Tracking. Einführung. Allgemeiner Systemaufbau. Objektlokalisation: Template-Matching. Prädiktionsfilter: Kalman

Größe: px
Ab Seite anzeigen:

Download "Tracking. Einführung. Allgemeiner Systemaufbau. Objektlokalisation: Template-Matching. Prädiktionsfilter: Kalman"

Transkript

1 Tracking Einführung Allgemeiner Systemaufbau Objektlokalisation: Template-Matching Prädiktionsfilter: Kalman Birgit Möller & Denis Williams AG Bioinformatik & Mustererkennung Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

2 Einführung Tracking von Objekten Zielsetzung: Verfolgung der Bewegung eines Objektes mit Hilfe einer Kamera durch Auswertung von Bildfolgen Anwendungen: Beobachtung des Straßenverkehrs (stationäre, statische Kamera und bewegte Objekte) Sicherheitsanlagen (stationäre, nicht-statische Kamera und bewegte Objekte) autonome Fahrzeuge (nicht-stationäre Kamera und bewegte Objekte) mobile Roboter (nicht-stationäre Kameras in beliebigen Umgebungen) Angewandte Bildverarbeitung, WS

3 Systemaufbau Allgemeiner Systemaufbau: suche Zielobjekt gemäß Modell schätze Objektposition im nächsten Bild: Prädiktionsfilter Condensation-Algorithmus lokalisiere Objekt im aktuellen Bild: Templates Active Contours positioniere Kamera neu Angewandte Bildverarbeitung, WS

4 Bemerkungen Probabilistische / nicht-probabilistische Modelle: eine absolute Position pro Zeitschritt vs. mehrere potenzielle Positionen Single- und Multi-Objektverfolgung: Tracking eines Objektes vs. paralleles Tracking mehrerer Objekte Objektlokalisation anhand geeigneter Merkmale: Farbe, Form, Struktur, Prädiktion durch zeitliche Modellierung der Bewegung Nachführung der Kamera bei großen Bewegungsradien der Objekte: Halte Objekt möglichst im Zentrum des Bildausschnitts. Angewandte Bildverarbeitung, WS

5 Objektlokalisation: Template-Matching einfachster Ansatz zur Lokalisation Grundidee: Gegeben ein Beispielmuster (Template S) des gesuchten Signals, suche in unbekanntem Muster f einen Ausschnitt, der zum Template passt! Signal f in der Regel direkt durch Bild- oder Audiosignal bzw. geeigneten Merkmalsvektor gegeben Template S entspricht einem Signalausschnitt gleicher Dimension Problem: Template-Matching erfordert möglichst punktgenaue Übereinstimmung!!! (geeignet bei definierten Lichtverhältnissen und Objektkonstanz) Angewandte Bildverarbeitung, WS

6 Template-Matching auf Bildern Gegeben: M x M y -dimensionales Bildsignal f M sx M sy -dimensionales Template S im Allgemeinen gilt: M x > M sx und M y > M sy Matching: suche Position (j, k) im Bild f mit der größten Übereinstimmung (Faltungsoperation!) Gesucht: geeignetes Abstandsmaß, das zu minimieren ist! Angewandte Bildverarbeitung, WS

7 Abstandsmaße City-Block: Quadratischer Abstand: Msx ɛ 1 j,k = m=1 Msx ɛ 2 j,k = m=1 Msy n=1 Msy f (j+m,k+n) S m,n (minimieren) (f (j+m,k+n) S m,n ) 2 (minimieren) n=1 Kreuzkorrelation: R j,k = Msx Msy f (j+m,k+n) S m,n (maximieren) m=1 n=1 normalisierte Kreuzkorrelation: R j,k = R j,k M sx Msy m=1 n=1 f M 2 sx Msy (j+m,k+n) m=1 n=1 S2 m,n (maximieren) Angewandte Bildverarbeitung, WS

8 Normalisierung Alternative Normalisierung: Energie von Bild und Template: M S x x=j M S y y=k M S x f(x,y) 2 = 1 bzw. x=1 M S y y=1 S 2 (x,y) = 1 Weitere Probleme: Templates sind i.a. weder rotations- noch skalierungsinvariant (vorherige Transformationen, Normalisierungen, etc. notwendig) bei partiellen Verdeckungen Zerlegung des Templates in Sub-Templates Match bei Übereinstimmung in k θ k Sub-Templates Angewandte Bildverarbeitung, WS

