Martingale. Kapitel Martingale in diskreter Zeit Definition und Beispiele

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele"

Transkript

1 Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse (Kapitel 7). 6.1 Martingale in diskreter Zeit Definition und Beispiele Sei X = (Ω, A, P, {X t, t N}) ein SP bzw. eine Folge von ZV. Mit F X t = {X t, X t 1,..., X 1 } = {X s, s t} bezeichnen wir die t-vergangenheit von X. Ist {Z t, t N} ein weiterer SP, z.b. eine Folge von Kovariablen(-vektoren) zu {X t, t N}, dann bezeichnet F X,Z t = {X s, Z s, s t} die t-vergangenheit von X und Z. Offensichtlich gilt in beiden Fällen F 1... F t F t+1... Definition 6.1 Diskrete Martingale X = {X t, t N} heißt Martingal bezüglich {F t, t N} : 1. E( X t ) <, t N 2. E(X t+1 F t ) = E(X t+1 X t,..., X 1 ; Z t,..., Z 1 ) = X t Oft wird auch ohne direkten Bezug auf {F t } definiert: X heißt Martingal : Es existiert eine Folge {F t, t N}, so dass X Martingal bezüglich {F t } ist. 124

2 KAPITEL 6. MARTINGALE 125 Während 1. die Existenz der Erwartungswerte sichert, charakterisiert 2. die Martingaleigenschaft. Interpretation: Sei X t das Kapital eines Spielers nach dem t-ten Spiel, F t die Vergangenheitsinformation über den Spielverlauf bis t. 2. besagt: Das erwartete Kapital nach dem nächsten Spiel ist gleich dem gegenwärtigen Kapital. In diesem Sinn ist das Spiel fair. Folgerungen: 1. E(X t+k F t ) = X t 2. E(X 1 ) = E(X 2 ) =... = E(X t ) Beweis: Die Beweise benutzen Regeln zu bedingten Erwartungswerten: 1. für k = 2 für k > 2: Induktion. E(X t+2 X t,..., X } {{ } 1 ) = E Xt+1 F t (E(X t+2 X t+1, X t,..., X 1 ) } {{ } F t 2. E(X 2 ) = E(E(X 2 X 1 )), } {{ } =X 1 usw. durch vollständige Induktion = E(X t+1 F t ) = X t =X t+1 ) Die Definition von Martingalen kann äquivalent durch Martingaldifferenzen (Zuwächse) t = X t X t 1, 1 = X 1 erklärt werden, da 2. in Definition 6.1. äquivalent ist zu

3 KAPITEL 6. MARTINGALE E( t+1 F t ) = 0. Dabei ist F t äquivalent zu { t, t 1,..., 1 }. Eine Folge mit Eigenschaft 3. heißt Martingaldifferenz-Folge. Mit ist dann {X t, t N} ein Martingal. X t = t Definition 6.2 Semimartingale (unfaire Spiele) X = {X t, t N} heißt Sub- bzw. Supermartingal : 1. E( X t ) <, t N 2. E(X t+1 F t ) X t (Sub) bzw. E(X t+1 F t ) X t (Super) X heißt Semimartingal, wenn X entweder ein Sub- oder Supermartingal ist. Bemerkung: Die Definition von (Semi-)Martingalen wird oft abstrakter mit Hilfe einer aufsteigenden Folge F 0... F t F t+1... A von σ-algebren eingeführt. Eine solche Folge von σ-algebren heißt Filtration. In Anwendungen ist F t sehr oft F t = F X t = σ(x 1,..., X t ) bzw. F X,Z t = σ(x 1,..., X t ; Z 1,..., Z t ) die von {X 1,..., X t } bzw. {X 1,..., X t ; Z 1,..., Z t } erzeugte σ-algebra. Man fordert, dass X t F t -messbar ist und versteht unter E(X t+1 F t ) die bedingte Erwartung von X t+1 gegeben die σ-algebra F t.

