Halbwertszeit (Barium)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Halbwertszeit (Barium)"

Transkript

1 Universität Potsdam Institut für Physik und Astronomie Grundpraktikum K3 Halbwertszeit (Barium) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment beantragen! Aufgaben 1. Die Spannungscharakteristik eines Geiger-Müller-Zählrohres ist aufzunehmen. Daraus sind die Einsatzspannung und der Plateauanstieg zu bestimmen und ein geeigneter Arbeitspunkt festzulegen Die Zerfallskurve von Barium m 56B ist aufzunehmen. Aus der Zerfallskurve sind die Zerfallskonstante λ und die Halbwertszeit T H zu ermitteln und mit Literaturangaben zu vergleichen. 3. Die Dosisleistung ist am Arbeitsplatz und außerhalb des Gebäudes zu messen (Vergleich mit Literaturangaben). Zubehör Isotopengenerator (Cs-137/Ba-137m), Uranglas, Abschirmkammer mit Fensterzählrohr, Impulsratenmesser, Stoppuhr Grundlagen Radioaktivität bezeichnet die Eigenschaft von bestimmten Substanzen, Strahlung zu emittieren. Die radioaktiven Substanzen sind instabile Isotope 1, d.h. die Atome besitzen einen instabilen Kern, der sich unter Aussendung von ionisierender α-, β- oder γ-strahlung spontan in einen anderen Kern umwandelt. Der dadurch entstehende Tochterkern ist meistens ebenfalls instabil und zerfällt weiter. Die Kernumwandlung wird radioaktiver Zerfall genannt und die daraus entstehende Reihe von radioaktiven Isotopen nennt man die Zerfallsreihe. Es gibt zwei Arten der Umwandlung: α-zerfall: Spontane Emission eines Heliumkerns (2 Protonen + 2 Neutronen). Restkern: Massenzahl -4, Ordnungszahl -2. β-zerfall: Spontane Emission eines Elektrons bzw. Positrons + 1 Neutrino für β - - bzw. β + -Zerfall. Restkern: Massenzahl konstant, Ordnungszahl +1 bzw Isotope: Kerne mit konstanter Protonenzahl und variabler Neutronenzahl 1

2 Man darf sich beim β-zerfall nicht vorstellen, dass sich im Kern schon vorher ein Elektron bzw. Positron befunden hätte. Vielmehr wandelt sich beim β - -Zerfall ein Neutron in ein Proton um, unter Emission eines Elektrons und eines Elektron-Neutrinos 2. Das Elektron wiegt fast nichts und das Neutrino gar nichts, daher bleibt die Massenzahl konstant. Beim β + -Zerfall wandelt sich ein Proton in ein Neutron um, unter Emission eines Positrons und eines Positron-Neutrinos. Gammastrahlung entsteht dann, wenn der α- oder β-zerfall nicht in den energetischen Grundzustand führt. In diesem Fall ist der Tochterkern noch energetisch angeregt. Beim Übergang in den Grundzustand wird diese Anregungsenergie in Form eines γ-quants emittiert. Zerfallsgesetz Ein instabiler Atomkern zerfällt nach einer gewissen Zeit. Wann ein bestimmtes Atom zerfällt, ist absolut zufällig. Es gibt aber ein statistisches Gesetz, welches den Zerfall regelt. Die Aktivität einer radioaktiven Substanz ist definiert durch die Anzahl der Zerfälle pro Zeit, d.h. durch die Zerfallsrate. Wenn also im Zeitintervall dt gerade dn Kerne zerfallen, dann ist die Aktivität gegeben durch: A t = dn dt (1) wobei das Minuszeichen dafür Rechnung trägt, dass beim Zerfall die Anzahl der Kerne abnimmt. Eine Substanz ist umso aktiver, je mehr radioaktive Kerne vorhanden sind. Daher sollte die Aktivität proportional zur Anzahl der Kerne sein, A t = N t. Es ergibt sich also das Zerfallsgesetz dn dt = N t. (2) Dies ist eine Differentialgleichung erster Ordnung mit der Lösung N t = N 0 e t t 0 wobei N 0 die Anzahl der Kerne zur Zeit t 0 darstellt. Setzen wir der Einfachheit halber t 0 = 0, so erhalten wir die folgende kompakte Form des Zerfallsgesetzes N t = N 0 e t. (3) Die Konstante λ nennt man Zerfallskonstante. Offensichtlich findet der Zerfall exponentiell statt. Es gibt also einen festen Wert für die Zeit nach der die Anzahl der radioaktiven Kerne auf die Hälfte gesunken ist. Diese Zeit nennt man die Halbwertszeit T H, und sie lässt sich bestimmen durch N T H = 1 2 N 0. (4) 2 Die Existenz des Neutrinos wurde zunächst rein theoretisch gefordert um die Drehimpulserhaltung zu garantieren. Erst viel später hat man das Neutrino unter hohem Aufwand experimentell nachgewiesen. 2

3 Setzen wir also das exponentielle Zerfallsgesetz ein, erhalten wir N N 0 e T H = 0 2 ln e T 1 H = ln 2 T H = ln2. Damit ergibt sich für die Halbwertszeit T H = ln 2. (5) Messung von Radioaktivität Es gibt viele verschiedene Wege, Radioaktivität zu messen. Grundsätzlich misst man entweder die Aktivität oder die Dosis. Aktivität: Auf die Strahlungsquelle bezogen. 1 Bq = Becquerel = 1 Zerfall pro Sekunde. Ältere Maßeinheit: 1 Ci = 1 Curie = Bq. 1 Curie entspricht der Aktivität von 1g Radium. Dosis: Auf das Absorptionsmedium bezogen. Man unterscheidet: (a) Ionendosis: substanzunabhängig. Ionisierte Ionenpaare pro Masse, 1 R = 1 Röntgen. 1 R = 1 elektrostatische Einheit ( As ) wird ionisiert in 1 cm 3 Luft bei 1 bar und 20. Also 1 R = As/kg. (b) Energiedosis: substanzabhängig. Absorbierte Strahlungsenergie pro Masse, 1 J/kg. Durch Multiplikation der Ionendosis mit der mittleren Ionisierungsenergie der Substanz findet man die zugehörige Energiedosis. Die ist dann substanzabhängig. Für Luft findet man 1 R J/kg, für Wasser 1 R 0.01 J/kg = 1 rd = 1 rad. Die Energiedosis für Wasser entspricht in etwa der Energiedosis für den menschlichen Körper. Weil der so wichtig ist, gibt man dieser Größe eine eigene Einheit, nämlich 1 Gy = 1 Gray. (c) Dosisäquivalent: substanzabhängig. Dosisäquivalent = Energiedosis Qualitätsfaktor. Dieser Qualitätsfaktor (QF) wird festgelegt auf Strahlung QF α 10 β 1 γ 1 3

4 Weil der QF dimensionslos ist, ist die Dimension des Dosisäquivalents dieselbe wie bei der Energiedosis, jedoch nennt man sie anders, nämlich 1 Sv = 1 Sievert, was 1 Gray entspricht. Kurzgefasst: Die Strahlungsbelastung ist substanzabhängig und wird gerne in Sievert (Sv) gemessen. 1 Sievert = 1 Röntgen multipliziert mit der mittleren Ionisierungsenergie von Wasser. Eine wichtige Größe ist auch die Dosisleistung, die als Dosis pro Zeit veranschlagt wird. Die mittlere Strahlendosis, die aus allen natürlichen Strahlenquellen resultiert, beträgt in Deutschland etwa 2,1 msv pro Jahr. Ionisierende Strahlung kann mit einem Geiger-Müller-Zählrohr gemessen werden. Dieses Gerät funktioniert nach dem Prinzip der Gasentladung. Dazu folgende Überlegungen. Die aufgeladenen Platten eines Kondensators entladen sich mit der Zeit über die Luft. Dabei werden Luftmoleküle ionisiert, d.h. das elektrische Feld reißt Elektronen aus ihrer Hülle. Während die entrissenen Elektronen zur Anode wandern, bewegen sich die positiv geladenen Ionen zur Kathode, wodurch der Ladungsunterschied zwischen den Platten und damit die elektrische Spannung allmählich vermindert wird. Liegt nun eine sehr hohe Spannung zwischen den Platten an, so werden die Elektronen und Ionen so stark beschleunigt, dass sie durch den Zusammenstoß mit anderen Molekülen Elektronen aus deren Hülle schlagen und sie damit ebenfalls ionisieren. Diesen Effekt nennt man Stoßionisation. Es ergibt sich ein lawinenartiger Entladungsprozess, den man als Gasentladung bezeichnet. Treten zwischen den Platten ionisierende Strahlen ein, so wird diese Entladung begünstigt. Das Geiger-Müller-Zählrohr besteht nun im wesentlichen aus einem mit einem Edelgas gefüllten Metallzylinder, in dessen Mitte sich ein Draht befindet. Eine Spannungsquelle lädt einen Kondensator auf, dessen Platten mit Zylinder und Draht verbunden sind. Nachdem sich der Kondensator vollständig aufgeladen hat, liegt eine hohe Spannung zwischen Draht und Zylindermantel an. Wenn nun ein γ-quant in den Messzylinder eintritt, dann ionisiert es entlang seiner Bahn die Gasatome. Die entstehenden positiven Ionen wandern zur Zylinderwand, die freigeschlagenen Elektronen wandern zum Draht. Durch die Geometrie der Anordnung ist das elektrische Feld in der Umgebung des Drahtes sehr stark (siehe Abb. 2). Abbildung 2: Die Feldlinien im Zählrohr Daher werden die Elektronen immer stärker beschleunigt, je näher sie dem Draht kommen. Schließlich ist ihre kinetische Energie so hoch, dass sie eine Lawine von Stoßionisationen in Gang bringen, es kommt zur Gasentladung, die Spannung am Kondensator fällt schlagartig ab und der entstehende Stromimpuls wird verstärkt und gezählt. Da das elektrische Feld im Zylinder im Zuge der Entladung zusammenbricht, kommt die Ionisierungslawine zum Erliegen und es kann sich nun wieder eine Spannung aufbauen. Nach einer gewissen Totzeit ist die Spannung wieder hoch genug und das Zählrohr ist wieder sensibel für das nächste γ-quant. Das prinzipielle Schaltbild für 4

5 das Geiger-Müller-Zählrohr ist in Abb. 3 zu sehen. Abbildung 3: Schaltbild für das Geiger-Müller-Zählrohr In der Praxis befindet sich im Messzylinder ein Edelgas, z.b. Argon, und es wird oft noch ein Löschgas hinzugefügt, z.b. Halogene, welches eine Dauerentladung verhindert, indem es die bei den Ionisierungen entstehenden Photonen absorbiert. Die Hochspannung am Zylinder muss so eingestellt werden, dass ohne eintretende ionisierende Strahlung gerade keine Gasentladung stattfindet. Versuchsdurchführung Siehe Platzanweisung! Versuchsauswertung Zu 1. Zu 2. Tragen Sie die gemessenen Impulsraten in Abhängigkeit von der angelegten Spannung auf und diskutieren Sie den sich ergebenden Graphen. Markieren Sie die Einsatzspannung U E, also die Spannung ab welcher das Zählrohr anspricht. Markieren Sie die Arbeitsspannung bei U A = U E + 100V und begründen Sie anhand des Graphen warum dies eine gute Wahl ist. Die Zerfallsreihen sollen folgendermaßen ausgewertet werden: a) Bestimmung der Umgebungsstrahlung (Nullzählrate) durch Mitteilung aus dem konstanten Untergrund am Ende der Zerfallskurve. b) Subtraktion der Umgebungsstrahlung. c) Grafische Näherung zur Ermittlung der Halbwertszeit. d) Logarithmieren der Funktion. Es ergibt sich annähernd eine Gerade. e) Man sieht, dass die hintersten Datenpunkte sehr stark von dem Geradenverlauf abweichen 5

6 (Warum?). Im weiteren wird daher der hintere Teil abgeschnitten bzw. nicht für die lineare Regression benutzt. Dies ist zu begründen. f) Lineare Regression des am besten geeigneten Teilbereichs der Datenpunkte. g) Der Betrag der Steigung entspricht der Zerfallskonstante λ. Daraus ist die Halbwertszeit zu berechnen. Ebenso sind die jeweiligen Standardabweichungen zu bestimmen. h) Das Ergebnis ist mit dem Literaturwert von T = 153 s /1/ zu vergleichen und die Abweichung ist zu diskutieren. Zu 3. Die Messwerte sind miteinander und mit der Angabe zur mittleren Strahlendosis aus allen natürlichen Strahlenquellen zu vergleichen. Hinweise zur Vorbereitung Erläutern Sie die Größen Aktivität und Zählrate. Unterscheiden Sie die Begriffe Nuklid und Isotop. Erläutern Sie die Veränderungen von Kernladungszahl und Massenzahl beim radioaktiven α- bzw. β-zerfall. Erläutern Sie anhand Abb. 4 /6/ die Kernumwandlungen bei beiden Umwandlungsschritten im Isotopengenerator (Cs-137/Ba-137m) Abbildung 4: Umwandlungsschema von Cs-137 6

7 Eigenschaften der α-, β- und γ-strahlung. Erläutern Sie die Herleitung des Zerfallsgesetzes (3). Leiten Sie aus (3) eine Gleichung für die Halbwertszeit T H (5) her! Erläutern Sie Aufbau und Wirkungsweise des Geiger-Müller-Zählrohres. Literatur /1/ Walcher, W.: Praktikum der Physik. Stuttgart 2006 /2/ Bergmann/Schäfer: Lehrbuch der Experimentalphysik, Bd. 4: Teilchen, Berlin 1992 /3/ Bröcker, B.: dtv-atlas zur Atomphysik, München 1997 /4/ Grimsehl, G.: Lehrbuch der Physik, Bd. 4: Struktur der Materie, Leipzig /5/ Hänsel, H., Neumann, W.: Physik, Bd. 3: Atome, Atomkerne, Elementarteilchen, Berlin 1995 /6/ Stolz, W.: Radioaktivität, München 2005 /7/ Vogel, H.: Gerthsen Physik, Berlin 2004 /8/ Herforth, L, Koch, H.: Praktikum der Radioaktivität und der Radiochemie Leipzig

Halbwertszeit (Thoron)

Halbwertszeit (Thoron) Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 05/2013 K2 Halbwertszeit (Thoron) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Versuch 24 Radioaktivität

Versuch 24 Radioaktivität Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 24 Radioaktivität Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 6.3.213 Abgabe: 7.3.213

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

t ½ =ln(2)/(1,2*1/h). 0,7/(1,2*1/h) 0,6h 4

t ½ =ln(2)/(1,2*1/h). 0,7/(1,2*1/h) 0,6h 4 1 Wie kann man α, β, γ-strahlen unterscheiden? 1 Im elektrischen Feld (+ geladene Platte zieht e - an, - geladene Platte α-teilchen) und magnetischen Feld (α rechte Hand- Regel, β linke Hand-Regel). γ-strahlen

Mehr

Praktikum Physik Radioaktivität 13GE RADIOAKTIVITÄT VERSUCHSAUSWERTUNG

Praktikum Physik Radioaktivität 13GE RADIOAKTIVITÄT VERSUCHSAUSWERTUNG RADIOAKIVIÄ VERSUCHSAUSWERUNG I. VERSUCHSZIEL Die Zerfallskurve einer radioaktiven Substanz soll aufgenommen werden. Aus dieser Zerfallskurve soll das Gesetz des radioaktiven Zerfalls hergeleitet werden.

Mehr

1 Natürliche Radioaktivität

1 Natürliche Radioaktivität 1 NATÜRLICHE RADIOAKTIVITÄT 1 1 Natürliche Radioaktivität 1.1 Entdeckung 1896: Henri BEQUEREL: Versuch zur Fluoreszenz = Emission einer durchdringenden Stahlung bei fluoreszierenden Uran-Verbindungen Eigenschaften:

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

11. GV: Radioaktivität

11. GV: Radioaktivität Physik Praktikum I: WS 005/06 Protokoll zum Praktikum Dienstag, 15.11.05 11. GV: Radioaktivität Protokollanten Jörg Mönnich - Anton Friesen - Betreuer R. Kerkhoff Radioaktivität Einleitung Unter Radioaktivität

Mehr

5) Messung radioaktiver Strahlung (1)

5) Messung radioaktiver Strahlung (1) 5) Messung radioaktiver Strahlung (1) Registrierung von Wechselwirkungen zwischen Strahlung und Materie Universelles Prinzip: Messung der Ionisierungswirkung Messung der Ionisierung Messung der Dosis.

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe 1: Radon im Keller a) 222 86Rn hat 86 Protonen, 86 Elektronen und 136 Neutronen. Der Kern hat demnach eine gerade Anzahl Protonen und eine gerade Anzahl Neutronen und gehört

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Reichweite von α-strahlen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist.

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Atome Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Das Atom besitzt einen positiv geladene Atomkern und eine negative Elektronenhülle.

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Halbwertszeit Seite 1

Halbwertszeit Seite 1 1. Aufgabenstellung Halbwertszeit Seite 1 1.1. Die Impulszahl-Spannungs-Charakteristik eines Auslösezählrohrs ist aufzunehmen. Plateaulänge, Plateausteigung und günstigster Arbeitspunkt sind anzugeben.

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 7 Kernphysik 7.1 - Grundversuch Radioaktivität Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 marius.schirmer@gmx.de

Mehr

Versuch 29 Radioaktivität

Versuch 29 Radioaktivität Physikalisches Praktikum Versuch 29 Radioaktivität Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 25.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Versuch 25: Messung ionisierender Strahlung

Versuch 25: Messung ionisierender Strahlung Versuch 25: Messung ionisierender Strahlung Die Abstandsabhängigkeit und der Wirkungsquerschnitt von α- und γ-strahlung aus einem Americium-24-Präparat sollen untersucht werden. In einem zweiten Teil sollen

Mehr

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung.

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. 1803 John Dalton, Atomtheorie 1869 D.I. Mendelejev, Periodensystem 1888 H. Hertz, experimenteller

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur

Mehr

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum Strahlenarten im F.-Praktkum Strahlenart Versuch Energie α-teilchen (Energieverlust) E α < 6 MeV

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Thomas Kuster. 30. Mai 2007

Thomas Kuster. 30. Mai 2007 Zerfälle Thomas Kuster 30. Mai 2007 1 Information ˆ Unterrichtsziele Kernumwandlung kennenlernen (Element wird in ein anderes Element umgewandelt) Die gebildeten Kerne (Tochterkerne) im Periodensystem

Mehr

Zusammenhang. Aktivität Zählrate - Dosisleistung. Strahlungsquelle Aktivität Becquerel. Strahlenbelastung Äquivalentdosisleistung

Zusammenhang. Aktivität Zählrate - Dosisleistung. Strahlungsquelle Aktivität Becquerel. Strahlenbelastung Äquivalentdosisleistung Zusammenhang Aktivität Zählrate - Dosisleistung Strahlungsquelle Aktivität Becquerel Strahlenbelastung Äquivalentdosisleistung µsv/h Strahlungsmessgerät Impulse, Anzahl, Zeit Strahlungsquelle Cs-37 Strahlungsquelle

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 25..203 Oberstufe: se und ausführliche Lösungen zur Klassenarbeit zur Elektrik und Kernphysik se: E Eine Glühlampe 4V/3W (4 Volt, 3 Watt) soll an eine Autobatterie

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

Abschwächung von γ-strahlung

Abschwächung von γ-strahlung K10 Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine

Mehr

Gedanken zur Messtechnik im Strahlenschutz FT-B Ing. Wolfgang Aspek FF Hürm - AFK Mank - BFK Melk

Gedanken zur Messtechnik im Strahlenschutz FT-B Ing. Wolfgang Aspek FF Hürm - AFK Mank - BFK Melk Gedanken zur Messtechnik im Strahlenschutz FT-B Ing. Wolfgang Aspek FF Hürm - AFK Mank - BFK Melk Allgemeine Unfallversicherungsanstalt Unfallverhütungsdienst Wer misst...... misst Mist!! Leerwertmessungen

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Radioaktivität, die natürlichste Sache der Welt (Anhang)

Radioaktivität, die natürlichste Sache der Welt (Anhang) Radioaktivität, die natürlichste Sache der Welt (Anhang) 6. Mai 2014 Inhaltsverzeichnis 1 Anhang 2 1.1 Mathematische Grundlagen.......................... 3 1.1.1 Logarithmieren.............................

Mehr

Aufbau der Atome und Atomkerne

Aufbau der Atome und Atomkerne ufbau der tome und tomkerne tome bestehen aus dem tomkern (d 10-15 m) und der Elektronenhülle (d 10-10 m). Der Raum dazwischen ist leer. (Rutherfordscher Streuversuch (1911): Ernest Rutherford beschoss

Mehr

NR Natürliche Radioaktivität

NR Natürliche Radioaktivität NR Natürliche Radioaktivität Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 rten der Radioaktivität........................... 2 1.2 ktivität und Halbwertszeit.........................

Mehr

Freie Universität Berlin

Freie Universität Berlin 6.6.2014 Freie Universität Berlin - Fachbereich Physik Radioaktiver Zerfall Protokoll zum Versuch des physikalischen Grundpraktikums I Teilnehmer: Florian Conrad: florianc@zedat.fu- berlin.de Ludwig Schuster:

Mehr

Q 4 - Radioaktivität

Q 4 - Radioaktivität Universität - GH Essen Fachbereich 7 Physik 19.9.01 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER Versuch: Q 4 - Radioaktivität 1. Grundlagen Aufbau des Atomkerns, natürliche und künstliche Radioaktivität, Zerfallsreihen,

Mehr

13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats.

13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats. 13 Radioaktivität 13.1 Historisches Röntgen, Becquerel, Curie 13.2 Nachweismethoden Einführungsversuch: Die rad. Strahlung ionisiert die Luft und entlädt ein aufgeladenes Elektroskop a) Ionisationskammer

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. achbereitungsteil (ACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4.1 Radioaktivität Ein Atomkern besteht aus sog. ukleonen: den Protonen (p) und den eutronen (n). Ein Proton besitzt

Mehr

Radon als Gebäudeschadstoff

Radon als Gebäudeschadstoff Fachkongress Asbest- und Bauschadstoffe 09. Dezember 2016 Radon als Gebäudeschadstoff Radonfachstelle Deutschschweiz Institut Energie am Bau /Fachhochschule Nordwestschweiz Falk Dorusch Dipl. Ing. Umwelt-

Mehr

Protokoll zum Grundversuch Radioaktität

Protokoll zum Grundversuch Radioaktität Protokoll zum Grundversuch Radioaktität Fabian Schmid-Michels & Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 12.06.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1 Nuklid....................................

Mehr

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle Chemie Atombau Zusammenfassungen Prüfung Mittwoch, 14. Dezember 2016 Elektrische Ladung Elementarteilchen Kern und Hülle Atomsorten, Nuklide, Isotope Energieniveaus und Schalenmodell Steffi Alle saliorel

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

Skript zum Masterpraktikum. Studiengang: Radiochemie. Radioaktivität und Strahlenschutz

Skript zum Masterpraktikum. Studiengang: Radiochemie. Radioaktivität und Strahlenschutz Skript zum Masterpraktikum Studiengang: Radiochemie Radioaktivität und Strahlenschutz Stand: Sommersemester 2010 1 Gliederung 1. Einführung 1.1. Grundlagen zur Radioaktivität 1.2. Messgrößen der Radioaktivität

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

Neutronenaktivierung (NAK) Fortgeschrittenen Praktikum, SS 2008

Neutronenaktivierung (NAK) Fortgeschrittenen Praktikum, SS 2008 Fortgeschrittenen Praktikum, SS 28 1. Juli 28 Neutronenaktivierung (NAK) Fortgeschrittenen Praktikum, SS 28 Alexander Seizinger, Michael Ziller, Philipp Buchegger, Tobias Müller Betreuer: Georg Meierhofer

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Physik-Vorlesung. Radioaktivität.

Physik-Vorlesung. Radioaktivität. 3 Physik-Vorlesung. Radioaktivität. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH 5 Themen Aufbau der Atomkerns Isotope Zerfallsarten Messgrößen Strahlenschutz 6 Was ist Radioaktivität? Radioaktivität = Umwandlungsprozesse

Mehr

Versuch 1.2: Radioaktivität

Versuch 1.2: Radioaktivität 1 Versuch 1.2: Radioaktivität Sicherheitshinweis: Schwangere dürfen diesen Versuch nicht durchführen. Sollten Sie als Schwangere zu diesem Versuch eingeteilt worden sein, so wenden Sie sich zwecks Zuweisung

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius Physik am Samstagmorgen 19. November 2005 Radioaktivität Ein unbestechlicher Zeitzeuge Christiane Rhodius Archäochronometrie Warum und wie datieren wir? Ereignisse innerhalb der menschlichen Kulturentwicklung

Mehr

Radioaktiver Zerfall

Radioaktiver Zerfall 11.3.2 Radioaktiver Zerfall Betrachtet man einen einzelnen instabilen Atomkern, so kann nicht vorhergesagt werden zu welchem Zeitpunkt der Atomkern zerfällt. So könnte der Atomkern im nächsten Moment,

Mehr

Aktuelles zur Radioaktivität

Aktuelles zur Radioaktivität Aktuelles zur (lat. radius, Strahl) ist die spontane Umwandlung (Zerfall) von Atomkernen. Dabei ändert sich Masse, Kernladung und oder die Energie unter Aussendung einer Strahlung. Radioaktive (instabile)

Mehr

P3 Kernphysik. 25. Mai 2009

P3 Kernphysik. 25. Mai 2009 P3 Kernphysik 25. Mai 2009 β-spektroskopie Gruppe 58 - Saskia Meißner, Arnold Seiler Inhaltsverzeichnis 1 Ziel des Versuchs 2 2 Theoretische Grundlagen 2 2.1 β-zerfall.........................................

Mehr

Versuch 29. Radioaktivität. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 29. Radioaktivität. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 29 Radioaktivität Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Examensaufgaben RADIOAKTIVITÄT

Examensaufgaben RADIOAKTIVITÄT Examensaufgaben RADIOAKTIVITÄT Aufgabe 1 (September 2007) a) Stellen Sie das Grundgesetz des radioaktiven Zerfalls auf und leiten sie aus diesem Gesetz den Zusammenhang zwischen der Halbwertszeit und der

Mehr

1) Targetmasse für neutrinolosen doppelten β-zerfall:

1) Targetmasse für neutrinolosen doppelten β-zerfall: 1) Targetmasse für neutrinolosen doppelten β-zerfall: Ein vielversprechender Kandidat für die Suche nach dem neutrinolosen doppelten β- Zerfall ist. Die experimentelle Observable ist die Halbwertszeit.

Mehr

Thomas Kuster. 30. Mai 2007

Thomas Kuster. 30. Mai 2007 Zerfälle Thomas Kuster 30. Mai 2007 1 Information ˆ Unterrichtsziele Kernumwandlung kennenlernen (Element wird in ein anderes Element umgewandelt) Die gebildeten Kerne (Tochterkerne) im Periodensystem

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Atome wurden lange Zeit als die kleinsten Teilchen angesehen, aus denen die Körper bestehen. Sie geben den Körpern ihre chemischen und physikalischen Eigenschaften. Heute wissen

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2016/17 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie:

Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie: Bildungsstandards Physik - Radioaktivität 1 Radioaktivität LEHRPLANZITAT Das radioaktive Verhalten der Materie: Ausgehend von Alltagsvorstellungen der Schülerinnen und Schüler soll ein grundlegendes Verständnis

Mehr

Der Streuversuch. Klick dich in den Streuversuch ein. Los geht s! Vorüberlegungen. Versuchsaufbau. animierte Versuchsaufbau. Durchführung.

Der Streuversuch. Klick dich in den Streuversuch ein. Los geht s! Vorüberlegungen. Versuchsaufbau. animierte Versuchsaufbau. Durchführung. Der Streuversuch Der Streuversuch wurde in Manchester von den Physikern Rutherford, Geiger und Marsden durchgeführt. Sie begannen 1906 mit dem Versuch und benötigten sieben Jahre um das Geheimnis des Aufbaus

Mehr

Radioaktivität. Strahlenarten und Messgrößen

Radioaktivität. Strahlenarten und Messgrößen Radioaktivität Strahlenarten und Messgrößen Radioaktivität und Strahlenarten Radioaktivität ist die Eigenschaft von Atomkernen, sich unter Aussendung von ionisierender Strahlung umzuwandeln. Es gibt viele

Mehr

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch.

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch. Gruppe Lies den folgenden Text aus einem Biologiebuch.. Notiere das Wachstum der Salmonellen übersichtlich in einer Tabelle. Am Anfang soll eine Salmonelle vorhanden sein. Verwende dabei auch Potenzen..

Mehr

Grundwissen Atome und radioaktiver Zerfall

Grundwissen Atome und radioaktiver Zerfall Atome, Radioaktivität und radioaktive Abfälle Arbeitsblatt 6 1 Grundwissen Atome und radioaktiver Zerfall Repetition zum Atombau Die Anzahl der... geladenen Protonen bestimmt die chemischen Eigenschaften

Mehr

Laden und Entladen eines Kondensators

Laden und Entladen eines Kondensators Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E5 Laden und Entladen eines Kondensators Bei diesem Versuch werden Sie mit dem zeitlichen Verlauf der Spannungen und Ströme beim Aufund

Mehr

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt.

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt. Radioaktivität 1 Die Bausteine des Kernes (n 0 und p + ) halten mittels der sehr starken aber nur über eine sehr kurze Distanz wirkenden Kernkräfte zusammen. Sie verhindern ein Auseinanderbrechen der Kerne

Mehr

Abiturprüfung Physik, Leistungskurs. Aufgabe: Anregung von Vanadium und Silber durch Neutronen

Abiturprüfung Physik, Leistungskurs. Aufgabe: Anregung von Vanadium und Silber durch Neutronen Seite 1 von 6 Abiturprüfung 2013 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Anregung von Vanadium und Silber durch Neutronen Vanadium besteht in der Natur zu 99,75 % aus dem stabilen Isotop 51 23

Mehr

durch Teilungsversuche durch Spektraluntersuchungen Jedes Atom besitzt einen Atomkern, in dem fast die gesamte Masse vereinigt ist.

durch Teilungsversuche durch Spektraluntersuchungen Jedes Atom besitzt einen Atomkern, in dem fast die gesamte Masse vereinigt ist. 1. Kreuze die richtige Aussage über Atome an: Sie sind sehr kleine, unteilbare Körper aus einem einheitlichen (homogenen) Stoff. Sie sind so klein, dass man ihren Aufbau nicht erforschen kann. Sie sind

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde.

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde. Atommodelle 1. Vervollständige den Lückentext. Atome bestehen aus einer mit negativ geladenen und einem mit positiv geladenen und elektrisch neutralen. Die Masse des Atoms ist im konzentriert. Die Massenzahl

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α =δ0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop)

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop) Grundwissen Physik 9. Jahrgangsstufe Gymnasium Eckental I. Elektrik 1. Magnetisches und elektrisches Feld a) Elektrisches Feld Feldbegriff: Im Raum um elektrisch geladene Körper wirkt auf Ladungen eine

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Strahlung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Strahlung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Strahlung Das komplette Material finden Sie hier: Download bei School-Scout.de SCHOOL-SCOUT

Mehr

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus! 1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen

Mehr

Posten 1a. Welcher Wissenschaftler sagte, dass sich die Materie aus unteilbaren Teilchen ("atomos") zusammensetzen würde?

Posten 1a. Welcher Wissenschaftler sagte, dass sich die Materie aus unteilbaren Teilchen (atomos) zusammensetzen würde? Posten 1a Welcher Wissenschaftler sagte, dass sich die Materie aus unteilbaren Teilchen ("atomos") zusammensetzen würde? a) Leukipp von Milet b) Demokrit c) Rutherford d) Thomson (=> Posten 2a) (=> Posten

Mehr