Thema Transkription und Genregulation Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung

Größe: px
Ab Seite anzeigen:

Download "Thema Transkription und Genregulation Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung"

Transkript

1 Thema Transkription und Genregulation Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung

2 Thema: Gene und Transkription Was ist ein Gen?

3 Heute: Gendefinition: Ein Gen ist ein DNA-Abschnitt, von dem eine biologisch aktive RNA transkribiert werden kann. Zu einem Gen gehören neben dem transkribierten Bereich auch die für die Transkription notwendigen Bereiche wie Promotor, Initiatorregion und weitere cisregulatorische Elemente

4 Genstruktur (grob schematisch) Initiator (region) Kontrollelemente Promotor Transkribierter Bereich Termination Die Genstruktur ist für verschiedene Gene und insbesondere für Pro- und Eukaryoten sehr verschieden. Die obige Skizze zeigt nur sehr schematisch die grundsätzlich zu einem Gen gehörenden DNA-Abschnitte

5 Ein Gen ist durch seine RNA definiert! Gene für mrnas und damit für Polypeptide Gene für trnas Gene für rrnas (ribosomale RNAs) Gene für snrnas (small nuclear RNAs) Gene für microrna/sirnas etc. Gene für sonstige ncrnas (non coding RNAs)

6 Gene haben eine festgelegte Orientierung: immer von 5 nach 3 abgebildet wird der Nicht-Template-Strang (entspricht der sense -RNA)

7 Das zentrale Dogma der Molekulargenetik: Transkription: Umschreibung von DNA in RNA

8 Chemische Unterschiede zwischen RNA und DNA: in der RNA Ribose H 3 2

9 Chemische Unterschiede zwischen RNA und DNA: in der RNA: Uracil statt Thymin Achtung Ausnahme: in trna kommt regelmäßig Thymin vor H Uracil Thymin = 5-Methyl-Uracil

10 Unterschiede zwischen RNA und DNA: RNA ist in der Regel einzelsträngig, bildet aber fast immer durch Rückfaltung partiell Doppelhelices aus. Dadurch entstehen komplizierte Sekundärstrukturen, die über sehr lange evolutionäre Zeiträume konserviert wurden und für die Funktion der RNA sehr wichtig sind

11 Ähnliche Sekundärstruktur der ribosomalen RNA (18s rrna) aus Wasserfloh und Hefe

12 Die Biosynthese der RNA erfolgt von 5 nach 3, der Template-Strang hat die Orientierung 3-5

13 Für die Synthese von RNA werden (Ribo-)Nukleosid-5 triphosphate benötigt

14 Für die Bildung der Phosphodiesterbindung wird Energie benötigt, die durch die Abspaltung von Pyrophosphat aus Nukleosidtriphosphaten gewonnen wird -

15 Die RNA-Synthese ist Template-gesteuert! Der Template-DNA-Strang wird abgelesen von 3 nach 5`! (der Template-Strang entspricht dem antisense Strang!!! )! Die Kettenverlängerung der RNA erfolgt in 5-3 -Richtung A

16 Für die RNA-Synthese sind die RNA-Polymerasen zuständig. Prokaryoten haben nur eine RNA-Polymerase, Eukaryoten drei (vier) verschiedene. (plus mitochondriale und plastidäre RNA-Polymerasen)

17 Die Bakterien-RNA-Polymerase ist ein Molekül aus mehreren Untereinheiten

18 Für die Initiation der RNA-Synthese kommt zu dem Core -Enzym der Sigma -Faktor hinzu

19 Bei Eukaryoten gibt es drei verschiedene kernkodierte RNA- Polymerasen (plus mt und cp RNA-Pol) und damit drei verschiedene Genklassen. Kürzlich ist bei Pflanzen eine vierte RNA-Polymerase entdeckt worden. Pol II Pol III Pol I sirnas Pol IV

20 Vergleich eukaryotischer mit prokaryotischen RNA- Polymerasen Die Abb. zeigt die komplizierte Zusammensetzung der bakteriellen sowie der eukaryotischen und archaeischen und RNA- Polymerasen mit 12 oder mehr Untereinheiten. Bei dieser Tabelle wird auch klar, dass Archaea mit Eukaryoten näher verwandt sind als mit Eubakterien. Die Farbkodierung weist auf sequenzverwandte Polypeptide hin. Man erkennt, dass fast alle Untereinheiten der Archea-RNA-Pol auch bei Eukaryoten zu finden sind.

21 Die drei eukaryotischen RNA-Polymerasen lassen sich anhand ihrer Sensitivität gegenüber den Transkriptionsinhibitoren α-amanitin und Actinomycin D unterscheiden

22 a-amanitin: Gift aus dem Grünen Knollenblätterpilz; tödliche Dosis 0,1mg/kg Körpergewicht

23 α-amanitin hemmt RNA- Pol II bei geringen Konzentrationen bereits vollständig, RNA Pol III wird nur durch hohe Konzentration vollständig gehemmt. RNA Pol I ist a-amanitin resistent. Strukturformeln:

24 Actinomycin D (aus Streptomyces parvulus) hemmt besonders stark die RNA-Pol I, weil es sich bevorzugt an GC-Basenparen anlagert und rrna-gene sehr GC-reich sind.

25

26 Neben den RNA-Polymerasen sind weitere Proteine an dertranskription beteiligt: Die Aktivierung von Genen erfolgt durch Transkriptionsfaktoren (TFs) Es gibt basale TFs (immer vorhanden und für jede Transkription notwendig) und spezifische TFs (gewebs-/zellspezifisch; hormoninduziert; entwicklungsspezifisch etc.) Jede Genklasse hat eigene TFs

27 Die basalen Transkriptionsfaktoren: Je nach Genklasse und RNA-Pol werden die Transkriptionsfaktoren TF IA, TF IB...; TF IIA, TF IIB..; TF IIIA etc. bezeichnet Daneben gibt es eine Reihe anders benannter Proteine, die die Genaktivität steuern und nicht immer Teil des basalen Transkriptionskomplexes sind (z. B. SP1).

28 Präinitiation bei RNA Pol II-Genen: Der Basale Transkriptionskomplex (Präinitiationskomplex) der Pol II Gene: TF IID, TF IIA, TF IIB + Pol II-TFIIF F Präinitiation, stark vereinfacht F

29 Besondere Rolle von TF IID: TF IID enthält als Untereinheit das TBP ( TATA- Box binding Protein) und sog. TBP associated factors (TAF). Das TBP erkennt die TATA-Box (s.u.) und bindet als erstes Protein an den Gen-Promotor. Erst danach erfolgt die Bindung der anderen TFs und schließlich zuletzt die der RNA-Polymerase II in Verbindung mit TF IIF.