4 KAPITEL 6. MARTINGALE 127 Beispiel: (a) Irrfahrten Sei { t, t N} iid Folge mit E( t ) = µ X t = t bzw. X t+1 = X t + t+1. {X t } Martingal für µ = 0 E(X t+1 X 1,..., X t ) = E(X t + t+1 X t, t,..., 1 ) {X t } Submartingal für µ 0 {X t } Supermartingal für µ 0 z.b. Diskrete Irrfahrt mit p = q ist Martingal. = X t + E( t+1 ) = X t + µ; (b) Score-Funktion bei Logit-Modell für binäre MK Logit-Modell: Score-Funktion für Beobachtung Y 0, Y 1,..., Y t : P (Y t = 1 X t, Y t 1 ) = h(x t β X + β Y Y t 1 ) = π t S t (β) = t Z s (Y s π s ), } {{ } Z s = (X s, Y s 1 ), s N. = s(β) s=1 Es gilt: da E(Y s F s 1 ) = π s. E( s (β) Y 1,..., Y s 1 ; X s,..., X } {{ } 1 ) = 0, F s 1 { t (β), t N} bildet Martingaldifferenzenfolge, {S t (β), t N} Martingal. Diese Eigenschaft bildet die Grundlage für asymptotische Likelihoodtheorie bei abhängigen Beobachtungen Y 1,..., Y t,..., da starkes Gesetz großer Zahlen und zentrale Grenzwertsätze für Martingale existieren. Diese Bemerkung gilt auch für Likelihood-Inferenz in allgemeineren SP.

5 KAPITEL 6. MARTINGALE Spielsysteme und das Optional Stopping Theorem Der Martingalbegriff ist historisch mit Spielsystemen verknüpft. Zur Vorbereitung benötigen wir den Begriff einer Stoppzeit. Definition 6.3 Stoppzeit Sei {F t } eine Filtration, z.b. F t = σ(x 1,..., X t ). Eine ZV τ mit Werten in {0, 1, 2,..., + } heißt Stoppzeit : {τ t} = {ω : τ(ω) t} F t für alle t ( {τ = t} F t {τ t} F t 1 ). Die Definition besagt: Ob das Ereignis {τ = t} eintritt oder nicht, hängt nur von der Vorgeschichte (bis einschließlich t) ab, jedoch nicht von der Zukunft. Beispielsweise soll die Entscheidung zum Zeitpunkt t ein Spiel zu beenden, nur von den bis t eingetretenen Ereignissen, nicht aber von zukünftigen Ereignisssen abhängen (keine Präkognition). Definition 6.4 Spielsystem Unter einem Spielsystem verstehen wir eine Folge von ZV {X t, t N}, die folgendermaßen konstruiert wird: X 1 = W 1 1, X t+1 = X t + W t+1 t+1. Dabei bedeutet t unabhängige ZV mit E( t ) = 0. Diese ZV repräsentieren eine unabhängige Folge von (fairen) Spielen, deren Ausgang vom Spieler nicht beeinflusst werden kann. X t kumulierter Spielgewinn nach dem t-ten Spiel. W t Einsatz, den der Spieler für das t-te Spiel leistet. Die Spieleinsätze W t 0 können in Abhängigkeit vom bisherigen Spielverlauf gewählt werden. Formal: (W t, Ft X = {X t,..., X 1 }), t N, ist eine vorhersagbare Folge : W t = g t (X t 1,..., X 1 ) W t ist Ft 1-messbar. X Dabei ist g t eine deterministische, messbare Funktion. Satz 6.1 Der SP X = {X t, t N} der kumulierten Spielgewinne bildet ein Martingal.

6 KAPITEL 6. MARTINGALE 129 Beweis: E(X t+1 F X t ) = E(X t + W t+1 t+1 F X t ) = E(X t F X t ) + E(W t+1 t+1 F X t ) = X t + W t+1 E( t+1 F X t ) = X t + W t+1 E( t+1 ) } {{ } =0 = X t. Das Verdopplungssystem beim Roulette Der Name Martingal stammt von folgendem Spielsystem: 1. Setze auf Rot. Beginne mit dem Einsatz 1 und verdopple nach jedem Spiel den Einsatz. 2. Verdopple solange, bis zum ersten Mal Rot erscheint. Nach Definition 6.3 entspricht dies: +1, Rot erscheint Gewinn t = 1, Schwarz erscheint Verlust In Phase 1 des Verdopplungssystems ist W t = 2 t 1, t = 1, 2,... X t = t 1 t. Nach Satz 6.1 bilden die kumulierten Spielgewinne nach einer festen Anzahl von Spielen ein Martingal mit E(X t ) = 0. Neu ist Phase 2, welche die Einführung einer Stoppzeit τ bedeutet, mit Die Stoppzeit τ ist geometrisch verteilt: τ(ω) := min{t : t (ω) = 1}. P (τ = t) = 1, t = 1, 2,... P (τ < ) = 1 2t Das Verdopplungssystem wird durch die ZV X τ τ 1 τ, für τ < X τ = undefiniert, für τ = (P (τ = ) = 0) beschrieben. Es gilt X τ(ω) (ω) = τ(ω) τ(ω) 1 = 1