9 Aufwandsreduktion Ansätze zur Aufwandsreduktion: Template-Matching entspricht einer Faltung Transformation in den Frequenzraum (FFT): Faltung Multiplikation Auflösungspyramiden: Subsampling von Bild und Template Suche nach Matches auf unterster Ebene Beschränkung des Matchings auf der nächsten Ebene auf die n besten Positionen aus vorherigem Schritt Prädiktionsfilter: Beschränkung des Suchbereichs durch Schätzung der neuen Objektposition Angewandte Bildverarbeitung, WS

10 Prädiktionsfilter - Kalman Allgemeine Grundidee: rekursive Modellierung eines mit einem Zufallsprozeß überlagerten linearen Systems, um aus dem Verhalten bis zum aktuellen Zeitpunkt Aussagen über das zukünftige Verhalten machen zu können Features : Interpretation von verrauschten Meßdaten in Realzeit Implizite Modellierung von Zufallskomponenten für sichere Vorhersagen ermöglicht Aussagen über Vorhersagefehler Ansatz: Gegeben ein Modell für die Bewegung und die Meßdaten über den Zustand des Systems bis zum Zeitpunkt k, sowie ferner Annahmen über zufällige Störeinflüsse, mache eine Vorhersage für den Systemzustand zum Zeitpunkt k + 1! Angewandte Bildverarbeitung, WS

11 Modellierung Modellierung des linearen Systems: x k+1 = Φ k x k + ω k z k = H k x k + ν k x k := Systemzustand zum Zeitpunkt k (n 1-dimensional) Φ k := Zustandsübergangsmatrix x k x k+1 (n n-dimensional) ω k := statistischer Systemanteil, weißes, unkorreliertes Rauschen bekannter Kovarianz E{ ω i ω k } = δ ik Q k z k := Meßdaten des Zeitpunktes k (m 1-dimensional) H k := spezifiziert Zusammenhang zwischen x k und z k (m n-dimensional) ν k := Meßfehler (n 1-dimensionaler Zufallsvektor) E{ ν i ν k } = δ ik R k E{ ω k ν i } = 0, k, i Angewandte Bildverarbeitung, WS

12 Beispiel: 1D-Bewegung eines PKW Modellierung - Beispiel Systemgleichungen: lineare Bewegungsgleichungen der Physik Messung: Abstand per Radar Zufallsprozeß: Luftwiderstand Messfehler: Störsignale, Zeitmessung Also: x k = [y k, y k, y k ] T y k+1 = y k + t y k + t2 2 y k+1 = y k + t y k Φ k = 2 1 t t t y k Angewandte Bildverarbeitung, WS

13 Modellierung - Beispiel Zufallsprozess: Wind Q = messbarer Zustand z k : Position y k des PKW über Radar, also H k = (1 0 0) Messfehler: N(0, 1) yk 10 Frage jetzt: Wie arbeitet der Kalman-Filter? Angewandte Bildverarbeitung, WS

14 Arbeitsweise Kalmanfilter Grundprinzip: Vorhersage für x k Korrektur der Schätzung ˆx k verbesserte Schätzung ˆx k Vorhersage ˆx k+1 Meßwert z k Notation: x k := tatsächlicher Systemzustand (nicht bekannt!) ˆx k := geschätzter Zustand vor Analyse (a-priori Schätzung) ˆx k := geschätzter Zustand nach der Korrektur (a-posteriori Schätzung) Angewandte Bildverarbeitung, WS

15 Arbeitsweise Kalmanfilter Herleitung der Filtergleichungen gegeben a-priori Schätzfehler zum Zeitpunkt k e k = ( x k ˆx k ) mit Kovarianzmatrix P k = E{e k e T k } = E{( xk ˆx k )( x k ˆx k )T } Ziel: korrigiere Zustandsschätzung und Kovarianz anhand des Messfehlers ˆx k = ˆx k + K k ( z k H ˆx k ) (1) der Korrekturfaktor K k heisst auch Kalmanfaktor Angewandte Bildverarbeitung, WS