30 TBP (TATA-box binding protein) TBP bindet im Gegensatz zu den meisten DNAbindenden Proteinen in der kleinen Grube der DNA TBP krümmt die DNA durch die Bindung und verursacht so einen scharfen Knick TBP vermittelt die Bindung weiterer TFs an den Promotor TBP ist auch bei Genen ohne TATA-Box am Präinitiationskomplex beteiligt, und zwar auch bei Pol I- und Pol III-Genen

31 TBP (TATA-box binding protein) TBP bindet im Gegensatz zu den meisten DNAbindenden Proteinen in der kleinen Grube der DNA

32 TATA-Box binding protein (TBP)

33 Sattel-Struktur des TBP auf der DNA

34

35 Funktionen der einzelnen TFs Phosphorylierung der CTD

36 Präinitiation bei Polymerase I-Genen stark vereinfacht UBF: Upstream binding factor UCE: Upstream control element TBP: TATA-box binding protein SL-1: Selectivity factor 1 Core: core promotor

37 Präinitiation bei Pol III-Genen TF IIIC TBP TF IIIB TF IIIC TBP Pol III TF IIIB TF IIIC TBP TF IIIC TF IIIB Pol III

38 Präinitiation bei Genen Nur für Interessierte! a) mit TATA-Box b) ohne TATA-Box c) mit GC-Box

39 Zusammenfassung: Präinitiationskomplexe der verschiedenen Genklassen

40 DNA-bindende Proteine: Die wichtigsten Interpreter des DNA-Kommando- Codes Die Vermittler zwischen ankommenden Signalen und Umsetzung durch die Gene transaktive Steuerungselemente von Genen oder ganzen Gengruppen Globale oder lokale Modifikatoren der Chromatinstruktur und damit der Genaktivität

41 DNA bindende Proteine haben eine DNA- Bindedomäne und binden oft als Dimere

42 Die wichtigsten DNA-binde-Proteine Helix-turn-Helix Zinkfinger Leucin Zipper

43 Helix Proteine: Basisches Loop DNA-binde- Helix-loop- Helix-Protein (bhlh) Helix

44 ZinkfingerProteine (ZF)

45 Die wichtigsten DNA-binde-Proteine: Zinkfinger-Proteine Cys-His-Typ

46 Die wichtigsten DNA-binde-Proteine: Leucin- Zipper

47 H-Brückenbindungen zwischen Aminosäuren des Proteins und Basen der DNA über die große Grube stellen die sequenzspezifische Bindung sicher

48 Die Aminosäuren der DNA-binde-Proteine interagieren über die große Grube direkt mit den Basen der DNA

49 Transkription und Genregulation bei Prokaryoten Genregulation: An- und Abschaltung von Genen entsprechend Bedarf

50 Die Transkription der Prokaryotengene erfolgt in drei Stufen: 1. Initiation 2. Elongation 3. Termination

51 Für die Initiation ist neben der Core - RNA-Polymerase der Sigma -Faktor notwendig. Der Sigma-Faktor löst sich nach der Synthese von ca. 10 Basen von der RNA-Polymerase ab.

52 Termination (typisch für Prokaryoten) entweder Rhounabhängig durch Terminator RNA-Polymerase Rho Terminator oder Rho-abhängig

53 Promotor ShineDalgarno Terminator Typische Prokaryotengene Gen1 Transkribierter Bereich Gen2 Gen3 Kodierender Bereich Polycistronische mrna

54 Damit ein Gen transkribiert werden kann, braucht es ein Promotor-Element

55 Promotorelemente bei Prokaryoten: Die erste transkribierte Base ist definitionsgemäß die Base +1 bei -10 findet sich die Pribnow -Box bei -35 die TTGAC-Box +1

56 Ganz typisch für regulierte Gene bei Prokaryoten sind die Operons Nach der Operon-Operator Hypothese von Jacob und Monod (Nobelpreis1965) sind Operons sind zusammengefasste, gemeinsam regulierte und gemeinsam transkribierte Gene, die für Enzyme kodieren, die gemeinsam an einem Stoffwechselprozess beteiligt sind und die damit zum gleichen Zeitpunkt in der Zelle benötigt werden.

57 Nobelpreis 1965 Jacob Lwoff Monod

58 Verschiedene Regulationsmodelle

59 Beispiel: das Lac-Operon bei Escherichia coli Im Lac-Operon sind Gene zusammengefasst, die für Enzyme des Lactose-Abbaus/- transports notwendig sind Diese Gene werden gemeinsam als eine polycistronische mrna transkribiert und durch einen Operator gemeinsam reguliert

60 Lac-Operon, stark vereinfacht

61 Die wichtigste Funktion: Spaltung der Lactose in Galactose und Glucose

62 Lac I = Gen für Lac-Repressor Lac(tose)-Operon kodierende Abschnitte Cis regulatorische Abschnitte Lac-Repressor-Protein minimale Transkription Lac-Repressor Ohne Lactose bindet der Repressor an den Operator und verhindert die Transkription

63 Ist Lactose (bzw. Allolactose) als Induktor vorhanden, bindet dieser an den Lac-Repressor und verändert dessen DNA-Binde-Eigenschaft so, dass sich der Repressor von der DNA löst und die Lac-Gene zur Transkription freigibt

64 Der eigentliche Induktor ist die Allolactose

65

66 Die Aktivität des Lac-Operons wird aber nicht nur durch Lactose, sondern auch durch Glucose gesteuert : Ist Glucose ausreichend im Medium vorhanden, werden die Lac-Gene nur schwach transkribiert. Dies macht Sinn, denn Glucose ist für das Bakterium eine sehr viel günstigere Kohlenstoffquelle als Lactose. Wie funktioniert das?

67 Die Steuerung der Transkriptionsrate erfolgt über den camp- Spiegel, der wiederum von der Glucosekonzentration abhängig ist. Es gilt: Hoher Glucosespiegel niedrige camp Konzentration Niedriger Glucosespiegel hohe camp Konzentration denin

68 camp bindet an ein Aktivator-Protein, das CAP (Catabolic activator protein), camp-cap aktiviert (positiv!) die Transkription Bei niedrigem Glucosespiegel:

69 Zusammenfassung

70 Die Struktur des Lac-Repressor

71 Nur für Interessierte: Die Struktur der Lac- Repressions-schleife Die Unterdrückung der Transkription erfolgt durch Erzeugung einer raffinierten Sekundärstruktur, der Repressionschleife. Zwei Repressordimere binden symmetrisch vor und hinter der Promotorregion und zwingen damit die Promotor-DNA in ein geschlossene Schleife (blau), so dass die RNA-Polymerase keine Chance für eine Transkription hat.

72 Struktur des Tryptophan-Operons Aus Hartl und Jones, Genetics

73 Tryptophan -Operon Beispiel für negative Rückkopplung: Die Transkription der Strukturgene für die Tryptophansynthese wird durch die Tryptophankonzentration gesteuert. Das Regulatorprotein liegt als inaktiver Aporepressor vor. Erst durch Bindung von Tryptophan wird aus dem inaktiven Aporepressor der aktive Repressor, der an den Operator bindet und die Transkription stoppt

74 Unabhängig von der Steuerung durch Aporepressor/Repressor hat das Tryptophan-Operon einen weiteren Steuerungsmechanismus, die Attenuation. Die Attenuation (Verringerung) ist eine Art Feinregulation, mithilfe derer die Synthese der Trp-RNAs verringert werden kann, ohne das Trp-Operon ganz abzuschalten. Der Mechanismus ist ein faszinierendes Beispiel dafür, welche raffinierten Möglichkeiten die Natur nutzt, um Organismen den optimalen Umgang mit ihren Ressourcen zu erlauben.

75 Bei hoher Trp-Konzentration finden sich besonders viele Leader-RNA-Moleküle

76 Feinstruktur der Leader-Region des Trp- Operons Aus Hartl und Jones, Genetics

77 Mechanismus der Attenuation im Trp- Operon Aus Hartl und Jones, Genetics

78 Termination durch hohe Tryptophankonzentration

79

Thema Transkription und Genregulation 14.01.2011. Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung

Thema Transkription und Genregulation 14.01.2011. Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung Thema Transkription und Genregulation 14.01.2011 Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung Thema: Gene und Transkription Was ist ein Gen? Heute: Gendefinition:

Mehr

Übung 11 Genregulation bei Prokaryoten

Übung 11 Genregulation bei Prokaryoten Übung 11 Genregulation bei Prokaryoten Konzepte: Differentielle Genexpression Positive Genregulation Negative Genregulation cis-/trans-regulation 1. Auf welchen Ebenen kann Genregulation stattfinden? Definition

Mehr

Expression der genetischen Information Skript: Kapitel 5

Expression der genetischen Information Skript: Kapitel 5 Prof. A. Sartori Medizin 1. Studienjahr Bachelor Molekulare Zellbiologie FS 2013 12. März 2013 Expression der genetischen Information Skript: Kapitel 5 5.1 Struktur der RNA 5.2 RNA-Synthese (Transkription)

Mehr

Bei der Translation wird die Aminosäuresequenz eines Polypeptids durch die Sequenz der Nukleotide in einem mrna- Molekül festgelegt

Bei der Translation wird die Aminosäuresequenz eines Polypeptids durch die Sequenz der Nukleotide in einem mrna- Molekül festgelegt Bei der Translation wird die Aminosäuresequenz eines Polypeptids durch die Sequenz der Nukleotide in einem mrna- Molekül festgelegt 5 mrna Nukleotid 3 N-Terminus Protein C-Terminus Aminosäure Es besteht

Mehr

DNA Replikation ist semikonservativ. Abb. aus Stryer (5th Ed.)

DNA Replikation ist semikonservativ. Abb. aus Stryer (5th Ed.) DNA Replikation ist semikonservativ Entwindung der DNA-Doppelhelix durch eine Helikase Replikationsgabel Eltern-DNA Beide DNA-Stränge werden in 5 3 Richtung synthetisiert DNA-Polymerasen katalysieren die

Mehr

Musterlösung - Übung 5 Vorlesung Bio-Engineering Sommersemester 2008

Musterlösung - Übung 5 Vorlesung Bio-Engineering Sommersemester 2008 Aufgabe 1: Prinzipieller Ablauf der Proteinbiosynthese a) Erklären Sie folgende Begriffe möglichst in Ihren eigenen Worten (1 kurzer Satz): Gen Nukleotid RNA-Polymerase Promotor Codon Anti-Codon Stop-Codon

Mehr

05_10_Genes_info.jpg

05_10_Genes_info.jpg Übertragung der Information von DNA auf RNA - Transkription von RNA auf Protein - Translation Übertragung der Information vom Gen auf Protein 05_10_Genes_info.jpg 1 Figure 6-2 Molecular Biology of the

Mehr

7. Regulation der Genexpression

7. Regulation der Genexpression 7. Regulation der Genexpression 7.1 Regulation der Enzymaktivität Stoffwechselreaktionen können durch Kontrolle der Aktivität der Enzyme, die diese Reaktionen katalysieren, reguliert werden Feedback-Hemmung

Mehr

Vom Gen zum Protein. Zusammenfassung Kapitel 17. Die Verbindung zwischen Gen und Protein. Gene spezifizieren Proteine

Vom Gen zum Protein. Zusammenfassung Kapitel 17. Die Verbindung zwischen Gen und Protein. Gene spezifizieren Proteine Zusammenfassung Kapitel 17 Vom Gen zum Protein Die Verbindung zwischen Gen und Protein Gene spezifizieren Proteine Zellen bauen organische Moleküle über Stoffwechselprozesse auf und ab. Diese Prozesse

Mehr

RNA und Expression RNA

RNA und Expression RNA RNA und Expression Biochemie RNA 1) Die Transkription. 2) RNA-Typen 3) RNA Funktionen 4) RNA Prozessierung 5) RNA und Proteinexpression/Regelung 1 RNA-Typen in E. coli Vergleich RNA-DNA Sequenz 2 Die Transkriptions-Blase

Mehr

Übertragung der in der DNA gespeicherten Information

Übertragung der in der DNA gespeicherten Information Übertragung der in der DNA gespeicherten Information von DNA auf RNA - Transkription von RNA auf Protein - Translation Übertragung der Information vom Gen auf Protein 05_10_Genes_info.jpg 1 Figure 6-2

Mehr

1. Beschriften Sie in der Abbildung die verschiedenen Bereiche auf der DNA und beschreiben Sie ihre Funktion! nicht-codogener Strang.

1. Beschriften Sie in der Abbildung die verschiedenen Bereiche auf der DNA und beschreiben Sie ihre Funktion! nicht-codogener Strang. ARBEITSBLATT 1 Transkription 1. Beschriften Sie in der Abbildung die verschiedenen Bereiche auf der DNA und beschreiben Sie ihre Funktion! Bindungsstelle für RNA-Polymerase RNA-Polymerase nicht-codogener

Mehr

Genstruktur und Genregulation bei Pro- und Eukaryoten (Pt.2)

Genstruktur und Genregulation bei Pro- und Eukaryoten (Pt.2) WS 2015/16 Grundvorlesung Allgemeine und Molekulare Genetik Genstruktur und Genregulation bei Pro- und Eukaryoten (Pt.2) Kap. 33, 36 Thomas Hankeln Institut für Molekulargenetik hankeln@uni-mainz.de Was?

Mehr

Überblick von DNA zu Protein. Biochemie-Seminar WS 04/05

Überblick von DNA zu Protein. Biochemie-Seminar WS 04/05 Überblick von DNA zu Protein Biochemie-Seminar WS 04/05 Replikationsapparat der Zelle Der gesamte Replikationsapparat umfasst über 20 Proteine z.b. DNA Polymerase: katalysiert Zusammenfügen einzelner Bausteine

Mehr

Thema: Eukaryotische Genregulation und RNA- Prozessierung. Spleißen, Capping, Polyadenylierung, RNA-Editieren Erwin R. Schmidt 11. 01.

Thema: Eukaryotische Genregulation und RNA- Prozessierung. Spleißen, Capping, Polyadenylierung, RNA-Editieren Erwin R. Schmidt 11. 01. Thema: Eukaryotische Genregulation und RNA- Prozessierung Spleißen, Capping, Polyadenylierung, RNA-Editieren Erwin R. Schmidt 11. 01. 2013 Worin unterscheiden sich die Gene bzw. die Genprodukte von Eukaryoten

Mehr

Das zentrale Dogma der Molekularbiologie:

Das zentrale Dogma der Molekularbiologie: Das zentrale Dogma der Molekularbiologie: DNA Transkription RNA Translation Protein 1 Begriffserklärungen GENOM: Ist die allgemeine Bezeichnung für die Gesamtheit aller Gene eines Organismus GEN: Ist ein

Mehr

Regulation der Genexpression: regulierbare Promotoren, Proteine und sirna

Regulation der Genexpression: regulierbare Promotoren, Proteine und sirna Regulation der Genexpression: regulierbare Promotoren, Proteine und sirna Biochemie Praktikum Christian Brendel, AG Grez Ebenen der Genregulation in Eukaryoten Cytoplasma DNA Zellkern Introns Exons Chromatin

Mehr

Biochemie Tutorium 9. RNA, Transkription

Biochemie Tutorium 9. RNA, Transkription Biochemie Tutorium 9 RNA, Transkription IMPP-Gegenstandskatalog 3 Genetik 3.1 Nukleinsäuren 3.1.1 Molekulare Struktur, Konformationen und Funktionen der Desoxyribonukleinsäure (DNA); Exon, Intron 3.1.2

Mehr

Kapitel 8 Ò Chromosomen und Genregulation

Kapitel 8 Ò Chromosomen und Genregulation Kapitel 8 Ò Chromosomen und Genregulation 8.1 Struktur eukaryontischer Chromosomen Ein menschlicher Zellkern ist nur zehn Mikrometer gross und (10-9 ) hat zwei Meter DNA drin. Damit es da kein Durcheinander

Mehr

Proteinbiosynthese. Prof. Dr. Albert Duschl

Proteinbiosynthese. Prof. Dr. Albert Duschl Proteinbiosynthese Prof. Dr. Albert Duschl DNA/RNA/Protein Im Bereich von Genen sind die beiden Stränge der DNA nicht funktionell äquivalent, weil nur einer der beiden Stränge transkribiert, d.h. in RNA

Mehr

Genregulation bei Eukaryoten II

Genregulation bei Eukaryoten II Genregulation bei Eukaryoten II Aktivierung und Repression der Transkription erfolgen durch Protein-Protein-Wechselwirkungen Protein-Protein-Wechselwirkungen spielen bei der Genregulation der Eukaryoten

Mehr

Transkription bei Pro- und Eukaryoten

Transkription bei Pro- und Eukaryoten Transkription bei Pro- und Eukaryoten Im Rahmen der Transkription liefert ein Strang der DNA die Information für die Synthese eines RNA-Stranges. Die Enzyme, die in Pro- und Eukaryotenzellen für die Transkription

Mehr

Genstruktur der Eukaryoten

Genstruktur der Eukaryoten Genstruktur der Eukaryoten Abhängig von der Genklasse: 1. RNA Pol I Gene: 18S, 5,8S, 28S rrna 2. RNA Pol II Gene: alle mrnas 3. RNA Pol III Gene: trnas, 5S rrna, einige snrnas Hemmung der Polymerasen durch

Mehr

Die DNA Replikation. Exakte Verdopplung des genetischen Materials. Musterstrang. Neuer Strang. Neuer Strang. Eltern-DNA-Doppelstrang.

Die DNA Replikation. Exakte Verdopplung des genetischen Materials. Musterstrang. Neuer Strang. Neuer Strang. Eltern-DNA-Doppelstrang. Die DNA Replikation Musterstrang Neuer Strang Eltern-DNA-Doppelstrang Neuer Strang Musterstrang Exakte Verdopplung des genetischen Materials Die Reaktion der DNA Polymerase 5`-Triphosphat Nächstes Desoxyribonucleosidtriphosphat

Mehr

Dr. Jens Kurreck. Otto-Hahn-Bau, Thielallee 63, Raum 029 Tel.: 83 85 69 69 Email: jkurreck@chemie.fu-berlin.de

Dr. Jens Kurreck. Otto-Hahn-Bau, Thielallee 63, Raum 029 Tel.: 83 85 69 69 Email: jkurreck@chemie.fu-berlin.de Dr. Jens Kurreck Otto-Hahn-Bau, Thielallee 63, Raum 029 Tel.: 83 85 69 69 Email: jkurreck@chemie.fu-berlin.de Prinzipien genetischer Informationsübertragung Berg, Tymoczko, Stryer: Biochemie 5. Auflage,

Mehr

1. Nachschreibeklausur zur Vorlesung "Genetik" im WS 09/10 A. Matrikel-Nr.: Versuch: 1 2 3

1. Nachschreibeklausur zur Vorlesung Genetik im WS 09/10 A. Matrikel-Nr.: Versuch: 1 2 3 1. Nachschreibeklausur zur Vorlesung "Genetik" im WS 09/10 A Modul: Studiengang: Matrikel-Nr.: Versuch: 1 2 3 Vollständiger Name in Druckbuchstaben (Vorname Nachname): Jena, 01.04.2010, 10 12 Uhr; Unterschrift:

Mehr

Frage 1 A: Wieviele Codone des "Universellen genetisches Codes" kodieren:

Frage 1 A: Wieviele Codone des Universellen genetisches Codes kodieren: Frage 1 A: Wieviele Codone des "Universellen genetisches Codes" kodieren: Aminosäuren Translationsstart Translationsstop? B: Welche biochemische Reaktion wird von Aminoazyl-tRNA-Synthetasen katalysiert?

Mehr

4. Genetische Mechanismen bei Bakterien

4. Genetische Mechanismen bei Bakterien 4. Genetische Mechanismen bei Bakterien 4.1 Makromoleküle und genetische Information Aufbau der DNA Phasen des Informationsflusses Vergleich der Informationsübertragung bei Pro- und Eukaryoten 4.2 Struktur

Mehr

GENE UND TRANSKRIPTION. Genstruktur (schematisch) Gendefinition

GENE UND TRANSKRIPTION. Genstruktur (schematisch) Gendefinition GENE UND TRANSKRIPTION Genstruktur (schematisch) Gendefinition Gen ist DNA-Abschnitt, von dem eine biologische aktive RNA transkribiert werden kann. zu Genen gehören neben transkribierten Bereich auch

Mehr

Klausur zum Modul Molekularbiologie ILS, SS 2010 Freitag 6. August 10:00 Uhr

Klausur zum Modul Molekularbiologie ILS, SS 2010 Freitag 6. August 10:00 Uhr Klausur zum Modul Molekularbiologie ILS, SS 2010 Freitag 6. August 10:00 Uhr Name: Matrikel-Nr.: Code Nummer: Bitte geben Sie Ihre Matrikel-Nr. und Ihren Namen an. Die Code-Nummer erhalten Sie zu Beginn

Mehr

Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie

Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie Datenspeicherung und Datenfluß der Zelle Transkription DNA RNA Translation Protein Aufbau I. Grundlagen der organischen Chemie und

Mehr

Klausur zur Vorlesung Biochemie III im WS 2000/01

Klausur zur Vorlesung Biochemie III im WS 2000/01 Klausur zur Vorlesung Biochemie III im WS 2000/01 am 15.02.2001 von 15.30 17.00 Uhr (insgesamt 100 Punkte, mindestens 40 erforderlich) Bitte Name, Matrikelnummer und Studienfach unbedingt angeben (3 1.

Mehr

Eine neue RNA-Welt. Uralte RNA-Welt Am Anfang der Entstehung des Lebens. Bekannte RNA-Welt Protein-Synthese. Neue RNA-Welt Regulatorische RNA-Moleküle

Eine neue RNA-Welt. Uralte RNA-Welt Am Anfang der Entstehung des Lebens. Bekannte RNA-Welt Protein-Synthese. Neue RNA-Welt Regulatorische RNA-Moleküle RNAs Eine neue RNA-Welt 1. Uralte RNA-Welt Am Anfang der Entstehung des Lebens Bekannte RNA-Welt Protein-Synthese Neue RNA-Welt Regulatorische RNA-Moleküle 2. Eine neue RNA-Welt die Anzahl der nicht-kodierenden

Mehr

Funktion. Transkriptionsfaktor in der Ethylen-Signaltransduktion

Funktion. Transkriptionsfaktor in der Ethylen-Signaltransduktion Modifiziertes Funktion Funktionen Protein des Target Ubiquitinierung Phytochrom Polyubi.: (Ubiquitylierung) AUX/IAA EIN2 Auxin-Signaltransduktion Transkriptionsfaktor in der Ethylen-Signaltransduktion

Mehr

Q1 B1 KW 49. Genregulation

Q1 B1 KW 49. Genregulation Q1 B1 KW 49 Genregulation Transkription Posttranskription elle Modifikation Genregulation bei Eukaryoten Transkriptionsfaktoren (an TATA- Box) oder Silencer (verringert Transkription) und Enhancer (erhöht

Mehr

Aufbau und Funktion des Genoms: Von der Genstruktur zur Funktion

Aufbau und Funktion des Genoms: Von der Genstruktur zur Funktion Assoc. Prof. PD Mag. Dr. Aufbau und Funktion des Genoms: Von der Genstruktur zur Funktion Wien, 2013 Währinger Straße 10, A-1090 Wien helmut.dolznig@meduniwien.ac.at www.meduniwien.ac.at/medizinische-genetik

Mehr

Stochastische Genexpression

Stochastische Genexpression Stochastische Genexpression Genetische Schalter und Multistabilität Vorlesung System-Biophysik 12. Dez. 2008 Literatur Kaern et al. Nature Reviews Genetics Vol.6 p.451 (2005) Ozbudak, Oudenaarden et al

Mehr

Expressionskontrolle in Eukaryonten

Expressionskontrolle in Eukaryonten Expressionskontrolle in Eukaryonten Warum muss Genexpression kontrolliert werden? 1. Gewebsspezifische Kontrolle - nicht jedes Genprodukt ist in allen Zellen erforderlich - manche Genprodukte werden ausschliesslich

Mehr

8. Translation. Konzepte: Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation - Elongation - Termination

8. Translation. Konzepte: Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation - Elongation - Termination 8. Translation Konzepte: Translation benötigt trnas und Ribosomen Genetischer Code Initiation - Elongation - Termination 1. Welche Typen von RNAs gibt es und welches sind ihre Funktionen? mouse human bacteria

Mehr

Einführung Nukleinsäuren

Einführung Nukleinsäuren Einführung Nukleinsäuren Dr. Kristian M. Müller Institut für Biologie III Albert-Ludwigs-Universität Freiburg Einführung 1. Semester, WiSe 2007/2008 Historischer Überblick Literatur Bilder aus: Taschenatlas

Mehr

Center for Biotechnology, Bielefeld

Center for Biotechnology, Bielefeld Andreas Albersmeier CeBiTec Bielefeld 3. Life Science Conference Analytik Jena Jena 14.05.2014 Center for Biotechnology, Bielefeld sketchup.google.com Genomik Transkriptomik Proteomics Metabolomics Genom

Mehr

Antwort: 2.Uracil. Antwort: 2. durch Wasserstoffverbindungen. Adenin, Cystein und Guanin kommen alle in der RNA und DNA vor.

Antwort: 2.Uracil. Antwort: 2. durch Wasserstoffverbindungen. Adenin, Cystein und Guanin kommen alle in der RNA und DNA vor. Antwort: 2.Uracil Adenin, Cystein und Guanin kommen alle in der RNA und DNA vor. Thymin kommt nur in der DNA vor; Uracil nimmt seinen Platz in den RNA- Molekülen ein. Antwort: 2. durch Wasserstoffverbindungen

Mehr

Transkription bei Prokaryoten

Transkription bei Prokaryoten Transkription bei Prokaryoten Hinweis: Im Atelier finden Sie die CD "The Nature of Genes". Mittels Tutorials und Aufgaben werden die wichtigsten Themen der Molekularbiologie leicht verständlich vermittelt.

Mehr

Von der DNA zum Eiweißmolekül Die Proteinbiosynthese. Ribosom

Von der DNA zum Eiweißmolekül Die Proteinbiosynthese. Ribosom Von der DNA zum Eiweißmolekül Die Proteinbiosynthese Ribosom Wiederholung: DNA-Replikation und Chromosomenkondensation / Mitose Jede Zelle macht von Teilung zu Teilung einen Zellzyklus durch, der aus einer

Mehr

Wiederholunng. Klassische Genetik

Wiederholunng. Klassische Genetik Wiederholunng Klassische Genetik Mendelsche Regeln Uniformitätsregel Spaltungsregel Freie Kombinierbarkeit Koppelung von Genen Polygene: mehre Gene für ein Merkmal Pleiotropie: 1 Gen steuert mehrere Merkmale

Mehr

Die Regulation der Transkription ist eine Schnittstelle zwischen Zellwachstum und HIV-stimulierter Genexpression

Die Regulation der Transkription ist eine Schnittstelle zwischen Zellwachstum und HIV-stimulierter Genexpression Schulte, Antje et al. Die Regulation der Transkription... Tätigkeitsbericht 2007 Struktur- und Zellbiologie Die Regulation der Transkription ist eine Schnittstelle zwischen Zellwachstum und HIV-stimulierter

Mehr

13 Eukaryotische Transkription: Funktion und Regulation der RNA-Polymerasen

13 Eukaryotische Transkription: Funktion und Regulation der RNA-Polymerasen Eukaryotische Transkription: Funktion und Regulation der RNA-olymerasen Alfred Nordheim.2 rinzipien der eukaryotischen Transkription.1 Einleitung Zur Aufrechterhaltung ihrer physiologischen Leistungen

Mehr

Molekularbiologie. fur Biologen, Biochemiker, Pharmazeuten und Mediziner. Verdammt clever!

Molekularbiologie. fur Biologen, Biochemiker, Pharmazeuten und Mediziner. Verdammt clever! Brochure More information from http://www.researchandmarkets.com/reports/3148661/ Molekularbiologie. fur Biologen, Biochemiker, Pharmazeuten und Mediziner. Verdammt clever! Description: Kompakt und»verdammt

Mehr

Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli.

Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli. Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli. zirkuläres bakterielles Chromosom Replikation (Erstellung einer identischen Kopie des genetischen Materials) MPM 1 DNA-Polymerasen

Mehr

Molekulargenetik 1. 1.1 DNA-Struktur. 1.1.1 Nukleotide

Molekulargenetik 1. 1.1 DNA-Struktur. 1.1.1 Nukleotide O:/Wiley/Reihe_verdammt_klever/Fletcher/3d/c01.3d from 15.08.2013 17:16:38 1 Molekulargenetik 1 In diesem Kapitel geht es um diese Themen: DNA-Struktur Gene Der genetische Code Von der DNA zum Protein

Mehr

Synthese und Prozessierung von RNA

Synthese und Prozessierung von RNA Vertretung durch Frank Breitling (Institut für Mikrostrukturtechnik (IMT), Campus Nord) Vorlesungsdoppelstunde am 25.06.2015 Basis der Vorlesung: Stryer, Biochemie, 6. Auflage, Kapitel 29 Synthese und

Mehr

Nachlese zu den Referaten

Nachlese zu den Referaten Nachlese zu den Referaten Referate Die Themen Phylogenie Aminosäurematrizen für die Eukaryontenphylogenie Ansätze für die Prokaryontenphylogenie Vergleichende Sequenzierung Spezieswahl zur Informationsoptimierung

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Regulation www.icbm.de/pmbio Mensch und Affe Was unterscheidet uns vom Affen? 5 %? 1 Nachbar Was unterscheidet Sie von Ihrem Nachbarn? Was unterscheidet uns vom Affen? Was unterscheidet

Mehr

Aufbau, Struktur, Funktion von DNA, RNA und Proteinen

Aufbau, Struktur, Funktion von DNA, RNA und Proteinen Aufbau, Struktur, Funktion von DNA, RNA und Proteinen Mitarbeiterseminar der Medizinischen Fakultät Ruhr-Universität Bochum Andreas Friebe Abteilung für Pharmakologie und Toxikologie Aufbau, Struktur,

Mehr

Inhaltsverzeichnis. 1. Lebensformen: Zellen mit und ohne Kern... 3. 2. DNA: Träger der genetischen Information... 9

Inhaltsverzeichnis. 1. Lebensformen: Zellen mit und ohne Kern... 3. 2. DNA: Träger der genetischen Information... 9 Vorwort IX Teil I Grundlagen 1. Lebensformen: Zellen mit und ohne Kern... 3 Eukaryoten... 4 Prokaryoten... 6 Literatur... 8 2. DNA: Träger der genetischen Information... 9 Bausteine: Nucleotide... 10 Doppelhelix...

Mehr

Genexpressionsregulation

Genexpressionsregulation Genexpressionsregulation Genexpressionsregulation Different tissue types 1 2 3 4 5 6 7 8 Taken from Caron et al., 2001 Verschiedene Ebenen der Genexpressionsregulation Epigenetic mechanisms Transkriptionskontrolle

Mehr

Kontrolle der Genexpression auf mrna-ebene. Abb. aus Stryer (5th Ed.)

Kontrolle der Genexpression auf mrna-ebene. Abb. aus Stryer (5th Ed.) Kontrolle der Genexpression auf mrna-ebene Abb. aus Stryer (5th Ed.) RNA interference (RNAi) sirna (small interfering RNA) mirna (micro RNA) Abb. aus Stryer (5th Ed.) Transcriptional silencing Inhibition

Mehr

Molekulare Mechanismen der Signaltransduktion

Molekulare Mechanismen der Signaltransduktion Molekulare Mechanismen der Signaltransduktion 07 - Identifizierung von ARF1 + Hinweise für Vorträge Folien: http://tinyurl.com/modul-mms http://www.pnas.org/content/111/14/5427/f1.large.jpg neues Modell

Mehr

Unterschiede zwischen Prokaryoten und. Eukaryont. Unterschiede prokaryotische eukaryotische Zelle. Zellaufbau Prokaryoten. Zellaufbau Eukaryoten

Unterschiede zwischen Prokaryoten und. Eukaryont. Unterschiede prokaryotische eukaryotische Zelle. Zellaufbau Prokaryoten. Zellaufbau Eukaryoten Unterschiede zwischen Prokaryoten und Prokaryoten lassen sich in 2 Reiche unterteilen: Eubakterien und Archaebakterien werden in 4 Reiche unterteilt: Protozoen (Einzeller), Pilze, Pflanzen und Tiere Unterschiede

Mehr

Einsatz Neuronaler Netze für die Erkennung und Klassifizierung von Promotorstrukturen in genomischen DNA Sequenzen

Einsatz Neuronaler Netze für die Erkennung und Klassifizierung von Promotorstrukturen in genomischen DNA Sequenzen Informatik VII - Theoretische Informatik und Grundlagen der künstlichen Intelligenz Einsatz Neuronaler Netze für die Erkennung und Klassifizierung von Promotorstrukturen in genomischen DNA Sequenzen Korbinian

Mehr

Stand von letzter Woche

Stand von letzter Woche RUB ECR1 AXR1 Stand von letzter Woche E2 U? E1-like AXR1 Repressor ARF1 Proteasom AuxRE Repressor wird sehr schnell abgebaut notwendig für Auxinantwort evtl. Substrat für SCF Identifikation des SCF-Ubiquitin

Mehr

Praktikum Biochemie Biotechnologie (Molekularbiologie & Biochemie) Bettina Siebers

Praktikum Biochemie Biotechnologie (Molekularbiologie & Biochemie) Bettina Siebers Praktikum Biochemie Biotechnologie (Molekularbiologie & Biochemie) Bettina Siebers Protein Expression Genomische DNA PCR Vektormolekül (Plasmid) Escherichia coli Reinigung Protein (1) Plasmidpräparation

Mehr

Unterschied Tiere, Pflanzen, Bakterien u. Pilze und die Zellorganellen

Unterschied Tiere, Pflanzen, Bakterien u. Pilze und die Zellorganellen Unterschied Tiere, Pflanzen, Bakterien u. Pilze und die Zellorganellen Die Organellen der Zelle sind sozusagen die Organe die verschiedene Funktionen in der Zelle ausführen. Wir unterscheiden Tierische

Mehr

Verbesserte Basenpaarung bei DNA-Analysen

Verbesserte Basenpaarung bei DNA-Analysen Powered by Seiten-Adresse: https://www.gesundheitsindustriebw.de/de/fachbeitrag/aktuell/verbesserte-basenpaarungbei-dna-analysen/ Verbesserte Basenpaarung bei DNA-Analysen Ein Team aus der Organischen

Mehr

MOL.504 Analyse von DNA- und Proteinsequenzen

MOL.504 Analyse von DNA- und Proteinsequenzen MOL.504 Analyse von DNA- und Proteinsequenzen Kurs 1 Monika Oberer, Karl Gruber MOL.504 Modul-Übersicht Einführung, Datenbanken BLAST-Suche, Sequenzalignment Proteinstrukturen Virtuelles Klonieren Abschlusstest

Mehr

Versuch 9 SDS - PAGE

Versuch 9 SDS - PAGE Versuch 9 SDS - PAGE Protokollant: E-mail: Studiengang: Gruppen-Nr: Semester: Betreuer: Max Mustermann max@quantentunnel.de X X X Dr. Tina Endres & Dr. Claudia Prinzen Wird benotet?: Einleitung Ziel des

Mehr

DNA versus RNA. RNA Instabilität

DNA versus RNA. RNA Instabilität DNA versus RNA DNA stellt den eigentlichen Speicher genetischer Information dar, während RNA als Informationsüberträger und katalytisch in der Proteinbiosynthese agiert. Warum dient DNA und nicht RNA als

Mehr

DNA, RNA und der Fluss der genetischen Information

DNA, RNA und der Fluss der genetischen Information Vertretung durch Frank Breitling (Institut für Mikrostrukturtechnik (IMT), Campus Nord; www.imt.kit.edu/529.php) Vorlesungsdoppelstunde am 25.06.2015 Basis der Vorlesung: Stryer, Biochemie, 6. Auflage,

Mehr

Bio-Datenbanken. Einführung in die Bioinformatik

Bio-Datenbanken. Einführung in die Bioinformatik Bio-Datenbanken Einführung in die Bioinformatik Bearbeiter: Torsten Glomb Betreuer: Dr. Dieter Sosna Inhalt Einleitung I Proteine I.1 Aminosäuren I.2 Peptidbindung I.3 Primärstuktur: Sequenz der Aminosäuren

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie (2) Grundlagen der Physiologie Klassifizierung und Stammbaum aller Lebewesen www.icbm.de/pmbio Taxonomie Ziel: System mit Übereinstimmung zur natürlichen Verwandtschaft, der Phylogenie 1 Taxonomie 2 Was

Mehr

RNA-Prozessierung Hans-Georg Kräusslich Abteilung Virologie 08.05.07

RNA-Prozessierung Hans-Georg Kräusslich Abteilung Virologie 08.05.07 RNA-Prozessierung Hans-Georg Kräusslich Abteilung Virologie 08.05.07 Hinzufügen von Sequenzen 5 cap 3 PolyA Einige nt durch Editing Entfernen von Sequenzen Splicing von Introns Degradation Sequenzänderung

Mehr

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2014

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2014 Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2014 Fragen für die Übungsstunde 8 (14.07-18.07.) 1) Von der DNA-Sequenz zum Protein Sie können

Mehr

Träger der Erbinformation sind die Nukleinsäuren. Es handelt sich hierbei um hochmolekulare lineare Kettenmoleküle, die aus durch

Träger der Erbinformation sind die Nukleinsäuren. Es handelt sich hierbei um hochmolekulare lineare Kettenmoleküle, die aus durch Achtung Die folgenden Texte sind als Stichworte für die Klausurvorbereitung zu sehen. Keinesfalls sind die Fragen in der Klausur auf den Inhalt dieser Folien beschränkt, sondern werden aus dem Stoff der

Mehr

Local Structures (Examples)

Local Structures (Examples) Lokale Strukturen Local Structures (Examples) cruciform from: NAR 1995 23 11, 1977-1983 H-DNA may play a role in eukaryote transcription (only weak evidence) Funktionen lokaler Strukturen (Beispiel) Struktur

Mehr

5 Expression der genetischen Information - März 2009

5 Expression der genetischen Information - März 2009 Page 1 of 21 GRUNDLAGEN DER MOLEKULARBIOLOGIE Prof. Dr. Anne Müller 5 Expression der genetischen Information 5.1 Struktur der RNA 5.2 RNA-Synthese (Transkription) 5.3 RNA-Polymerase 5.4 Promotoren 5.5

Mehr

Zelluläre Reproduktion: Zellzyklus. Regulation des Zellzyklus - Proliferation

Zelluläre Reproduktion: Zellzyklus. Regulation des Zellzyklus - Proliferation Zelluläre Reproduktion: Zellzyklus Regulation des Zellzyklus - Proliferation Alle Zellen entstehen durch Zellteilung Der Zellzyklus kann in vier Haupt-Phasen eingeteilt werden Interphase Zellwachstum;

Mehr

Mobile Genetische Elemente / Transposition

Mobile Genetische Elemente / Transposition Mobile Genetische Elemente / Transposition Transposition Retrotransposition / Retroviren repetitive Elemente mobile Elemente und Genomevolution / -regulation Gentherapie Berit Jungnickel Institut für Klinische

Mehr

IV. Übungsaufgaben für die Jahrgangstufe 9 & 10

IV. Übungsaufgaben für die Jahrgangstufe 9 & 10 IV. Übungsaufgaben für die Jahrgangstufe 9 & 10 Von der Erbanlage zum Erbmerkmal: 34) Welche Aufgaben haben Chromosomen? 35) Zeichne und benenne die Teile eines Chromosoms, wie sie im Lichtmikroskop während

Mehr

Alternative Methoden der RNA-Analyse

Alternative Methoden der RNA-Analyse Alternative Methoden der RNA-Analyse In diesem Versuch wurde die Northern Blot Hybridisierung zur Analyse isolierter mrna eingesetzt. Mit dieser Technik können Größe und Menge einer spezifischen RNA bestimmt

Mehr

RNA-Regulationsmechanismen: RNA Interferenz

RNA-Regulationsmechanismen: RNA Interferenz RNA-Regulationsmechanismen: RNA Interferenz Vorlesung System-Biophysik 19. Dez. 2008 Literatur Martens: BIOspektrum 4/02 8. Jahrgang M. Kuhlmann: Biol. Unserer Zeit Nr.3 (2004), S. 142. Genregulation durch

Mehr

1. Definition und Mechanismen

1. Definition und Mechanismen Zusammenfassung 1. Definition und Mechanismen Epigenetik (von griechisch epi- über ) bezeichnet erbliche Veränderungen in der Genexpression, die nicht von Veränderungen in der DNA Sequenz (Mutationen)

Mehr

Grundlagen der Molekulargenetik

Grundlagen der Molekulargenetik Mathematik und Naturwissenschaften Psychologie Differentielle- & Persönlichkeitspsychologie Grundlagen der Molekulargenetik Dresden, 11.11.2010 Charlotte Bauer Gliederung 1. Speicherung genetischer Information

Mehr

Das Paper von heute. Samuel Grimm & Jan Kemna

Das Paper von heute. Samuel Grimm & Jan Kemna Das Paper von heute Samuel Grimm & Jan Kemna Bisheriges Modell Was bereits bekannt war - TIR1 ist an Auxinantwort (Zellteilung, Elongation, Differenzierung) beteiligt, im selben Signalweg wie AXR1 - TIR1

Mehr

Thema Gentechnologie. Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung

Thema Gentechnologie. Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung Thema Gentechnologie Erwin R. Schmidt Institut für Molekulargenetik Gentechnologische Sicherheitsforschung & Beratung Die Genklonierung in Bakterien Vektor-DNA Spender-DNA Restriktionsenzym Rekombinante

Mehr

Über die Autorin 7 Über die Überarbeiterin 7 Über die Übersetzer 7. Einführung 19

Über die Autorin 7 Über die Überarbeiterin 7 Über die Übersetzer 7. Einführung 19 Inhaltsverzeichnis Über die Autorin 7 Über die Überarbeiterin 7 Über die Übersetzer 7 Einführung 19 Über dieses Buch 19 Konventionen in diesem Buch 19 Was Sie nicht lesen müssen 20 Törichte Annahmen über

Mehr

Was ist Wirkstoffdesign?

Was ist Wirkstoffdesign? Was ist Wirkstoffdesign? Eine Einführung für Nicht-Fachleute Arzneimittel hat vermutlich schon jeder von uns eingenommen. Vielleicht hat sich der eine oder andere dabei gefragt, was passiert eigentlich

Mehr

Grundlegende Experimente der Molekulargenetik

Grundlegende Experimente der Molekulargenetik Übung 12 Wiederholung/Zusatzübung Inhalte: Mendelscher Erbgang Grundlegende Experimente der Molekulargenetik Transposons Methoden 1. Sie haben drei runde, gelbe Erbsen (A, B und C). Aus jeder der drei

Mehr

Mechanismen funktioneller Varianten: die Liste wächst

Mechanismen funktioneller Varianten: die Liste wächst Mechanismen funktioneller Varianten: die Liste wächst Martin Hersberger Abteilung für Klinische Chemie und Biochemie Universitäts-Kinderspital Zürich Genetische Varianten gestern Funktionelle Varianten

Mehr

1. PCR Polymerase-Kettenreaktion

1. PCR Polymerase-Kettenreaktion entechnische Verfahren 1. PCR Polymerase-Kettenreaktion Die PCR (engl. Polymerase Chain Reaction) ist eine Methode, um die DNA zu vervielfältigen, ohne einen lebenden Organismus, wie z.b. Escherichia coli

Mehr

Untersuchungen zur Rolle des Transkriptionsfaktors Rrn3p in der wachstumsabhängigen Regulation der rrna-synthese

Untersuchungen zur Rolle des Transkriptionsfaktors Rrn3p in der wachstumsabhängigen Regulation der rrna-synthese Untersuchungen zur Rolle des Transkriptionsfaktors Rrn3p in der wachstumsabhängigen Regulation der rrna-synthese DISSERTATION zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der

Mehr

Foliensatz; Arbeitsblatt; Internet. Je nach chemischem Wissen können die Proteine noch detaillierter besprochen werden.

Foliensatz; Arbeitsblatt; Internet. Je nach chemischem Wissen können die Proteine noch detaillierter besprochen werden. 03 Arbeitsauftrag Arbeitsauftrag Ziel: Anhand des Foliensatzes soll die Bildung und der Aufbau des Proteinhormons Insulin erklärt werden. Danach soll kurz erklärt werden, wie man künstlich Insulin herstellt.

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. 1. Einleitung... 1. 2. Ergebnisse... 24. 3. Diskussion... 80. 4. Material... 94

Inhaltsverzeichnis. Inhaltsverzeichnis. 1. Einleitung... 1. 2. Ergebnisse... 24. 3. Diskussion... 80. 4. Material... 94 1 Zusammenfassung Die 6S RNA aus E. coli ist eine stabile regulatorische RNA mit einer charakteristischen hoch konservierten Sekundärstruktur, die sowohl an die 70 -assoziierte RNA-Polymerase als auch

Mehr

If you can't study function, study structure. Vom Molekül in der Ursuppe bis zur ersten Zelle war es ein langer Weg:

If you can't study function, study structure. Vom Molekül in der Ursuppe bis zur ersten Zelle war es ein langer Weg: Kapitel 4: ANATOMIE EINER EUKARYOTENZELLE Inhalt: EINLEITUNG... 53 BESTANDTEILE EINER EUKARYOTENZELLE... 55 MEMBRANVERBINDUNGEN... 57 GEWEBE UND ORGANE... 57 LITERATUR...57 LINKS... 57 Einleitung If you

Mehr

Molekulare Mechanismen der Signaltransduktion. 06 - Kartierung des AXR1 Gens + early auxin-induced genes Folien: http://tinyurl.

Molekulare Mechanismen der Signaltransduktion. 06 - Kartierung des AXR1 Gens + early auxin-induced genes Folien: http://tinyurl. Molekulare Mechanismen der Signaltransduktion 06 - Kartierung des AXR1 Gens + early auxin-induced genes Folien: http://tinyurl.com/modul-mms bisheriges Modell auxin auxin AXR1 auxin response AXR1 potentieller

Mehr

Klonierung von S2P Rolle der M19-Zellen. POL-Seminar der Biochemie II 13.02.2007 Sebastian Gabriel

Klonierung von S2P Rolle der M19-Zellen. POL-Seminar der Biochemie II 13.02.2007 Sebastian Gabriel Klonierung von S2P Rolle der M19-Zellen POL-Seminar der Biochemie II 13.02.2007 Sebastian Gabriel Inhalt 1. Was ist eine humane genomische DNA-Bank? 2. Unterschied zwischen cdna-bank und genomischer DNA-Bank?

Mehr

KV: DNA-Replikation Michael Altmann

KV: DNA-Replikation Michael Altmann Institut für Biochemie und Molekulare Medizin KV: DNA-Replikation Michael Altmann Herbstsemester 2008/2009 Übersicht VL DNA-Replikation 1.) Das Zentraldogma der Molekularbiologie 1.) Semikonservative Replikation

Mehr

Grundlagen Genetik. Dipl.- Psych. Silja Bellingrath

Grundlagen Genetik. Dipl.- Psych. Silja Bellingrath Grundlagen Genetik Dipl.- Psych. Silja Bellingrath Infos zur Klausur Dauer: 11/2 Stunden (maximal) Keine Noten, nur bestanden versus nicht bestanden Inhalt: Grundlage sind die Folien zum Seminar; geprüft

Mehr

Transcriptomics: Analysis of Microarrays

Transcriptomics: Analysis of Microarrays Transcriptomics: Analysis of Microarrays Dion Whitehead dion@uni-muenster.de Division of Bioinformatics, Westfälische Wilhelms Universität Münster Microarrays Vorlesungsüberblick : 1. Überblick von Microarray

Mehr

H.Schwab Genetik. Überblick

H.Schwab Genetik. Überblick Überblick Einleitung: Historisches Klassische - Mendel DNA, Aufbau, übergeordnete Strukturen, Konfigurationen, zelluläre Organisation Chromatin, Chromosomenaufbau, Genome Extrachromosomale Elemente, mobile

Mehr