7 KAPITEL 6. MARTINGALE 130 für ω {ω : τ(ω) < }, also P (X τ = 1) = 1. Mit dem Verdopplungssystem kann man daher das Spiel so steuern, dass man mit Wahrscheinlichkeit 1 den Betrag 1 gewinnt. Casino würde bankrott. Deshalb: Casinos begrenzen Anzahl der Verdopplungen durch eine Zahl K nach oben. Das Optional Stopping Theorem Für ein Martingal {X t, F t } gilt E(X 1 ) = E(X t ) für jedes feste t. Frage: Kann man diese Gleichheit durch Einführen einer Stoppzeit überlisten? Beim Spielsystem Verdoppeln ging das: E(X 1 ) = E(X t ) = 0, aber E(X τ ) = 1. Satz 6.2 Optional Stopping Theorem Sei {X t, F t } ein Martingal und τ eine Stoppzeit. Es gelte eine der folgenden Bedingungen 1. τ ist beschränkt (τ(ω) k für alle ω Ω). 2. {X t } ist beschränkt ( X t (ω) k für alle ω Ω) und P (τ < ) = E(τ) < und {X t X t 1 } ist beschränkt. Dann gilt E(X τ ) = E(X 1 ). Also: Falls eine der Bedingungen gilt, so folgt dass ein Martingal auch beim Übergang zu einer Stoppzeit nicht überlistet werden kann. Beim Spielsystem Verdoppeln sind alle drei Bedingungen verletzt: τ ist nicht beschränkt; {X t } und {X t X t 1 } = {2 t 1 } sind nicht beschränkt. Die möglichen Verluste des Spielers sind jedoch auch unbeschränkt; dies macht diese Strategie praktisch selbstmörderisch.

8 KAPITEL 6. MARTINGALE 131 Martingale in der Finanzmarkttheorie W-Raum (Ω, A, P ) {S 1 t, t = 0, 1, 2,..., T } stock ; Aktie mit zufälligen Wert (Preis) S j t, j = 1,..., k. {S k t,...} { B }{{} t,...} =:St 0 S j t = Sj t B t bond ; Sparbuch mit fester Zinsrate r relative (deflationierte) Preise S t = {B t, S 1 t,..., S k t }, S t = {1, S 1 t,..., S k t } Definition 6.5 Handelsstrategie Eine Handelsstrategie (trading strategy) ist ein vorhersagbarer (θ t F t 1 ) Prozess θ = {θ t, t = 1, 2,..., T } mit Komponenten θ j t, j = 0, 1,..., k Wert eines Portefeuilles: Zeit t 1 t Wert des Portefeuilles k j=0 θj t Sj t 1 = θ t S t 1 k j=0 θj t Sj t = θ t S t Gewinn im Intervall [t 1, t[ : θ t S t gesamter Gewinn in [0, t] : G t (θ) = t s=1 θ s S s V t (θ) = θ ts t Vermögensprozess G 0 (θ) = 0; {G t, t 0} Gewinnprozess Definition 6.6 Selbstfinanzierende Handelsstrategie {θ t } heißt selbstfinanzierend : θ ts t = θ t+1s t t = 1, 2,..., T 1 Also: Zu keiner Zeit wird dem Portefeuille Geld zugeführt oder abgezogen. Marktmodell M(S, θ): Menge von Aktien (Bond) und selbstfinanzierenden Handelsstrategien. Definition 6.7 (Handelsstrategie mit) Arbitragemöglichkeit θ Θ mit V 0 (θ) } {{ } = 0 (f.s.), V T (θ) 0 (f.s.) Anfangsvermögen und P {V T (θ) > 0} > 0. ( E(V T (θ)) > 0)

