Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren

Größe: px
Ab Seite anzeigen:

Download "Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren"

Transkript

1 Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: Taylor um x k : q k (x) := f (x k )+ f (x k ) (x x k )+ 1 2 (x x k) T 2 f (x k )(x x k ) minimiere q k falls 2 f (x k ) SPD ist, dann ergibt sich x k+1 = x k 2 f (x k ) 1 f (x k ) 2.1 Ein globalisiertes Newtonverfahren Das Newtonverfahren konvergiert lokal quadratisch und ist damit dem Gradientenverfahren überlegen. Allerdings konvergiert es nur in der Nähe eines Minimums verwende globalisiertes Newtonverfahren, welches beides kombiniert. Algorithmus 2.2 (global. Newtonverf.): % input x 0,ρ>0, p>2,β (0, 1),σ (0, 1 2 ) 17

2 % output: Approx. an stat. Punkt while (Abbruchbed. nicht erfüllt) do{ % Bestimme Suchrichtung: löse 2 f (x k )d k = f (x k ) %z.b. f (x k ) >tol if (dieses LGS ist nicht lösbar or f (x k ) d k > ρ d k p ) then d k := f (x k ) % Abstieg mit Armijo bestimme t k = max{β l l N 0, f (x k +β l d k ) f (x k )+σt k f (x k ) d k } } x k+1 := x k + t k d k ; k := k+1 Satz 2.3: Sei f C 2 (R n,r), (x k ) k=0 eine von Alg. 2.2 erzeugte Folge. Dann ist jeder Häufungspunkt von (x k ) k=0 stationärer Punkt von f. Beweis: Ähnlich wie Beweis von Satz 1.16 Diskussion von Alg Es wird Abstieg erzwungen (hier: mit Armijo-Regel, aber andere Regeln denkbar) 2. In der Nähe eines Minimums x werden Newtonschritte gemacht, denn (a) die Newtonrichtung wird akzeptiert, da und d k ist klein f (x k ) d k = d T k 2 f (x k )d k c d k 2 (2.2) (b) die Armijo-Regel liefert t k = 1 wegenσ< 1, denn Taylor liefert für 2 kleine d k : f (x k + 1 d k ) = f (x k )+ f (x k ) d k dt k 2 f (x k )d k + O( d k 3 ) = f (x k )+ 1 2 f (x k) d k + O( d k 3 ) (2.3) } {{ } klein im Vergl. zu f (x k ) d k wg. (2.2) Also wird tatsächlich wegenσ< 1 2 in der Nähe von x k bereits t k = 1 akzeptiert. 18

3 3. Die Bedingung f (x k ) d k ρ d k p mit p>2 drückt aus, dass die Newtonrichtung nur akzeptiert werden soll, wenn ein hinreichender Abstieg erreicht wird. 2.2 Quasi-Newtonverfahren Problem: Oft ist das Bestimmen der Hessematrizen 2 f (x k ) in jedem Schritt zu teuer. Lösung 1: Vereinfachtes Newtonverfahren bei dem 2 f (x k ) durch 2 f (x 0 ) approx. wird. Nachteil von Lösung 1: lineare Konvergenz Information über 2 f (x k ), die im Laufe der Iteration entsteht, wird nicht genutzt Ziel: Verfahren, die superlinear konvergieren, aber billiger sind als Newtonverf Broydenverfahren Setting: Sei F C 2 (R n,r n ); F(x )=0, F (x ) reg. Newtonartige Verfahren zum Finden von x sind dann von der Form x x+1 = x k H 1 k F(x k) mit geeigneter Matrix H k. Idee des Broydenverfahrens: erzeuge H k+1 aus H k H k+1 sollte eine Approximation an F (x k+1 ) sein Taylor liefert (im Fall von x k x ) F(x k+1 )+F(x k )=F (x k+1 )(x k x k+1 )+O( x k x k+1 2 ) d.h. wir erwarten F (x k+1 ) (x k+1 x k ) F(x k+1 ) F(x k ) sinnvolle Forderung für H k+1 ist H k+1 (x k+1 x k )=F(x k+1 ) F(x k ) (2.4) 19

4 Sekantenbed Dies legt H k+1 für n>1 noch nicht fest. Eine sinnvolle weitere Forderung ist, dass H k+1 H k klein sei. Dies motiviert, H k+1 als die Lösung des folgenden Minimierungsproblems zu wählen: Finde Minimierer H k+1 von min{ H k A F A R n n mit A(x k+1 x k )=F(x k+1 ) F(x k )} (2.5) Diese Aufgabe hat eindeutige Lösung: H k+1 = H k + 1 s T s (y H ks)s T, s= x k+1 x k, y=f(x k+1 ) F(x k ), (2.6) denn es gilt: Satz 2.4: Sei B R n n, s, y R n mit s 0. SeiA(y, s) :={A R n n As=y}. Dann gilt: B + := B+ 1 s T s (y Bs)sT ist die eindeutige Lösung des Minimierungsproblems: Finde A A(y, s), sodass A B F min. wird. Beweis: 1.Schritt:(B + ist Lösung des Minimierungsproblems) B + A(y, s) : Sei A A(y, s). Dann gilt: B + B F = 1 s T s (y Bs)sT F = 1 s T s (As Bs)sT F 2.Schritt: (Eindeutigkeit) A(y, s) R n n ist konvex, A A B F ist strikt konvex. = (A B) sst s T s F GH F G F H 2 A B F sst s T s 2 } {{ } =1,wg. ss T sym., EW sind 0 und 1 A B F 20

5 Bemerkung 2.5: 1. H k+1 entsteht aus H k durch einen Rang-1-Update 2. Sherman Morrison Woodbury Formel erlaubt einfache Berechnung von H 1 k+1 aus H 1 k. Es gilt allgemein für reg. A Rn n, u, v R m : (A+uv T ) 1 = A 1 d.h. ein Rang-1-Update von A v T A 1 u A 1 uv T A 1 3. das Broydenverfahren konvergiert (lokal) superlinear (wenn 2 f (x ) regulär), d.h. wenn H 0 F (x ) und x 0 x hinreichend klein sind, dann ist x k+1 x =o( x k x ) für k, d.h. Nullfolge (ǫ k ) k=0 mit x k+1 x ǫ k x k x 4. es gilt typischerweise nicht: H k F (x ). Tatsächlich reicht für die superlineare Konvergenz der Quasi-Newtonartigen Verfahren, wenn die folgende, schwächere Bedingung ( Dennis & Moré ) gilt: (F (x k ) H k )(x k+1 x k ) =o( x k+1 x k ). Bemerkung 2.6 (Spielarten des Broydenverfahrens): Norm W W F anstelle von F in (2.5). 1. Verwende gewichtete Frob.- 2. Rekursion ist von der Form x k+1 = x k B k F(x k ), wobei B k als Approx. an F (x k ) 1 aufgefasst werden kann. Idee zur Definition von B k+1 : B k+1 als Minimum von{ B k A F A R n n mit Ay= s}, y=f(x k+1 ) F(x k ), s= x k+1 x k Satz 2.4 liefert dann explizite Formel für B k Quasi-Newtonverfahren für Minimierungsaufgaben Setting: f C 3 (R n,r) mit Min. x Newtonverfahren hat die From: x k+1 = x l H 1 k f (x k) (2.7) 21

6 Im Prinzip kann man das Broydenverfahren verwenden. Man fordert jedoch: Symmetrie: da H k als Approx. an die Hessematrix 2 f (x k ) aufgefasst wird, sollten die H k symmetrisch sein. SPD: in der Nähe von x erwartet man 2 f SPD. Die H k sollten auch diese Eigenschaft haben. Wir stellen nun einige Updateformeln vor. Es gilt immer: H := H k, H + := H k+1, s := x k+1 x k, y := f (x k+1 ) f (x k ) (2.8) Satz 2.7 (PSB-Powell sym. Broyden Formel): Sei H R n n sym., s R n \{0}, y R n. Dann ist der eindeutige Minimierer H+ PS B von{ H A F A R n n sym. und As=y} gegeben durch: H PS B + = H+ (y Hs)sT + s(y Hs) T s T s (y Hs)T s (s T s) 2 ss T (2.9) Beweis: analog zu Satz 2.4 Bemerkung 2.8: H+ PS B ist ein Rang-2-Update von H. Sherman-Morrison-Woodbury gibt explizite Formel für ( ) 1, H+ PS B wenn H 1 bekannt. Satz 2.9 (DFP-Davidon-Fletcher-Powell): Sei H R n n SPD, s, y R n \{0} mit s T y>0. Sei H DFP + := H+ (y Hs)yT + y(y Hs) T y T s (y Hs)T s (y T s) 2 yy T (2.10) Dann gilt: (i) H DFP + ist SPD (ii) B+ DFP := ( H+ DFP ) 1=B+ ss T s T y ByyT B y T By, B=H 1 22

7 (iii) H DFP + ist der eindeutige Minimierer von{ W(H A)W F A R n n sym. und As=y}, wobei W eine beliebige SPD-Matrix ist mit W 2 s=y hier sieht man, dass s T y>0 nötig ist Beweis: (iii) zeigt sich ähnlich zu Satz siehe [GK99, Satz 11.6] (ii) Nachrechnen (i) folgt, weil B SPD ist: und z T B DFP + z=0nur, falls z T B+ DFP z = z T Bz+ zt ss T z zt Byy T Bz = s T y y T By = z 2 B+ (zt s) 2 s T y z, y B 2 y 2 B z 2 B + (zt s) 2 s T y z 2 B y 2 B y 2 B (zt s) 2 s T y 0 z T s=0 z T s=0 z, y B = z B y B d.h. z=αy für einα R 0=z T s=α y T s α=0 z=0. }{{} >0 Das wichtigste Quasi-Newtonverfahren ist das BFGS: Im Gegensatz zum DFP liegt ein inverses Quasi-Newtonverfahren vor, d.h. H + wird indirekt dadurch definiert, dass H+ 1 definiert wird (vergl. Punkt 2 von Bemerkung 2.6): Satz 2.10 (BFGS-Broyden-Fletcher-Goldfarb-Shanno): Sei B SPD, s, y R n mit s T y>0. Def. B BFGS + := B+ (s By)yT + s(s By) T y T s (s By)T yss T (y T s) 2 Dann gilt: (i) B BFGS + ist SPD 23

8 (ii) ( ) 1=H+ B+ BFGS yy T HssT H, s T y s T Hs H=B 1 (iii) B BFGS + ist der eindeutige Minimierer von{ W(A B)W F A sym. und Ay= s}, wobei W SPD ist mit W 2 s=y Beweis: analog zu Satz siehe [GK99, Satz 11.8] Bemerkung 2.11: 1. die meisten newtonartigen Verfahren werden geeignet globalisiert, d.h. die Updateformel legt nur die Suchrichtung fest. 2. BFGS, DFP, PSP konvergieren lokal superlinear (unter geeigneten Annahmen) 3. Bed. s T y>0 ist natürlich, um die SPD-Eigenschaft zu erhalten: aus B+ BFGS y= s folgt mit B+ BFGS SPD, dass 0<y T B+ BFGS y=y T s 4. BFGS wird mit SWP globaliert, weil so die Bedingung 0< s T y=(x k+1 x k ) T ( f (x k+1 ) f (x k )) realisiert wird und dann alle Matrizen SPD sind: S WP f (x k+1 ) d k ρ f (x k ) d k f (x k+1 ) (x k+1 x k ) ρ f (x k ) (x k+1 x k ) ( f (x k+1 ) f (x k )) (x k+1 x k ) (ρ 1) f (x } {{ } k ) (x k+1 x k ) } {{ } <0 <0, weil d k Abstiegsrichtung 5. In der Praxis wird BFGS oft nicht mit Approx. an die Hessematrix sondern mit B 0 =βi (β>0geeignet) gestartet. Beispiel 2.12: Betrachte die Nullstellen (exakte Lösung: x = (0, 1) T ) von ( (x1 + 3)(x F(x)= 3 2 7)+18 ) sin(x 2 e x 1 = 0 1) mit Startwert x 0 = ( 0.5, 1.4) T. Klassisches Broyden wird mit H 0 = F (x 0 ) gestartet. Man beobachtet, daß insb. das Broydenverfahren superlinear konvergiert. 24

9 10 0 Newton Broyden 10-5 x k - x * iteration number 25

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0. 3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Teil I. Unrestringierte Probleme

Teil I. Unrestringierte Probleme Teil I Unrestringierte Probleme 2 Geg.: f :R n R, f C 1 (R n ;R) Ziel: suche Minimierer von f 3 Kapitel 1 Abstiegsverfahren 1.1 Allgemeine Abstiegsverfahren Definition 1.1: Sei x R n. d R n heißt Abstiegsrichtung

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

12. Potentialflächen und Optimierung

12. Potentialflächen und Optimierung Dr. Jens Döbler Computeranwendung in der Chemie Informatik für Chemiker(innen) 12. Potentialflächen und Optimierung Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL12 Folie

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 = Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Einführung in die Optimierung

Einführung in die Optimierung Einführung in die Optimierung Prof. Dr. Bastian von Harrach Universität Stuttgart, Fachbereich Mathematik - IMNG Lehrstuhl für Optimierung und inverse Probleme Wintersemester 2014/15 http://www.mathematik.uni-stuttgart.de/oip

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

4 Nichtlineare Minimierung

4 Nichtlineare Minimierung 4 Nichtlineare Minimierung 41 Minimierung skalarer Funktionen (Direkte Suchverfahren) Definition 41 Eine Funktion f : [a, b] IR heißt unimodal : ξ [a, b] : f [a,ξ] ist streng monoton fallend und f [ξ,b]

Mehr

8.3 Lösen von Gleichungen mit dem Newton-Verfahren

8.3 Lösen von Gleichungen mit dem Newton-Verfahren 09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11

Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11 Prof. Dr. L. Diening 09.02.2011 Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt Klausur Numerik WS 2010/11 Es ist erlaubt, eine selbst erstellte, einseitig per Hand beschriebene A4 Seite in der Klausur

Mehr

PROSEMINAR 2009 Numerische Optimierung: Quasi-Newton-Verfahren Kapitel

PROSEMINAR 2009 Numerische Optimierung: Quasi-Newton-Verfahren Kapitel PROSEMINAR 2009 Numerische Optimierung: Quasi-Newton-Verfahren Kapitel 8.1-8.3 CONSTANTIN Simone Ch. des Epinettes 51 1723 Marly 19. November 2009 Inhaltsverzeichnis 1 Einleitung 2 2 Das BFGS-Verfahren

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Freie Nichtlineare Optimierung Orakel, lineares/quadratisches Modell Optimalitätsbedingungen Das Newton-Verfahren Line-Search-Verfahren Inhaltsübersicht für heute: Freie Nichtlineare

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Optimierung und inverse Probleme

Optimierung und inverse Probleme Optimierung und inverse Probleme Prof. Dr. Bastian von Harrach Goethe-Universität Frankfurt am Main Institut für Mathematik Wintersemester 2016/17 http://numerical.solutions Vorläufige Version, wird während

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Projektionen auf abgeschlossene konvexe Mengen

Projektionen auf abgeschlossene konvexe Mengen Projektionen auf abgeschlossene konvexe Mengen Seminarvortrag von Veronika Pick Seminar Optimierung bei Herrn Prof. Dr. F. Jarre Heinrich-Heine-Universität Düsseldorf SS 2006 1 Vorbemerkung Das Seminarthema

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Globale Newton Verfahren

Globale Newton Verfahren Betrachten: System von n nichtlinearen Gleichungen: F : D R n, F C 1 D Gesucht: x D, sodass F x =0. Vorher: Bedingungen für Startwert wie z.b. x x 0 2 / garantieren die Konvergenz des lokalen Newton-Verfahrens

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

Extremwertrechnung in mehreren Veränderlichen

Extremwertrechnung in mehreren Veränderlichen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2014 14.05.2014 Höhere Mathematik II für die Fachrichtung Informatik 3. Saalübung (14.05.2014) Extremwertrechnung

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

1 Grundlagen der Numerik

1 Grundlagen der Numerik 1 Grundlagen der Numerik 1.1 Gleitpunkt-Arithmetik Es gibt nur endlich viele Zahlen auf dem Computer. Gleitpunktzahl: x = σmb E σ: Vorzeichen B: Basis (feste Zahl >1); M: Mantisse E: Exponent B = 2 : Dualzahl

Mehr

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 6. Iterationsverfahren Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 Beispiel: Ausbreitung eines Grippevirus in einem Kindergarten Zeitpunkt t 0 t 1 t 2 t 3 t 4 t 5 Anteil kranker

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b,

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen 1-1 Normalengleichungen Für eine beliebige

Mehr

2 Statische Optimierung: Unbeschränkter Fall

2 Statische Optimierung: Unbeschränkter Fall 2 Statische Optimierung: Unbeschränkter Fall 2. Optimalitätsbedingungen Bevor in den Abschnitten 2.2 2.6 die numerischen Verfahren zur Lösung statischer Optimierungsprobleme ohne Beschränkungen behandelt

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II für zur Lösung der Monge-Ampère-Gleichung, Teil II Andreas Platen Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zur Approximationstheorie im Wintersemester 2009/2010 1 / 27 Gliederung

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Skript zur Vorlesung. Optimierung. gelesen von. Prof. Dr. S. Volkwein

Skript zur Vorlesung. Optimierung. gelesen von. Prof. Dr. S. Volkwein Skript zur Vorlesung Optimierung gelesen von Prof. Dr. S. Volkwein Konstanz, Sommersemester 2011 Inhaltsverzeichnis 1 Einleitung 3 2 Optimalitätskriterien 4 2.1 Allgemeiner Fall.........................................

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

1.Übung Mathematik I

1.Übung Mathematik I 1Übung Mathematik I 1) Ist folgende Aussage eine Implikation? ( Begründung!) (( A B) -> ( A C) ) = > (C A) 2 Onkel Dagobert wurde Geld aus seinem Geldspeicher gestohlen Er hat drei Tatverdächtige: Die

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Lineare und nichtlineare Optimierung

Lineare und nichtlineare Optimierung Lineare und nichtlineare Optimierung AXEL DREVES Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München Werner-Heisenberg-Weg 39 85577 Neubiberg/München

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr