Integration von Ortsgrößen zu Bereichsgrößen

Größe: px
Ab Seite anzeigen:

Download "Integration von Ortsgrößen zu Bereichsgrößen"

Transkript

1 Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen zwischen Otsgößen hevo. Zu den Otsgößen gehöen die beiden Kaftdichten Schubspannung und Duck, die Massendichte und die Geschwindigkeit. Von technischem Inteesse sind neben den Otsgößen auch ihe Mittelwete und die zugehöigen Beeichsgößen. Schubspannungen und Dücke weden übe Flächenbeeiche integiet, um eibungs- und Duckkäfte zu ehalten. Aus de Integation de Dichte übe einen äumlichen Beeich geht die Masse hevo. Und die Integation de Geschwindigkeit übe eine Duchtittsfläche liefet einen Volumenstom. Mittelwete von Otsgößen ehält man in vielen Fällen einfach schon, indem man die zugehöige Beeichsgöße duch den Beeichsinhalt teilt. In einem äumlichen Beeich egibt sich die mittlee Dichte aus Division de Masse des Beeichs duch das Volumen des Beeichs. In einem oh egibt sich die mittlee Geschwindigkeit aus Division des Volumenstoms duch den Queschnitt des ohes. Volumenstom und mittlee Geschwindigkeit de laminaen ohstömung 0 u u max Bild 1: laminae ohstömung, links: Geschwindigkeitspofil, echts: Seitenansicht Das Geschwindigkeitspofil eine laminaen ohstömung ist gegeben duch: (1) Dain sind und de ohadius und die Geschwindigkeit in de ohmitte. Aus dem Geschwindigkeitspofil (intensive Göße bzw. Otsgöße) soll de Volumenstom (extensive Göße bzw. Beeichsgöße) bestimmt weden. De Beeich ist die Queschnittsfläche. echts in Bild 1 ist die Queschnittsfläche A in 5 Keisingflächen mit j = 1 bis 5 aufgeteilt. Sie weden duch Linien gleiche Geschwindigkeit (Isotachen von giechisch tachys: die Geschwindigkeit) begenzt. Bild 2 zeigt die Teilflächen einzeln. Die Teilfläche 1 kann fomal als eine Keisingfläche mit Innenadius 0 aufgefaßt weden Pof. D. Mathias Faaß

2 2 Integation von Otsgößen zu Beeichsgößen DA 5 DA 4 DA 3 DA 2 DA 1 = 1 0,8 0,8 0,6 0,6 0,4 0,4 0,2 0,2 0 Bild 2: Teilflächen De Flächeninhalt de Teilflächen ist (2). Dain sind und de Außen- und de Innenadius de j-ten Teilfläche. Ih Volumenstom egibt sich aus dem Podukt (3). Dain ist die mittlee Geschwindigkeit de j-ten Teilfläche. Sie egibt sich aus Gleichung 1, wenn man dot fü den mittleen adius de Teilfläche einsetzt. Fü die Teilfläche 1, z.b., ist de mittlee Duchmesse. Ihe Fläche ist. Die mittlee Geschwindigkeit betägt in diese Teilfläche. Das egibt auf zwei Stellen geundet einen Teilvolumenstom von fü die Teilfläche 1. Beechnet man alle Teilvolumenstöme in diese Weise und addiet sie, egibt sich folgende Tabelle: Teilfläche i m a u m 1 0 0,1 0,2 0,99 u max 0,04*² π u max 2 0,2 0,3 0,4 0,91 u max 0,11*² π u max 3 0,4 0,5 0,6 0,75 u max 0,15*² π u max 4 0,6 0,7 0,8 0,51 u max 0,14*² π u max 5 0,8 0,9 1 0,19 u max 0,07*² π u max Gesamt 0,51*² π u max Tabelle 1: Summation de Teilvolumenstöme Eine bessee At de Dastellung ist diese: Teilfläche i / m / a / u m /u max 1 0 0,1 0,2 0,99 0,04 2 0,2 0,3 0,4 0,91 0,11 3 0,4 0,5 0,6 0,75 0,15 4 0,6 0,7 0,8 0,51 0,14 5 0,8 0,9 1 0,19 0,07 Gesamt 0,51 Tabelle 2: Summation de Teilvolumenstöme in nomiete Weise 2006 Pof. D. Mathias Faaß