9 KAPITEL 6. MARTINGALE 132 Satz 6.3 Für einen (endlichen) Markt gilt: M(S, Θ) ist arbitragefrei (d.h. es gibt keine Handelsstrategie mit Arbitragemöglichkeit) Es existiert ein zu P äquivalentes W-Maß Q, so dass der deflationierte Vermögensprozess ein Martingal bezüglich Q ist. Ṽ t (θ) = θ t S t = θ t St B t Beweis: (z.b.) Koller (2000), Ammann (2001), Bingham/Kiesel (1998) Doob-Meyer-Zerlegung in diskreter Zeit Die Doob-Meyer-Zerlegung ist ein wesentliches Hilfsmittel zur statistischen Inferenz von Zählprozessen. Während der Beweis für Martingale in stetiger Zeit tiefliegende Hilfsmittel benützt, ist die Zerlegung in diskreter Zeit sehr einfach zu zeigen. X = {X t, t N} sei Submartingal, d.h. E(X t+1 F t ) X t. Ziel: Zerlegung von X t in vorhersagbaren, wachsenden Trend A t und Rauschen ( = Martingal M t ). Setze: M 1 = X 1, A 1 = 0, dann rekursiv A t = A t 1 + E(X t F t 1 ) X t 1 = t s=2 E(X s X s 1 F s 1 ), M t = X t A t. Dann gilt die Doob-Meyer-Zerlegung X t = A t + M t, wobei {M t } ein Martingal ist und der Kompensatorprozess {A t } wachsend und vorhersagbar ist, d.h. A t ist eine deterministische Funktion von F t 1 = {X 1,..., X t 1 }. Beweis: E(M t M t 1 F t 1 ) = E(X t X t 1 A t + A t 1 F t 1 ) = E(X t F t 1 ) X t 1 A t + A t 1 = 0 nach Definition von A t, d.h. {M t M t 1 } ist eine Martingaldifferenz und {M t } ein Martingal.

10 KAPITEL 6. MARTINGALE Martingale in stetiger Zeit Ziel: Konzepte von diskreter auf stetige Zeit übertragen; Grundlagen für Behandlung von Zählprozessen in Kap Definition und Beispiele Definition 6.8 (Semi-)Martingale in stetiger Zeit Der SP X = {X t, t R + } heißt Martingal : (Existenz von Erwartungswerten wird vorausgesetzt) 1. E(X tn X tn 1,..., X t1 ) = X tn 1 für alle t 1 <... < t n, n 2 2. E(X tn X tn 1 = x n 1,..., X t1 = x 1 ) = x n 1 für alle t 1 <... < t n, x 1,..., x n 1, n 2 Der SP X heißt Sub- bzw. Supermartingal : 3. E(X tn...) X tn 1 bzw. E(X tn...) X tn 1 für alle t 1 <... < t n, n 2 Bemerkungen: (a) Falls zusätzlich ein Kovariablen-Prozess {Z t, t R + } vorliegt, wird dieser in die Bedingung einbezogen. (b) Wie im diskreten Fall lässt sich die Definition auch mit Filtrationen F 0... F s... F t... A, s < t formulieren. Insbesondere kann F t wieder die von {X s, s t} bzw. {X s, Z s, s t} erzeugte σ-algebra sein. Dann ist X ein Martingal, falls E(X t F s ) = X s für alle s < t und ein Sub- bzw. Supermartingal, wenn gilt. E(X t F s ) X s bzw. E(X t F s ) X s

11 KAPITEL 6. MARTINGALE 134 Beispiel: (a) Wiener Prozess E(W tn W tn 1,..., W t1 ) = E((W tn W tn 1 ) + W tn 1...) = E(W tn W tn 1...) + E(W tn 1 W tn 1,..., W t1 ) = E(W tn W tn 1 W tn 1 W tn 2,..., W t2 W t1, W t1 ) + W tn 1 unabh. Zuwächse = E(W tn W tn 1 ) } {{ } =0 = W tn 1. Also: Wiener-Prozess ist Martingal (b) Poisson-Prozess Für s < t +W tn 1 E(N t F N s ) = E((N t N s ) + N s F N s ) = E(N t N s F N s ) + E(N s F N s ) = E(N t N s ) + N s = λ (t s) +N } {{ } s >0 Also: E(N t F N s ) > N s (für λ > 0), d.h. Poisson-Prozess ist Submartingal. Der kompensierte Prozess N t λt ist Martingal Doob-Meyer-Zerlegung in stetiger Zeit Im folgenden sei {F t } eine Filtration, insbesondere F t = σ(x s, s t) bzw. erweitert um Kovariablen. Die σ-algebra F t + = F s s>t erlaubt einen infinitesimalen Blick in die Zukunft, und ( ) = σ F s F t umfasst alle Ereignisse bis umittelbar vor t. s<t

12 KAPITEL 6. MARTINGALE 135 Im weiteren werden die üblichen Bedingungen vorausgesetzt: 1. {F t } ist rechtsstetig : F t = F + t für alle t 2. {F t } ist vollständig : Für C B A mit P (B) = 0 folgt C F 0 A (und P (C) = 0). Bemerkung: F t = σ(x s, s t) ist rechtsstetig, wenn die Pfade von X rechtsstetig sind. Damit lässt sich die Vorhersagbarkeit eines SP {A t, t R} definieren: Definition 6.9 Vorhersagbarkeit Ein SP A = {A t, t R + } heißt vorhersagbar (bez. {F t }) : für alle t R + gilt 1. A t ist F t -messbar, und 2. A t ist F t -messbar. Bedingung 2 ist erfüllt falls A t = g t (A s, s < t) mit einer messbaren, deterministischen Funktion g t. Hinreichend für die Vorhersagbarkeit ist, dass der SP A linksseitig stetige Pfade besitzt. Interpretation: A t ist bereits kurz vor t bekannt. Satz 6.4 Doob-Meyer-Zerlegung Sei {N t, t R + } ein rechtsstetiges, nichtnegatives oder ein beschränktes Submartingal, und {F t } eine Filtration mit den üblichen Bedingungen. Dann existiert ein vorhersagbarer Prozess {A t, t R + } mit N t = A t + M t für alle t R +, wobei {M t, t R + } ein Martingal ist. Der Prozess A heißt Kompensator von N. Beispiel: (a) Poisson-Prozess: N t λt =: M t N }{{} t = }{{} λt + M }{{} t Subm. Komp. Mart. A t = λt ; N t λt ist Martingal. In diesem Fall ist A t sogar deterministisch. (b) Inhomogener Poisson-Prozess: P (N(t + h) N(t) = 1) = λ(t)h + o(h)

13 KAPITEL 6. MARTINGALE 136 Mit Λ(t) = t 0 λ(u)du gilt E(N(t) Λ(t) F s ) = E(N(t) N(s) + N(s) Λ(t) F s ) d.h. N(t) Λ(t) ist ein Martingal. Somit und Λ(t) ist der Kompensator. = Λ(t) Λ(s) + N(s) Λ(t) = N(s) Λ(s), N(t) = Λ(t) + M(t),

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

Diplomarbeit. Arbitragefreies Bewerten von Schadenversicherungen. von Ingmar Schiltz

Diplomarbeit. Arbitragefreies Bewerten von Schadenversicherungen. von Ingmar Schiltz Diplomarbeit Arbitragefreies Bewerten von Schadenversicherungen von Ingmar Schiltz Universität Siegen Fachbereich Mathematik Juni 2005 ARBITRAGEFREIES BEWERTEN VON SCHADENVERSICHERUNGEN 2 Betreuer und

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Einführung und Beispiele

Einführung und Beispiele Kapitel 1 Einführung und Beispiele Inhalt: Anwendungsbeispiele erste Definition eines stochastischen Prozesses einige spezielle stochastische Prozesse Ziel: Aufzeigen der Vielfalt stochastischer Prozesse

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006 Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 26 Markus Reiß Universität Heidelberg reiss@statlab.uni-heidelberg.de VORLÄUFIGE FASSUNG: 28. Juli 26 Inhaltsverzeichnis 1 Der Poissonprozess

Mehr

Jan Kallsen. Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik

Jan Kallsen. Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik Jan Kallsen Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik AU zu Kiel, WS 13/14, Stand 10. Februar 2014 Inhaltsverzeichnis 1 Mathematische Hilfsmittel 4 1.1 Absolutstetigkeit

Mehr

II. Bewertung von Derivaten in diskreter Zeit

II. Bewertung von Derivaten in diskreter Zeit II. Bewertung von Derivaten in diskreter Zeit 2.1. Wahrscheinlichkeitstheoretische Grundlagen 2.1.1. Bedingte Erwartungswerte Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Für A, B F mit P(B) > 0 ist die

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Markov-Prozesse mit stetigem Zustands- und Parameterraum

Markov-Prozesse mit stetigem Zustands- und Parameterraum Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Finanzmathematik. Jürgen Dippon. 28. März 2011. Vorlesung WS 2010/11

Finanzmathematik. Jürgen Dippon. 28. März 2011. Vorlesung WS 2010/11 Finanzmathematik Vorlesung WS 21/11 Jürgen Dippon 28. März 211 Inhaltsverzeichnis 1 Einführung 3 1.1 Grundbegrie................................... 4 1.2 Put-Call-Parität.................................

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

3. Modelle in stetiger Zeit, Black Scholes

3. Modelle in stetiger Zeit, Black Scholes 3. Modelle in stetiger Zeit, Black Scholes Nach einführenden Bemerkungen werden kurz die Brownsche Bewegung und Martingale in stetiger Zeit besprochen. Dann folgen die Entwicklung des stochastischen Integrals

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Grundlagen der Stochastischen Analysis. Egbert Dettweiler

Grundlagen der Stochastischen Analysis. Egbert Dettweiler Grundlagen der Stochastischen Analysis Egbert Dettweiler Vorwort Der erste Teil des vorliegenden Manuskripts ist im wesentlichen eine Vorlesungsausarbeitung einer im Sommersemester 23 an der Universität

Mehr

Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005

Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005 Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005 Jakob Creutzig TU Darmstadt, AG 9 9. Februar 2005 Inhaltsverzeichnis 1 Finanzderivate 2 2 Ein-Perioden-Modellierung 8 3 Prozesse

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

STOCHASTISCHE PROZESSE. Vorlesungsskript

STOCHASTISCHE PROZESSE. Vorlesungsskript STOCHASTISCHE PROZESSE II: Martingale und Brownsche Bewegung Wolfgang König Vorlesungsskript Universität Leipzig Wintersemester 2005/6 Inhaltsverzeichnis 1 Theorie der Martingale 3 1.1 Definition und

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Finanzmathematik. Vorlesung SS 2005. Jürgen Dippon Institut für Stochastik und Anwendungen Universität Stuttgart

Finanzmathematik. Vorlesung SS 2005. Jürgen Dippon Institut für Stochastik und Anwendungen Universität Stuttgart Finanzmathematik Vorlesung SS 2005 Jürgen Dippon Institut für Stochastik und Anwendungen Universität Stuttgart Homepage der Vorlesung: www.isa.uni-stuttgart.de/lehre/fm Version vom 29. Juli 2005 J. Dippon

Mehr

Finanzmathematik Vorlesung WS 2010/11

Finanzmathematik Vorlesung WS 2010/11 1. Einführung Finanzmathematik Vorlesung WS 21/11 Jürgen Dippon Institut für Stochastik und Anwendungen Universität Stuttgart Die klassische Finanzmathematik beschäftigt sich in erster Linie mit grundlegenden

Mehr

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer)

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Reinhold Kainhofer FAM, TU Wien Mai 2007 Inhaltsverzeichnis 1 Das Ein-Perioden-Modell 1 1.1 Definitionen............................................

Mehr

2. Modelle in diskreter Zeit

2. Modelle in diskreter Zeit 2. Modelle in diskreter Zeit Zuerst werden die derivativen Produkte erklärt. Ausschliesslich mit Arbitrage-Überlegungen wird dann die Put-Call-Parität hergeleitet. Danach folgt ein einfaches und eindrückliches

Mehr

Schwach ergodische Prozesse

Schwach ergodische Prozesse Schwach ergodische Prozesse Von der Fakultät für Naturwissenschaften der Universität Duisburg-Essen (Standort Duisburg) zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Bewertung von Derivaten im Black-Scholes Modell

Bewertung von Derivaten im Black-Scholes Modell Bewertung von Derivaten im Black-Scholes Modell Bachelorarbeit Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Betreuung: PD Dr. Volkert

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Optimale Strategien beim Spiel Rot und Schwarz

Optimale Strategien beim Spiel Rot und Schwarz Fachbereich 6-Mathematik Seminar Spieltheorie und Glücksspiele Sommersemester 09 Optimale Strategien beim Spiel Rot und Schwarz Verfasser Tatiana Wandraj 29. August 2009 Betreuer Prof. Dr. Alfred Müller

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Fondsgebundene Lebensversicherungsverträge mit garantierten Auszahlungen

Fondsgebundene Lebensversicherungsverträge mit garantierten Auszahlungen Günther Sieghartsleitner Fondsgebundene Lebensversicherungsverträge mit garantierten Auszahlungen Diplomarbeit Technische Mathematik Studienzweig Operations Research, Statistik, Finanz- und Versicherungsmathematik

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Klaus Pötzelberger Institut für Statistik und Mathematik Option Slide 1 Klaus Pötzelberger Optionspreis

Mehr

Skript. Finanzmathematik I. Max v. Renesse Aufgezeichnet von Tobias Weihrauch. Wintersemester 2012/13 Universität Leipzig. Version vom 4.

Skript. Finanzmathematik I. Max v. Renesse Aufgezeichnet von Tobias Weihrauch. Wintersemester 2012/13 Universität Leipzig. Version vom 4. Skript Finanzmathematik I Max v. Renesse Aufgezeichnet von Tobias Weihrauch Wintersemester 2012/13 Universität Leipzig Version vom 4. März 2013 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Einführung Der

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel

Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel Seminarbeitrag Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel Sven Wiesinger 8. Juni 2004 1. Einleitung Historisches. Bei dem Versuch, eine Theorie der Spekulation zu entwickeln,

Mehr

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01.

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01. Vorlesung Finanzmathematik I Steffen Dereich und Marcel Ortgiese Westfälische Wilhelms-Universität Münster WS2013/14 Version: 31.01.2014 Inhaltsverzeichnis 1. Einführung 1 1.1. Das Finanzmarktmodell...........................

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

Prof. Dr. Thilo Meyer-Brandis. Finanzmathematik 1 WS 2012/13

Prof. Dr. Thilo Meyer-Brandis. Finanzmathematik 1 WS 2012/13 Prof. Dr. Thilo Meyer-Brandis Finanzmathematik 1 WS 2012/13 Dieses Skript gibt den Inhalt der Vorlesung Finanzmathematik I: Eine Einführung in diskreter Zeit wieder und basiert auf dem Buch Stochastic

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Die Optimalität von Randomisationstests

Die Optimalität von Randomisationstests Die Optimalität von Randomisationstests Diplomarbeit Elena Regourd Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Düsseldorf im Dezember 2001 Betreuung: Prof. Dr. A. Janssen Inhaltsverzeichnis

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Problemstellung Als Sammelbilderproblem bezeichnet man die Frage, wie viele Produkte bzw. Bilder

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Martingalmaße und Bewertung europäischer Optionen in diskreten unvollständigen Finanzmärkten

Martingalmaße und Bewertung europäischer Optionen in diskreten unvollständigen Finanzmärkten Martingalmaße und Bewertung europäischer Optionen in diskreten unvollständigen Finanzmärkten Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

Quantitative Finance

Quantitative Finance Kapitel 11 Quantitative Finance Josef Leydold c 2006 Mathematische Methoden XI Quantitative Finance 1 / 30 Lernziele für den Teil Quantitative Finance Die Welt der stetigen Zinsen (Renditen) Wichtige Finanzprodukte:

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Bachelor-Arbeit. Bewerten von Rainbow-Optionen: Ein Dualitätsansatz. Rolf Waeber 14. Juli 2006

Bachelor-Arbeit. Bewerten von Rainbow-Optionen: Ein Dualitätsansatz. Rolf Waeber 14. Juli 2006 Bachelor-Arbeit Bewerten von Rainbow-Optionen: Ein Dualitätsansatz Rolf Waeber 14. Juli 2006 Bachelor-Arbeit am Departement Mathematik der Eidgenössischen Technischen Hochschule Zürich Betreuer: Prof.

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Exkurs: Polnische Räume

Exkurs: Polnische Räume Ein normaler Hausdorff-Raum mit abzählbarer Basis kann auf viele Weisen metrisiert werden; man kann insbesondere eine einmal gewonnene Metrik in vielerlei Weise abändern, ohne die von ihr erzeugte Topologie

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Differentialgleichungen in der Wirtschaftsmathematik

Differentialgleichungen in der Wirtschaftsmathematik Differentialgleichungen in der Wirtschaftsmathematik Skript zur Vorlesung im Wintersemester 21/11 an der TU Dortmund PD Dr. Flavius Guiaş 2. Februar 211 Inhaltsverzeichnis 1 Bedingter Erwartungswert 3

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik Einführung in die Finanzmathematik Skript 1 zur Vorlesung von Prof. Dr. Michael Kohler Fachbereich Mathematik Technische Universität Darmstadt Sommersemester 21 1 Dieses Skript basiert auf Skripten von

Mehr

Inhaltsverzeichnis. Vorlesung Finanzmathe WS2009/2010. 0.1 Umriss... 1

Inhaltsverzeichnis. Vorlesung Finanzmathe WS2009/2010. 0.1 Umriss... 1 Inhaltsverzeichnis Vorlesung Finanzmathe WS2009/2010 0.1 Umriss................................... 1 1 Finanzmärkte und deren Derivate 2 1.1 Optionen: Unterscheidung von Kauf- und Verkaufsoptionen......

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Vorlesungsnotizen Einführung in die Stochastik Hanspeter Schmidli Mathematisches Institut der Universität zu Köln INHALTSVERZEICHNIS iii Inhaltsverzeichnis 1. Diskrete Wahrscheinlichkeitsräume 1 1.1.

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Kreditrisiko am Einzelgeschäft

Kreditrisiko am Einzelgeschäft Kapitel 6 Kreditrisiko am Einzelgeschäft In Kapitel 2 haben wir den Kosten für das Marktpreisrisiko gewidmet und kostenneutrale Strategien entwickelt. In einigen Situation konnten nur noch erwartete Kosten

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate

Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Klaus Pötzelberger Institut für Statistik und Mathematik Wirtschaftsuniversität Wien Inhaltsverzeichnis

Mehr

Die zufällige Irrfahrt einer Aktie

Die zufällige Irrfahrt einer Aktie Die zufällige Irrfahrt einer Aktie Teilnehmer: Daniela Garske (Herder-Oberschule) Joseph Jung (Pamina-Schulzentrum Herxheim) Martin Laudien (Herder-Oberschule) Kaina Schäfer (Herder-Oberschule) Anja Seegert

Mehr

Definition eines Spiels

Definition eines Spiels Definition eines piels 1. Einleitung 1.1 Einführung: Die mathematische pieltheorie beschäftigt sich nicht nur mit der Beschreibung und Analyse von pielen im üblichen inn, sondern allgemein mit Konfliktsituationen

Mehr

Inhaltsverzeichnis. Vorwort zur zweiten Auflage. Vorwort zur ersten Auflage

Inhaltsverzeichnis. Vorwort zur zweiten Auflage. Vorwort zur ersten Auflage Inhaltsverzeichnis Vorwort zur zweiten Auflage Vorwort zur ersten Auflage v viii 1 Märkte und Produkte 1 1.1 Motivation: Das Gesicht der Finanzkrise............. 1 1.2 Grundlegende Begriffe.......................

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Zur Bewertung von Basket Optionen

Zur Bewertung von Basket Optionen Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Zur Bewertung von Basket Optionen Bachelorarbeit August 2 Leo Bronstein MatrikelNummer

Mehr