16 Arbeitsweise Kalmanfilter Ziel: finde optimales K k für eine neue Zustandsschätzung ˆx k Minimierung des mittleren quadratischen Schätzfehlers P k = E{e k e T k } Ansatz: Es gilt: argmin K k P k = argmin K k E{( x k ˆx k )( x k ˆx k ) T } z k = H k x k + ν k Aus Einsetzung in Gleichung (1) folgt dann ˆx k = ˆx k + K k (H k x k + ν k H kˆx k ) Damit gilt schließlich: P k = E{( x k ˆx k K k (H k x k + ν k H kˆx k )) ( x k ˆx k K k (H k x k + ν k H kˆx k ))T } Angewandte Bildverarbeitung, WS

17 Arbeitsweise Kalmanfilter Umformung liefert nach diversen Rumrechnereien... :-) P k = (I K k H k ) P k (I K kh k ) T + K k RK T k (2) Minimierung von P k durch Ableiten und Nullsetzen ergibt K k = P k HT k H k P k HT k + R k Einsetzen des Kalmanfaktors in Gleichung (2) liefert als korrigierte Fehlerkovarianz P k = (I K k H k ) P k analog dazu folgt aus Gleichung (1) eine korrigierte Zustandsschätzung ˆx k Angewandte Bildverarbeitung, WS

18 Arbeitsweise Kalmanfilter Vorhersage des Systemzustandes für den Zeitpunkt t + 1: ˆx k+1 = Φ k ˆx k + ω k P k+1 = E{( x k+1 ˆx k+1 )( x k+1 ˆx k+1 )T } = E{(Φ k x k + ω k Φ kˆx k ω k ) 2 } = E{Φ k e k + ω k} 2 = Φ k E{e 2 k}φ T k + E{ ω k} 2 = Φ k P k Φ T k + Q k ω k ist mittelwertfrei und unkorreliert und kann daher entfallen Angewandte Bildverarbeitung, WS

19 Überblick Fehlerabschätzung Initialisierung x 0 Berechnung der Vorhersage-Schätzung ˆx k+1 aus den Modellgleichungen P k+1 = Φ kp k Φ T k + Q k verbesserter Schätzwert ˆx k geschätzte Vorhersage ˆx k Messwert z k Berechnung eines verbesserten Schätzwertes ˆx k über Minimierung des mittleren quadratischen Schätzfehlers je mehr Zustände beobachtet werden, desto sicherer ist die Vorhersage Filter erfordert passendes Modell (fehlerhaftes Modell wird nicht ausgeglichen!) numerische Probleme bei langer Laufzeit möglich beschränkt auf lineare Systeme Extended Kalman Angewandte Bildverarbeitung, WS

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen

Mehr

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definitionen, Begriffe........................... 1 1.2 Grundsätzliche Vorgehensweise.................... 3 2 Intuitive Klassifikation 6 2.1 Abstandsmessung zur Klassifikation..................

Mehr

Beispiel: Positionsschätzung

Beispiel: Positionsschätzung Das Kalman Filter Beispiel: Positionsschätzung Beispiel: Positionsschätzung. Messung: mit Varianz Daraus abgeleitete Positionsschätzung: mit Varianz ˆX = = f f ( y ) y 3 Beispiel: Positionsschätzung. Messung:

Mehr

Crashkurs C++ - Teil 1

Crashkurs C++ - Teil 1 Crashkurs C++ - Teil 1 Intro Speicherverwaltung Variablen, Pointer, Referenzen Felder statische & dynamische Allozierung Birgit Möller & Denis Williams AG Bioinformatik & Mustererkennung Institut für Informatik

Mehr

(1) Problemstellung. (2) Kalman Filter

(1) Problemstellung. (2) Kalman Filter Inhaltsverzeichnis (1) Problemstellung...2 (2) Kalman Filter...2 Funktionsweise... 2 Gleichungen im mehrdimensionalen Fall...3 Schätzung des Systemzustands...3 Vermuteter Schätzfehler... 3 Aktualisierung

Mehr

Mathematische Grundlagen Kalman Filter Beispielprogramm. Kalman Filter. Stephan Meyer

Mathematische Grundlagen Kalman Filter Beispielprogramm. Kalman Filter. Stephan Meyer Kalman Filter Stephan Meyer FWPF Ortsbezogene Anwendungen und Dienste Georg-Simon-Ohm-Hochschule Nürnberg 07.12.2007 Outline 1 Mathematische Grundlagen 2 Kalman Filter 3 Beispielprogramm Mathematische

Mehr

10 ARIMA-Modelle für nicht-stationäre Zeitreihen

10 ARIMA-Modelle für nicht-stationäre Zeitreihen 10 ARIMA-Modelle für nicht-stationäre Zeitreihen In diesem Abschnitt untersuchen wir einige praktische Aspekte bei der Wahl eines geeigneten Modells für eine beobachtete Zeitreihe X 1,...,X n. Falls die

Mehr

Bildverarbeitung Herbstsemester. Mustererkennung

Bildverarbeitung Herbstsemester. Mustererkennung Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Mustererkennung 1 Inhalt Einführung Mustererkennung in Grauwertbildern Ähnlichkeitsmasse Normalisierte Korrelation Korrelationskoeffizient Mustererkennung

Mehr

Systemidentikation und Regelung in der Medizin Rekursives Verfahren der kleinsten Fehlerquadrate - Recursive Least Squares (RLS)

Systemidentikation und Regelung in der Medizin Rekursives Verfahren der kleinsten Fehlerquadrate - Recursive Least Squares (RLS) Systemidentikation und Regelung in der Medizin 1 2.3 Rekursives Verfahren der kleinsten Fehlerquadrate - Recursive Least Squares (RLS) LS: Schätzung der Modellparameter basierend auf einer Anzahl von Beobachtungen

Mehr

Computer Vision: Kalman Filter

Computer Vision: Kalman Filter Computer Vision: Kalman Filter D. Schlesinger TUD/INF/KI/IS D. Schlesinger () Computer Vision: Kalman Filter 1 / 8 Bayesscher Filter Ein Objekt kann sich in einem Zustand x X befinden. Zum Zeitpunkt i

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Methode der kleinsten Quadrate DSV2, 2007, Least-Squares, Rumc, 1

Methode der kleinsten Quadrate DSV2, 2007, Least-Squares, Rumc, 1 Methode der kleinsten Quadrate DSV2, 2007, Least-Squares, Rumc, 1 Problem der linearen Annäherung im Skalarprodukt-Raum Finde für einen beliebigen Vektor y eine Linearkombination y e der Vektoren 1, 2,...,

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr

Lineare Prädiktion. Stephan Arlinghaus 9. November 2006

Lineare Prädiktion. Stephan Arlinghaus 9. November 2006 Stephan Arlinghaus 9. November 2006 Gliederung 1 Einleitung Sprachanalyse... etwas Mathematik 2 Das autoregressive Modell (AR) (LP) 3 Kovarianzmethode Autokorrelationsmethode Methodenvergleich 4 5 Der

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen

Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Grundlagen: Bildbearbeitung / Objekterkennung Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Videoerkennung! Warum? Live-Übertragung von Veranstaltungen Überwachung

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

Integrierte Navigationssysteme

Integrierte Navigationssysteme Integrierte Navigationssysteme Sensordatenfusion, GPS und Inertia le Navigation von Dr. habil.jan Wendel 2. überarbeitete Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Einleitung 1 2

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Intelligente Roboter

Intelligente Roboter 64-424 Intelligente Roboter 64-424 Intelligente Roboter http://tams.informatik.uni-hamburg.de/ lectures/2010ws/vorlesung/ir Jianwei Zhang Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Die Kalibrierung von Sterbetafeln für Altersrentner mit Hilfe der mehrdimensionalen Kredibilitätstheorie. Winterthur, den 06.

Die Kalibrierung von Sterbetafeln für Altersrentner mit Hilfe der mehrdimensionalen Kredibilitätstheorie. Winterthur, den 06. Die Kalibrierung von Sterbetafeln für Altersrentner mit Hilfe der mehrdimensionalen Kredibilitätstheorie Frank Weber (AXA Winterthur) Alois Gisler (ETH Zürich) Winterthur, den 06. September 2013 Daten

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

Computergestützte Datenanalyse in der Kern- und Teilchenphysik

Computergestützte Datenanalyse in der Kern- und Teilchenphysik Computergestützte Datenanalysein der Kern- und Teilchenphysik p. 1/?? Computergestützte Datenanalyse in der Kern- und Teilchenphysik Vorlesung 4 Jan Friedrich Computergestützte Datenanalysein der Kern-

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Lokalisierung. von Matthias Heine, Norbert Müller, Silvia Schreier, Oliver Zöllner

Lokalisierung. von Matthias Heine, Norbert Müller, Silvia Schreier, Oliver Zöllner Lokalisierung von Matthias Heine, Norbert Müller, Silvia Schreier, Oliver Zöllner Was ist Lokalisierung? Fähigkeit eines autonomen Roboters seine Position in Bezug auf ein festes (Koordinaten-)System zu

Mehr

Qualitätsüberwachung von automatisch verfolgten Merkmalen in Bildsequenzen

Qualitätsüberwachung von automatisch verfolgten Merkmalen in Bildsequenzen Qualitätsüberwachung von automatisch verfolgten Merkmalen in Bildsequenzen J. Shi und C. Tomasi Good features to Track (CVPR94 Seattle, Juni 1994) Dozent: Dr. Felix v. Hundelshausen Referenten: Philipp

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Einführung in die Theorie der Messfehler

Einführung in die Theorie der Messfehler Einführung in die Theorie der Messfehler Ziel der Vorlesung: Die Studentinnen/Studenten sollen die Grundlagen der Theorie der Messfehler sowie den Unterschied zwischen Ausgleichsrechnung und statistischer

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Diskrete Signalverarbeitung und diskrete Systeme

Diskrete Signalverarbeitung und diskrete Systeme Diskrete Signalverarbeitung und diskrete Systeme Computer- basierte Verarbeitung von Signalen und Realisierung von Systemverhalten erfordern diskrete Signale und diskrete Systembeschreibungen. Wegen der

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Grundlagen der Objektmodellierung

Grundlagen der Objektmodellierung Grundlagen der Objektmodellierung Daniel Göhring 30.10.2006 Gliederung Grundlagen der Wahrscheinlichkeitsrechnung Begriffe zur Umweltmodellierung Bayesfilter Zusammenfassung Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Mathematisches Institut

Mathematisches Institut Mathematisches Institut der Ludwig-Maximilians-Universität München Diplomarbeit Zustandsraum-Modelle, Kalman-Rekursionen und EM-Algorithmus Emil Ratko Aufgabensteller: Prof. Dr. Helmut Pruscha Abgabetermin:

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Integrierte Navigationssysteme

Integrierte Navigationssysteme 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Integrierte Navigationssysteme Sensordatenfusion, GPS und Inertiale

Mehr

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar 5. Meßfehler Man unterscheidet... zufällige Meßfehler systematische Meßfehler Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Forschung und Entwicklung - Abteilung Meteorologische Analyse und Modellierung Operationelles NWV-System Änderungsmitteilung

Forschung und Entwicklung - Abteilung Meteorologische Analyse und Modellierung Operationelles NWV-System Änderungsmitteilung Forschung und Entwicklung - Abteilung Meteorologische Analyse und Modellierung Operationelles NWV-System Änderungsmitteilung Operationelles NWV-System Hier: Globales NWV-System: Ensemble-Datenassimilation

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Extrapolation und Interpolation von räumlichen Mustern

Extrapolation und Interpolation von räumlichen Mustern Extrapolation und Interpolation von räumlichen Mustern 01. Juli 2008 Inhaltsverzeichnis 1 Interpolation Extrapolation Beispiel: Mammutbaumsetzlinge 2 Grundlagen Keim-Korn- Clusterprozesse Cox-Clusterprozess

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Linearer und quadratischer Mittelwert

Linearer und quadratischer Mittelwert Linearer und quadratischer ittelwert Erwartungswerte (auch Schar- oder Ensemblemittelwerte) betrachtet wird zunächst eine große Anzahl von Zufallssignalen; dabei ist x k (t) die k-te von insgesamt Realisierungen

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Seminar Level Set Methoden

Seminar Level Set Methoden Seminar Level Set Methoden Geometric Flows and Variational Methods Michael Möller Institut für Numerische und Angewandte Mathematik Fachbereich Mathematik und Informatik WWU Münster SS 2007 1. Einführung

Mehr

Fortgeschrittene Mathematik Raum und Funktionen

Fortgeschrittene Mathematik Raum und Funktionen Fortgeschrittene Mathematik Raum und Funktionen Thomas Zehrt Universität Basel WWZ Thomas Zehrt (Universität Basel WWZ) R n und Funktionen 1 / 33 Outline 1 Der n-dimensionale Raum 2 R 2 und die komplexen

Mehr

Parallelisierung durch Gebietszerlegung

Parallelisierung durch Gebietszerlegung Parallelisierung durch Gebietszerlegung Jahn Müller jahn.mueller@uni-muenster.de Westfälische Wilhelms-Universität Münster 25.01.2008 1 Einleitung 2 Gebietszerlegung nicht überlappende Zerlegung überlappende

Mehr

Kalman-Filter und Target Tracking

Kalman-Filter und Target Tracking Kalman-Filter und Target Tracking Peter Poschmann Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik/Mathematik 23. März 2016 Inhalt 1 Kalman-Filter Einleitung Eindimensionaler Kalman-Filter

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Monte-Carlo-Verfahren nach GUM Supplement 1. Gerd Wübbeler Physikalisch-Technische Bundesanstalt

Monte-Carlo-Verfahren nach GUM Supplement 1. Gerd Wübbeler Physikalisch-Technische Bundesanstalt Monte-Carlo-Verfahren nach GUM Supplement 1 Gerd Wübbeler Physikalisch-Technische Bundesanstalt 1 Inhalt Wahrscheinlichkeitsverteilungen Monte-Carlo Verfahren Beispiele Adaptive Monte-Carlo Verfahren Warum

Mehr

Neue Ansätze für Mustererkennung und automatisches Lernen

Neue Ansätze für Mustererkennung und automatisches Lernen Z Y X Neue Ansätze für Mustererkennung und automatisches Lernen Vortrag im Rahmen des 2. Technologieforums Bildverarbeitung am 03./04. November 2015 Johannes Zügner STEMMER IMAGING GmbH, Puchheim GLIEDERUNG

Mehr

GNSS/IMU Integration für die präzise Bestimmung einer Flugtrajektorie

GNSS/IMU Integration für die präzise Bestimmung einer Flugtrajektorie GNSS/IMU Integration für die präzise Bestimmung einer Flugtrajektorie Fabian Hinterberger Institut für Geodäsie und Geophysik, Tu Wien 18. Nov. 2011 1 Motivation Motivation Gegenüberstellung Eigenschaften

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG E-Mail: Markus.Schumacher@physik.uni-freiburg.de

Mehr

Orientierungsbestimmung mobiler Objekte unter Verwendung von Magnet- und MEMS Inertialsensoren

Orientierungsbestimmung mobiler Objekte unter Verwendung von Magnet- und MEMS Inertialsensoren . Orientierungsbestimmung mobiler Objekte unter Verwendung von Magnet- und MEMS Inertialsensoren Geodätische Woche 2013 F. Zimmermann, C. Eling, L. Klingbeil, H. Kuhlmann 08.10.2013 Unmanned Aerial Vehicle

Mehr

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Kalman Filter. Stephan Meyer Matrix nennt man ein rechteckiges Zahlenschema der Form: a 11 a 12 a 13

Kalman Filter. Stephan Meyer Matrix nennt man ein rechteckiges Zahlenschema der Form: a 11 a 12 a 13 Kalman Filter Ortsbezogene Anwendungen und Dienste Stephan Meyer meyerst23084@ohm-hochschule.de Zusammenfassung: Der Kalman Filter stellt ein mathematisches Regelwerk zur Verfügung, welches Werteschätzung

Mehr

Hidden Markov Modelle

Hidden Markov Modelle Hidden Markov Modelle in der Sprachverarbeitung Paul Gabriel paul@pogo.franken.de Seminar Sprachdialogsysteme: Hidden Markov Modelle p.1/3 Überblick Merkmalsvektoren Stochastischer Prozess Markov-Ketten

Mehr

Verteilungen mehrerer Variablen

Verteilungen mehrerer Variablen Kapitel 3 Verteilungen mehrerer Variablen 3. Eigenschaften von Verteilungen mehrerer Variablen Im allgemeinen muss man Wahrscheinlichkeiten für mehrere Variable, die häufig auch voneinander abhängen, gleichzeitig

Mehr

Ein Structure and Motion Ansatz zur Umfeldrekonstruktion in komplexen Fahrzeugumgebungen

Ein Structure and Motion Ansatz zur Umfeldrekonstruktion in komplexen Fahrzeugumgebungen Sicherheit durch Fahrerassistenz 2010 Ein Structure and Motion Ansatz zur Umfeldrekonstruktion in komplexen Fahrzeugumgebungen Wojciech Derendarz, Thorsten Graf Volkswagen AG Friedrich M. Wahl TU Braunschweig,

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Identifikation von Intervallmodellen zur Prädiktion

Identifikation von Intervallmodellen zur Prädiktion Institute for Design and Control of Mechatronical Systems Identifikation von Intervallmodellen zur Prädiktion von Manuel Schürz Betreuer: Dr. Harald Kirchsteiger Sommersemester 2014 Ziele Vorhersage des

Mehr

Seminar im Grundstudium: Motion-Tracking in der Robotik

Seminar im Grundstudium: Motion-Tracking in der Robotik Seminar im Grundstudium SS2007 Seminar im Grundstudium: Motion-Tracking in der Robotik Lehrstuhl für Hardware-Software-Co-Design Universität Erlangen-Nürnberg stefan.wildermann@informatik.uni-erlangen.de

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67 Kapitel 2.1: Die stochastische Sicht auf Signale 215 Georg Dorffner 67 Stochastische Prozesse Stochastische Prozesse sind von Zufall geprägte Zeitreihen x n f x, n 1 xn2,... n vorhersagbarer Teil, Signal

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Aufgabe 4.1 Robotermodell (1)

Aufgabe 4.1 Robotermodell (1) Aufgabe 4.1 Robotermodell (1)! Erstellen Sie ein Simulationsmodell für einen mobilen Roboter (z.b. Pioneer 3DX), der sich über Geschwindigkeit v und Rotationsgeschwindigkeit ω steuern lässt. v ω Pioneer

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Real Time Tracking of the Human Body. Hauptseminar Bildverstehen: Videobasierte Erkennung und Analyse menschlicher Aktionen. Thomas Endres SS 2006

Real Time Tracking of the Human Body. Hauptseminar Bildverstehen: Videobasierte Erkennung und Analyse menschlicher Aktionen. Thomas Endres SS 2006 Real Time Tracking of the Human Body Hauptseminar Bildverstehen: Videobasierte Erkennung und Analyse menschlicher Aktionen Thomas Endres SS 2006 Echtzeit-Erkennung Erkennung Anwendungsmöglichkeiten: Interfaces

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

Kalmanfilter und Nichtparametrische Filter. Bayesfilter

Kalmanfilter und Nichtparametrische Filter. Bayesfilter Kalmanfilter und Nichtparametrische Filter Daniel Göhring 06.11.2006 Bayesfilter Zustand zur Zeit t ist Zufallvariable x t Wahrscheinlichkeitsfunktion Bel (Belief) über x t : Bel(x t ) repräsentiert die

Mehr

Praktikum zur Vorlesung Einführung in die Geophysik

Praktikum zur Vorlesung Einführung in die Geophysik Praktikum zur Vorlesung Einführung in die Geophysik Hinweise zum Praktikum: Messunsicherheit und Fehlerrechnung Stefan Wenk, Prof. Thomas Bohlen TU Bergakademie Freiberg Institut für Geophysik www.geophysik.tufreiberg.de/pages/studenten/praktika/nebenfaechlerpraktikum.htm

Mehr

Bayesianische Netzwerke - Lernen und Inferenz

Bayesianische Netzwerke - Lernen und Inferenz Bayesianische Netzwerke - Lernen und Inferenz Manuela Hummel 9. Mai 2003 Gliederung 1. Allgemeines 2. Bayesianische Netzwerke zur Auswertung von Genexpressionsdaten 3. Automatische Modellselektion 4. Beispiel

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin

Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin 28.04.09 Übersicht Einleitung Problem: polynomiale Multiplikation Crashkurs Diskrete Fourier-Transformation DFT mit FFT

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Kapitel 7 Methode der kleinsten Quadrate Im Folgenden wird die Methode der kleinsten Quadrate (LS = least square, die auf dem χ -Test beruht, für die Anpassung von parametrisierten Funktionen an normalverteilte

Mehr