eigenwertverteilung von A N (t) und A N (s) macht keinen Sinn. Es gilt: λ m µ t (dλ) = lim N N N i= λ i (t) m = lim N N Tr( A N (t) m ) 27

29 Vollständige stochastische Beschreibung des Prozesses A N (t) im Limes N erfordert nicht nur Kenntnis von Marginalverteilungen µ t = lim N Vert(A(t)), sondern auch gemeinsame Verteilung zu verschiedenen Zeiten. Aber: A N (t)a N (s) A N (s)a N (t), d.h. gemeinsame Eigenwertverteilung von A N (t) und A N (s) macht keinen Sinn. Allgemeiner betrachte lim N N Tr( A N (t ) A N (t m ) ) t,..., t m R + 28

30 Die freie Brownsche Bewegung {S(t) t } ist definiert als der Grenzwert von den N N-matrixwertigen Brownschen Bewegungen {A N (t) t } durch nicht-kommutierende Variable S(t) (t ) Zustand E auf der von den S(t) erzeugten Algebra, definiert durch E [ S(t ) S(t m ) ] := lim N N Tr( A N (t ) A N (t m ) ) 29

31 Die freie Brownsche Bewegung kann beschrieben werden abstrakt als GNS Konstruktion bzgl. E konkret durch Operatoren auf Fockräumen 3

32 Realisierung auf Fockraum H = L 2 (R + ), F(H) = ΩC H n n= Für g H haben wir zugehörigen Erzeugungsoperator l (g): l (g)ω = g l (g)h h n = g h h n Dann realisiert S(t) = l ( [,t] ) + l( [,t] ) und E[a] = Ω, aω die freie Brownsche Bewegung. 3

33 Auf der von S(t) (t ) erzeugten Algebra haben wir die L p - Normen bzgl. E, insbesondere L 2 -norm a 2 := E[aa ] /2 L -Norm = Operatornorm a = a = lim p E[(aa ) p ] /2p Beachte: Verteilung von S(t) ist Halbkreis mit Radius 2 t, d.h. S(t) = 2 t 32

34 Ito-Kalkül für freie Brownsche Bewegung Prozess {A(t) t } heißt adaptiert, falls A(t) nur von S(τ) (τ t) abhängt. Für adaptierte Prozesse {A(t) t } und {B(t) t } definiere stochastisches Integral A(t)dS(t)B(t) [ Definition für stückweise konstante Prozesse: A(t)dS(t)B(t) := i A(t i ) ( S(t i+ ) S(t i ) ) B(t i ) ] 33

35 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt 34

36 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt 35

37 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ds(t) = dt 36

38 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ads(t) =?? 37

39 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ads(t) = E[A]dt 38

40 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ads(t) = E[A]dt Chaos-Zerlegung, Skorohod-Integral,... 39

41 Theorem [Biane, Speicher]: Es gilt Ito Isometrie A(t)dS(t)B(t) 2 2 = A(t) 2 2 B(t) 2 2 dt Burkholder-Gundy-Ungleichung A(t)dS(t)B(t) A(t) 2 B(t) 2 dt Ito-Formel ds(t)ads(t) = E[A]dt stochastische Analysis auf Wignerraum 4

42 Anwendungen des freien stochastischen Kalküls freie Diffusionsgleichungen (Biane, Speicher 2) Existenz des Grenzwertes von Multi-Matrix-Modellen der Form Z N e NTr(P(A,...,A m )) da da m und Zusammenhang mit diagrammatischen Entwicklungen für konvexe Potentiale (Guionnet, Shlyakhtenko 27) 42

43 Theorem [Biane, Speicher]: Sei V eine Operator Lipschitz Funktion. Betrachte die freie stochastische Differentialgleichung Dann gilt dx t = 2 V (X t )dt + ds t Existenz, Eindeutigkeit der Lösung; Stetigkeit von t X t dµ t (x) = p t dx, wobei p t beschränkt und p t L 3 (R) freie Fokker-Planck-Gleichung: [H Hilbert-Transformierte] p t (x) t = x [(Hp t(x) 2 V (x))p t (x)],