3 Integation von Otsgößen zu Beeichsgößen 3 Die Summe alle Teilvolumenstöme ist de Gesamtvolumenstom. E betägt. Teilt man ihn duch die Queschnittsfläche, ehält man die mittlee Geschwindigkeit im ohqueschnitt. Sie betägt nach diese echnung. Wegen de Flächenunteteilung ist das eine Näheungslösung. Ihe Genauigkeit wid höhe, wenn die Flächen noch feine unteteilt weden. Allgemein gilt fü eine Aufteilung in n Teilflächen: (4). Dain sind und de mittlee adius und die Queschnittsfläche de j-ten Teilfläche. Integation bedeutet, daß man n in einem Genzübegang gegen Unendlich füht. Daduch weden die Teilflächen zu unendlich kleinen Flächenstückchen da. Es egibt sich: (5). Dain bedeutet, daß übe die gesamte Fläche zu integieen ist. da +d d Bild 3: Unendlich kleine Keisingfläche da stellt eine unendlich kleine Keisingfläche im Abstand vom Mittelpunkt des Keises da. Sie hat einen endlichen Umfang. Ihe Stäke stellt eine unendlich kleine Diffeenz des adius da. Deswegen ist es uneheblich, ob ih Umfang an de Innenseite des Keisings, an de Außenseite ode igendwo dazwischen gebildet wid. Ih Flächeninhalt ist: (6). Andes als bildet eine lauffähige Vaiable entlang eine Koodinatenachse, läuft von bis. Gleichung 6 wid nun in Gleichung 5 eingesetzt. Es egibt sich: (7). Die Wete und bilden jetzt die Integationsgenzen eines bestimmten Integals. geht aus Gleichung 1 hevo. Eingesetzt in Gleichung 7 egibt sich: (8). Weil konstant ist, läßt sich diese Ausduck vo das Integal ziehen. Die Umfomung egibt: (9) Pof. D. Mathias Faaß

4 4 Integation von Otsgößen zu Beeichsgößen Dain bildet den Integanden. zeigt an, daß die Integationsvaiable ist. Man löst ein Integal, indem man eine Stammfunktion de Integand ist. Es muß also gelten: findet, deen Ableitung nach de Integationsvaiablen (10). Eine Funktion, die das leistet, ist (11). Dain ist C eine Integationskonstante. Ihe Ableitung nach ist Null. Bei einem bestimmten Integal wid fü zunächst die obee Integationsgenze, hie, in eingesetzt und davon das Egebnis fü die untee Integationgenze, hie, abgezogen: (12). Damit ist das Integal gelöst und kann in Gleichung 9 eingesetzt weden. Fü den Volumenstom egibt sich: (13). Teilt man jetzt wiede duch die Fläche, ekennt man, daß die mittlee Geschwindigkeit de laminaen ohstömung genau halb so goß ist wie die maximale Geschwindigkeit in ohmitte. Volumenstom und mittlee Geschwindigkeit de Schestömung y b d U d d 0 U u Bild 4: Schestömung, links: Geschwindigkeitspofil, echts: Ansicht von echts Die Schestömung ist hie zwischen zwei planpaallelen Platten im Abstand gezeigt. Die obee Platte wid mit de Geschwindigkeit gegen die untee veschoben. Technisch elevante Schestömungen velaufen zwischen Zylinden, die gegeneinande gedeht weden, ode sich dehenden Keisscheiben Pof. D. Mathias Faaß

5 Integation von Otsgößen zu Beeichsgößen 5 echts sind wiede Isotachen in de Seitenansicht gezeigt. Gesucht sind de Volumenstom und die mittlee Geschwindigkeit in de Queschnittsfläche. Man liest aus Bild 4 ab, daß sie und betagen. Zu demselben Egebnis muß die Integation von übe fühen. De Geschwindigkeitsvelauf de Schestömung ist (14). Ih Volumenstom egibt sich zunächst ganz allgemein wiede als (15). y b y+dy y dy 0 Bild 5: Unendlich kleine echteckfläche Das Flächenstück ab: ist wiede so zu legen, daß es von Isotachen begenzt wid. Aus Bild 5 liest man (16). Andes als ist eine lauffähige Integationsvaiable. Sie läuft von bis. Gleichung 16 wid nun zusammen mit Gleichung 14 in Gleichung 15 eingesetzt. Daaus entsteht: (17). Das Integal escheint nun als bestimmtes Integal mit den Beeichsgenzen und. De Integand hat die Stammfunktion. Damit egibt sich (18) woaus sich als mittlee Geschwindigkeit wiede das bekannte Egebnis egibt Pof. D. Mathias Faaß

6 6 Integation von Otsgößen zu Beeichsgößen Übungsaufgabe p 0 p 0 0 p 0 F h h h z Bild 6: Hoizontalkaft auf eine Behältewand Ein zylindefömige Behälte ist flüssigkeitsgefüllt. Sein Duchmesse ist. De Füllstand ist. An de Obefläche de Flüssigkeit und außehalb des Behältes hescht de Umgebungsduck. Die beiden Pofile zeigen Duckveteilungen. An de Außenseite besteht das Pofil aus dem konstanten Umgebungsduck. Im Behälte ist die Duckveteilung gegeben duch (19). Dain ist nach unten geichtet. Gesucht ist die esultieende Hoizontalkaft auf die Behältewand. Sie soll duch Integation des Übeducks übe die Behältewand emittelt weden. Lösung: Pof. D. Mathias Faaß

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Grundlagen der Elektrotechnik II

Grundlagen der Elektrotechnik II Volesungsfolien Gundlagen de Elektotechnik II Lehstuhl fü Allgemeine Elektotechnik und Plasmatechnik Pof. D. P. Awakowicz Ruh Univesität Bochum SS 009 Die Volesung wid in Anlehnung an das Buch von Pof.

Mehr

1 Strömungsmechanische Grundlagen 1

1 Strömungsmechanische Grundlagen 1 Stömungsmechanische Gundlagen -i Stömungsmechanische Gundlagen. Eigenschaften von Gasen und Flüssigkeiten.. Fluide.. Extensive und intensive Gößen..3 Zähigkeit und Fließvehalten 4. Bilanzgleichungen 0.3

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Ein Beitrag zur Elektrodynamik. Bernhard Riemann [Annalen der Physik und Chemie. Bd. 131.]

Ein Beitrag zur Elektrodynamik. Bernhard Riemann [Annalen der Physik und Chemie. Bd. 131.] Ein Beitag zu Elektodynamik. Benhad Riemann [Annalen de Physik und Chemie. Bd. 131.] Tanscibed by D. R. Wilkins Peliminay Vesion: Decembe 1998 Coected: Apil 2 Ein Beitag zu Elektodynamik. Benhad Riemann

Mehr

Technische Mechanik 2 Festigkeitslehre. Kapitel : Torsion

Technische Mechanik 2 Festigkeitslehre. Kapitel : Torsion Technische Mechanik 2 Festigkeitslehe Kapitel : Tosion Pof. D. Alexande Jickeli Pof. D. Alexande Jickeli 2006 Technische Mechanik 2 - Tosion 1 Lenziele Schubspannungen die aufgund von Tosionsbelastungen

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Expeimentalphysik II (Kip SS 29) Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven Das Zwei-Köe-Poblem 9 Woche_Skitoc, /5 agange-gleichngen, Integale e Bewegng, Bahnkven Betachtet ween wei Pnktmassen m n m an en Oten (t n (t, ie übe ein abstansabhängiges Potenial U( miteinane wechselwiken

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1 Konzeptionieung eines Feldsondenmeßplatzes zum EMV-geechten Design von Chip/Multichipmodulen 1 D. Manteuffel, Y. Gao, F. Gustau und I. Wolff Institut fü Mobil- und Satellitenfunktechnik, Cal-Fiedich-Gauß-St.

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g 3..00 Volesun - Bestimmun de Bennweite B G F F Aildunsleichun f ; f wid fest ewählt; wid so lane eändet, is Bild schaf auf Mattscheie escheint. ( ) ( ) ( ) ( ) f f. Methode ( ) ( ) f ± Die folenden Folien

Mehr

KUNDENMASSBLATT. Vermesser: Datum: Bootstyp: Segelnummer: Revier: Kundenadresse. Name: Straße: PLZ/Ort: Tel. (priv.): Tel. (gesch.): Mobilnummer: Fax:

KUNDENMASSBLATT. Vermesser: Datum: Bootstyp: Segelnummer: Revier: Kundenadresse. Name: Straße: PLZ/Ort: Tel. (priv.): Tel. (gesch.): Mobilnummer: Fax: KUNDENASSBLATT Vemesse: Datum: Bootstyp: Segelnumme: Revie: Kundenadesse Name: Staße: PLZ/Ot: Tel. (piv.): Tel. (gesch.): obilnumme: Fax: E-ail: WICHTIG Bitte beachten! Seh geehte Kunde, bitte eschecken

Mehr

Grundbildung Nachholbildung Kauffrau/Kaufmann

Grundbildung Nachholbildung Kauffrau/Kaufmann Gundbildung Nachholbildung Kauffau/Kaufmann mit eidg. Fähigkeitszeugnis Inhaltsvezeichnis Ih Kusstat ist zu 100 % gaantiet. 1. Nachholbildung fü Ewachsene 4 2. Zulassungsbedingungen und Voaussetzungen

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt.

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt. Lichtbechung Veau eines kegeömigen Stahenbündes in eine Sammeinse Bei de Beechnung von Daten optische Ssteme untescheidet man ogende Veahen: Optikechnen tigonometische Beechnung ü Stahen in de Meidionaebene

Mehr

Für den Endkunden: Produkt- und Preissuche

Für den Endkunden: Produkt- und Preissuche Fü den Endkunden: Podukt- und Peissuche Ducke Mit finde.ch bietet PoSelle AG eine eigene, umfassende Podukt- und Peissuchmaschine fü die Beeiche IT und Elektonik. Diese basiet auf de umfassenden Datenbank

Mehr

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging Aufgabenblatt 3 Lösungen A. Wähungsisiko-Hedging. Renditen fü BASF und Baye in EUR Kus in t Kus in t- / Kus in t- Beobachtung fällt daduch weg. Kuse fü BASF und Baye in USD z.b. BASF am 8.05.: EUR 570

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN Spezialgebiet in Physik Maco Masse BG Bluenstasse 2003 Inhaltsvezeichnis 1.Kenfusion 1 1.1. Allgeeines 1 1.2. Veschelzung 1 1.3. Theonukleae Reaktion 1 2.Die

Mehr

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als Übeblick. Vobemekungen. Ideale ose-gas im goßkanonischen Ensemble ose-veteilungsfunktion. Makoskopische esetzung des Gundzustandes. Übegangstempeatu c 4. Spezifische Wäme in de Umgebung von c 5. finit-size

Mehr

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m.

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m. www.schullv.de Basiswissen > Gundlagen > Dynamik Dynamik Skipt PLUS Einfühung Die Dynamik bescheibt die Bewegung von Köpen unte dem Einfluss von Käften. De Begiff stammt von dem giechischen Wot dynamis

Mehr

Modellbasen für virtuelle Behaglichkeitssensoren

Modellbasen für virtuelle Behaglichkeitssensoren Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz felgne@eit.uni-kl.de Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D-67663 Kaiseslauten

Mehr

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation Enegieeffiziente Abscheidung von hochkonzentieten flüssigen Aeosolen mit einem Autogenen Raumladungsgetiebenen Abscheide (ARA) Von de Fakultät fü Umweltwissenschaften und Vefahenstechnik de Bandenbugischen

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM 46 Elektizität 3.2 ELEKTRISCHER STROM Bishe haben wi uns mit statischen Felden beschäftigt. Wi haben dot uhende Ladungen, die ein elektisches Feld ezeugen. Jetzt wollen wi uns dem Fall zuwenden, dass ein

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Beispielsammlung. PS Statistik 1. Abteilungen Hackl und Ledolter

Beispielsammlung. PS Statistik 1. Abteilungen Hackl und Ledolter Beispielsammlung zum PS Statistik 1 Abteilungen Hackl und Ledolte 2 Übungsbeispiele PS Statistik 1 Skiptum zu diese Übungssammlung: Reinhold Hatzinge: Statistik fü Sozial und Witschaftswissenschaften,

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4 Mai 2010 - An alle Haushalte oe, T h Me sen: n i Z meh % 5 2, 3. Jah im 4 VR-FinalSpaen Unse Anlagepodukt spielt Ihnen beeits vo dem esten Anstoß de Fußball-Weltmeisteschaft 2010 in Südafika einen exklusiven

Mehr

Seminarvortrag: Schwarze Löcher und Neutronensterne

Seminarvortrag: Schwarze Löcher und Neutronensterne Seminavotag: Schwaze Löche und Neutonenstene Loenz Stäheli 30.06.2003 Inhaltsvezeichnis 1 Schwazschild-Metik 2 1.1 1. Folgeung: Peiheldehung.................... 4 2 Entwicklungsstufen eines kugelsymmetischen

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Strömungs- und Wärmeübergangseffekte. an der rotierenden temperierten Zylinderwelle. unter Beachtung von Geometrieeinflüssen

Strömungs- und Wärmeübergangseffekte. an der rotierenden temperierten Zylinderwelle. unter Beachtung von Geometrieeinflüssen Stömungs- und Wämeübegangseffekte an de otieenden tempeieten Zylindewelle unte Beachtung on Geometieeinflüssen Uniesität de Bundesweh München Fakultät fü Luft- und Raumfahttechnik Institut fü Themodynamik

Mehr

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen 2 Vowot 4 1. Einfühung 4 2.

Mehr

Oberfläche des Zylinders

Oberfläche des Zylinders Zylinde und Kegel Zylinde: Jede Zylinde hat zwei keisfömige Gundflächen (G), die zueinande paallel sind. Die gekümmte Seitenfläche heißt Mantelfläche (M). De Abstand de beiden Gundflächen voneinande ist

Mehr

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19 Fachbeeich Mathematik/Infomatik Optimieung de Lagehaltung im Kaftfahzeugteile-Gohandel Diplomabeit beabeitet von Diete Stumpe beteut von Pof. D. Olive Vonbege 2. Apil 1996 Diete Stumpe Am Gewenkamp 19

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von Unvebindliche Mustebeechnung fü den Wealthmaste Classic Plan von Die anteilsgebundene Lebensvesicheung mit egelmäßige Beitagszahlung bietet Ihnen die pefekte Kombination aus de Sicheheit eine Kapitallebensvesicheung

Mehr

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung NESER, S., A. SEYFARTH: De Einfluss de Lichtquellengeometie auf die Entfenungsmessung von PMD- Kameas, in Th. Luhmann/Ch. Mülle (Hsg.) Photogammetie-Lasescanning Optische 3D-Messtechni, Beitäge de Oldenbuge

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Relativistische Sterne

Relativistische Sterne Relativistische Stene von Mike Geog Benhadt 18. Oktobe 2010 Im Folgenden wid zunächst ein kuze Abiss de Allgemeinen Relativitätstheoie gegeben und diese auf komakte Stene, d.h. Neutonenstene und Weiße

Mehr

Bedingungen für die Irrelevanz persönlicher Steuern im Capital Asset Pricing Model mit deutschem Steuersystem

Bedingungen für die Irrelevanz persönlicher Steuern im Capital Asset Pricing Model mit deutschem Steuersystem Jög Wiese Bedingungen fü die Ielevanz pesönliche Steuen im Capital Asset Picing Model mit deutschem Steuesystem 003-03 0. Mai 003 übeabeitete Vesion vom 6.06.003 Univesität München, Fakultät fü Betiebswitschaft,

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell Abeitsgemeinschaft Copoate Finance 3. Feb 2011 RKU Heidelbeg David Dell Gundpinzipien de Finanzieung Investition = Entscheidung fü eine bestimmte Vewendungsmöglichkeiten von Kapital Aufgaben de Finanzieung

Mehr

ABSGHIEDVOM GIESSKANNENPRINZIP I I I I I I I. I I I t I I I I. Durch Massenmarketing werden zwar viele Personen gleichzeitig

ABSGHIEDVOM GIESSKANNENPRINZIP I I I I I I I. I I I t I I I I. Durch Massenmarketing werden zwar viele Personen gleichzeitig t DREKTMARKETNG: GEZELTE KUNDENANSPRACHE ABSGHEDVOM GESSKANNENPRNZP Duch Massenmaketing weden zwa viele Pesonen gleichzeitig effeicht, doch meist nicht die ichtigen. Was hat etwa ein Hochhausbewohne von

Mehr

Der eigentliche Druck

Der eigentliche Druck 147 De eigentliche Duck 5 Kamea: Konica Minolta Maxxum 7D Ist das Bild gut vobeeitet und teten keine Pobleme auf, so ist das Ducken mit den heutigen fü Fine-At geeigneten Tintenducken ein Vegnügen. Leide

Mehr

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro 01-U4-JB-2009-Umschlag-Y:01-U4-JB-2008-Umschlag-A 11.03.2010 9:51 Uh Seite 1 JAHRBUCH 2010 29. Euo s unte o f n I Meh sikoi e i d www..de e manag Union Investment Wi optimieen Risikobudgets Union Investment

Mehr

Suche nach Dunkler Materie

Suche nach Dunkler Materie Beobachtungen, Expeimente, Modelle Seminaabeit SS 00 RWTH Aachen - Stefan Höltes Beteue: Pof. C. Bege - 1 - Inhalt Vowot 1 Bestimmung de Masse von Galaxien 1.1 Rotationskuven 1. Leuchtkaft von Stenen 1.

Mehr

Arbeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bordnetze WS03/04. Name: Musterlösung... Vorname:... St. Grp...

Arbeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bordnetze WS03/04. Name: Musterlösung... Vorname:... St. Grp... N Abeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bodnetze WS03/04 Nae: Mustelösung... Vonae:... St. Gp.... etifikat Fahzeugechatonik beabsichtigt: Aufgabenstelle: Pof. D. Weuth, Abeitszeit: 60 in,

Mehr

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009 Mustetexte Auftag nach 11 BDSG Gegenstand Auftag nach 11 BDSG 2009 Soweit die DMC ode eine ihe Efüllungsgehilfen als Datenschutzbeauftagte i.s. des 4f Abs. 2 Satz 3 BDSG bestellt und tätig ist, beziehen

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

4/09. Interview mit Prof. Margrit Kennedy: Komplementärwährungen im Aufwind. Halbjahresbericht: Bilanzsumme wächst weiter. Hauptsitz im neuen Look

4/09. Interview mit Prof. Margrit Kennedy: Komplementärwährungen im Aufwind. Halbjahresbericht: Bilanzsumme wächst weiter. Hauptsitz im neuen Look Inteview mit Pof. Magit Kennedy: Komplementäwähungen im Aufwind 12 Halbjahesbeicht: Bilanzsumme wächst weite Hauptsitz im neuen Look 4 8 www.wibank.ch INHALT Ein neues Kleid fü die WIR Bank in Basel. 8

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

Zur Gleichgewichtsproblematik beim Fahrradfahren

Zur Gleichgewichtsproblematik beim Fahrradfahren technic-didact 9/4, 57 (984). u Gleichgewichtspoblematik beim Fahadfahen Hans Joachim Schlichting Gleichgewicht halten ist die efolgeichste Bewegung des Lebens. Beutelock. Einleitung Die physikalische

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzieung Studiengang B.A. Business Administation Pof. D. Raine Stachuletz Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Somme 2012 slide no.: 1 Handlungsfelde

Mehr

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln WEKA FACHMEDIEN GmbH Technische Spezifikationen fü die Anliefeung von Online-Webemitteln Jonathan Deutekom, 01.07.2012 Webefomen Webefom Beite x Höhe Fullsize Banne 468 x 60 Leadeboad 728 x 90 Rectangle

Mehr

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein.

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein. Physik anwenden und vestehen: Lösunen 5.3 Linsen und optische Instumente 4 Oell Füssli Vela AG 5.3 Linsen und optischen Instumente Linsen 4 ; da die ildweite b vekleinet wid und die ennweite konstant ist,

Mehr

TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG

TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG Abeitsbeeich Theoetische Elektotechnik Pof. D. sc. techn. C. Schuste Paktikumsvesuch: Schimdämpfung PRAKTIKUMSVERSUCH: SCHIRMDÄMPFUNG Ot de Duchfühung: TUHH Habuge

Mehr

Grundlagen der Berichterstattung:

Grundlagen der Berichterstattung: Gundlagen de Beichtestattung: Fima: F. Hoffmann-La Roche AG o Inklusive TAVERO AG (100 % Roche Tochte: Tagesvepflegung und weitee Sevices) Aeal: Roche-Aeal in Basel (Genzachestasse) o Fü einige de Daten

Mehr

Optische Abbildung. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: OA. Fachrichtung Physik

Optische Abbildung. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: OA. Fachrichtung Physik Techische Uivesität Desde achichtug Physik M. Lehma (07/005) Physikalisches Paktikum Vesuch: OA Optische Abbildug Ihaltsvezeichis Ziel des Vesuchs... Gudlage.... Dicke Lise ud Lisesysteme.... Gauß'sche

Mehr

Das Partnerprogramm für Vereine stellt sich vor.

Das Partnerprogramm für Vereine stellt sich vor. 2 1 1 Das Patnepgamm fü Veeine stellt sich v. Gezielt. Spüba. Gt. Obehessische Veeinsabeit hat einen hhen Stellenwet fü jedes einzelne Mitglied, nsee Gesellschaft nd ns, die Spakasse Obehessen. Seit Jahen

Mehr

iaf Institut für angewandte Forschung

iaf Institut für angewandte Forschung iaf Institut fü angewandte Foschung Abschlussbeicht zum Pojekt: Entwicklung eines enegiespaenden Vefahens zum Hochenegiewassestahlen gefödet von de Deutschen Bundesstiftung Umwelt unte dem Az: 23757 Band

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Verschaffe dir den Durchblick!

Verschaffe dir den Durchblick! Veschaffe di den Duchblick! Kennst du schon das geheimnisvolle Vitamin A? Mit folgenden «Duchblicken» tauchst du tiefe in die vebogene Welt de Vitamine und besondes des Vitamins A. Du kannst sowohl alle

Mehr

Herrn N. SALIE danke ich für interessante Diskussionen.

Herrn N. SALIE danke ich für interessante Diskussionen. nen wi, daß das metische Feld im allgemeinen nicht konsevativ ist. Lediglich in dem Fall eines statischen metischen Feldes ( «.,4 = 0) existiet Enegieehaltung: Die bisheigen enegetischen Betachtungen basieen

Mehr

anziehend (wenn qq 1 2 abstoßend (wenn qq 1 2 2 Sorten Ladung: + / - nur eine: Masse, m>0 Kraft entlang Verbindungslinie wie El.-Statik Kraft 1 2 r

anziehend (wenn qq 1 2 abstoßend (wenn qq 1 2 2 Sorten Ladung: + / - nur eine: Masse, m>0 Kraft entlang Verbindungslinie wie El.-Statik Kraft 1 2 r 3. Elektomagnetische Felde 3.. Elektostatische Käfte 3... Coulombgesetz eob.: el. geladene Köpe üben Kaft aufeinande aus Anziehung Abstoßung - - - - Was ist elektische Ladung???? Usache de Kaft? Histoisch:

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Endliche Körper. Von Christiane Telöken und Stefanie Meyer im WS 03/04 Ausgewählte Titel der Kryptologie

Endliche Körper. Von Christiane Telöken und Stefanie Meyer im WS 03/04 Ausgewählte Titel der Kryptologie Endliche Köpe Von Chistiane Telöken und Stefanie Meye im WS 03/04 Ausgewählte Titel de Kyptologie Gliedeung. Einleitung. Kyptologie im Altetum. Definitionen de Kyptologie.3 Kyptologie heute. Endliche Köpe.

Mehr