44 Definiere relative freie Entropie R2 Σ(µ) := log x y dµ(x)dµ(y) V (x)dµ(x) R und relative freie Fisher Information ( I(µ) = 4 Hp(x) R 2 V (x) ) 2 p(x)dx. Dann gilt d dt Σ(µ t) = 2 I(µ t). Für freien Ornstein Uhlenbeck Prozess (V (x) = λx 2 ) haben wir freie log Sobolev Ungleichung 4λ I(µ) Σ(µ ) Σ(µ) 43

45 Globale Fluktuationen der Eigenwerte Sei A N Gaußsche Zufallsmatrix. Wignersches Halbkreisgesetz sagt N Tr(Ak N ) 2π 2 2 tk 4 t 2 dt, also z.b. N Tr(A N) N Tr(A2 N ) N Tr(A4 N ) 2 44

46 Skalierte Fluktuationen um diesen Grenzwert Tr(A k N ) N 2π 2 2 tk 4 t 2 dt sind, für N, Gauß-verteilt mit berechenbarer Varianz 45

47 Example: Gaussian random matrix A (N = 4, trials=5.) Var(Tr(A)) = Var(Tr(A 2 )) = 2 Var(Tr(A 4 )) = 36 Normal Probability Plot Normal Probability Plot Normal Probability Plot Probability Probability Probability cov= cov= cov= Data Data Data 46

48 Problem: Betrachte andere Zufallsmatrizenmodelle, insbesondere Multi-Matrix-Modelle. Zeige, dass auch dort Fluktuationen von Spuren normalverteilt sind und beschreibe ihre Varianz! Ergebnisse: Gaußsche Zufallsmatrizen (Johansson 998; Cabanal-Duvillard 2) Wishart Zufallsmatrizen (Jonsson 982; Kusalik, Mingo, Speicher 26) unitäre Zufallsmatrizen (Diaconis, Shahshahani 994; Mingo, Sniady, Speicher 26, Radulescu 26) 47

49 Theorem [Mingo, Sniady, Speicher]: Betrachte unabhängige Folgen {U } N,..., {U r } N von Haar verteilten unitären N N- Zufallsmatrizen. Dann konvergiert die Familie Tr[U k() i() Uk(n) i(n) ] von Spuren in zyklisch reduzierten Wörtern in diesen Zufallsmatrizen gegen eine Gaußsche Familie von zentrierten Zufallsvariablen, wobei die Kovarianz gegeben ist durch die zyklischen Matchings zwischen den zwei reduzierten Wörtern lim N cov{ Tr[U k() i() Uk(m) i(m) ],Tr[Ul(n) j(n) Ul() j() ]} = δ mn # { r {,..., n} i(s) = j(s + r), k(s) = l(s + r) s =,..., n } 48

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Markov-Prozesse mit stetigem Zustands- und Parameterraum

Markov-Prozesse mit stetigem Zustands- und Parameterraum Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Gaußsche Prozesse - ein funktionalanalytischer Zugang

Gaußsche Prozesse - ein funktionalanalytischer Zugang Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Gaußsche Prozesse - ein funktionalanalytischer Zugang Bachelorarbeit in Wirtschaftsmathematik vorgelegt von Clemens Kraus am 31. Mai

Mehr

PageRank-Algorithmus

PageRank-Algorithmus Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Markov-Ketten-Monte-Carlo-Verfahren

Markov-Ketten-Monte-Carlo-Verfahren Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006 Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 26 Markus Reiß Universität Heidelberg reiss@statlab.uni-heidelberg.de VORLÄUFIGE FASSUNG: 28. Juli 26 Inhaltsverzeichnis 1 Der Poissonprozess

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Diplomarbeit 2005 Markus Fraczek Institut für Theoretische Physik Technische Universität Clausthal Abteilung Statistische

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Risikoanalyse und optimale Portfolios

Risikoanalyse und optimale Portfolios Seminar "Quantitative Finance" Universität des Saarlandes 03. 06. 2009 Gliederung 1 Risikoanalyse 2 Variety Asymmetrie 3 Gliederung 1 Risikoanalyse 2 Variety Asymmetrie 3 Volatilität Logarithmischer Ertrag

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen 2013-11-13 Statistik - Fehlerrechnung - Auswertung von Messungen TEIL I Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Literatur Eindimensionaler Fall: Grundbegriffe Wahrscheinlichkeitsverteilungen:

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Geometrische Brownsche Bewegung und Brownsche Brücke

Geometrische Brownsche Bewegung und Brownsche Brücke Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing Dozentin: Prof. Dr. Christine Müller 17. April 2012 Korinna Griesing 1 (26) Inhalt Motivation Statistische Methoden Geometrische Brownsche

Mehr

Studiengang. Bachelor of Education. (B.Ed.) Lehramt. Gymnasium. Mathematik

Studiengang. Bachelor of Education. (B.Ed.) Lehramt. Gymnasium. Mathematik Studiengang Bachelor of Education (B.Ed.) Lehramt Gymnasium Mathematik der Universität Mannheim Modulkatalog (Stand: 03.09.2015) 1 Inhaltsverzeichnis Vorwort... 3 Modulübersicht...4 Modulbeschreibungen...

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Fraunhofer ITWM Kaiserslautern, 4..009 Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Ralf Korn (TU Kaiserslautern & Fraunhofer ITWM) 0. Einige praktische Probleme

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Credit Risk+: Eine Einführung

Credit Risk+: Eine Einführung Credit Risk+: Eine Einführung Volkert Paulsen December 9, 2004 Abstract Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen Ursprung in der klassischen Risikotheorie liegt.

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007 Wirtschaftsstatistik Konzentrations- und Disparitätsmessung 16.10.2007 Begriffe Konzentration und Disparität Laut Oxford Advanced Learner s Dictionary by OUP, bzw. WordNet by Princeton University concentration:

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Darstellung eines VAR(p)-Prozesses als VAR(1)-Prozess

Darstellung eines VAR(p)-Prozesses als VAR(1)-Prozess Darstellung eines VAR(p)-Prozesses als VAR(1)-Prozess Definiere x t = Y t Y t 1. Y t p+1 Sylvia Frühwirth-Schnatter Econometrics III WS 2012/13 1-84 Darstellung eines VAR(p)-Prozesses als VAR(1)-Prozess

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Bewertung von Finanzderivaten

Bewertung von Finanzderivaten Bewertung von Finanzderivaten am Beispiel von LIBOR Zinsmodellen Christian Fries 31.10.2003 www.christian-fries.de/finmath (Version 1.1 - Revision 2 (31.10.2003) - First Version 24.07.2003) 1 Modellierung

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN JOSEF TEICHMANN 1. Ein motivierendes Beispiel aus der Anwendung Das SABR-Modell spielt in der Modellierung von stochastischer Volatilität eine herausragende

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

Modellgestützte Analyse und Optimierung Übungsblatt 4

Modellgestützte Analyse und Optimierung Übungsblatt 4 Fakultät für Informatik Lehrstuhl 4 Peter Buchholz, Jan Kriege Sommersemester 2015 Modellgestützte Analyse und Optimierung Übungsblatt 4 Ausgabe: 27.04.2015, Abgabe: 04.05.2015 (12 Uhr) Aufgabe 4.1: Verteilungsfunktionen

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Felder. November 5, 2014

Felder. November 5, 2014 Felder Universität Bielefeld AG Praktische Informatik November 5, 2014 Felder: Datenstrukturen mit konstantem Zugriff Felder nennt man auch, Vektoren, Matrizen,... Konstanter Zugriff heisst: Zugriff auf

Mehr

Elektrische Leitfähigkeit für zufällige Schrödinger-Operatoren

Elektrische Leitfähigkeit für zufällige Schrödinger-Operatoren Elektrische Leitfähigkeit für zufällige Schrödinger-Operatoren Peter Müller LMU München Inhaltsverzeichnis 1 Zufällige Schrödinger-Operatoren 3 2 Physikalische Heuristik zur elektrischen Leitfähigkeit

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr