Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011

Größe: px
Ab Seite anzeigen:

Download "Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011"

Transkript

1 Eine Einführung in Apache CouchDB Java-Forum Stuttgart 2011

2 Johannes Schneider, cedarsoft GmbH

3 Vielen Dank

4 CouchDB The VERY Basics

5 Vorerfahrung? Nebenan spricht... über... CouchDB The VERY Basics

6 Inhalt NoSQL (ein paar) theoretische Grundlagen CouchDB praktisch

7 Was ist CouchDB?

8 Apache Top-Level-Projekt Apache 2.0 Lizenz Implementiert in Erlang (uuuh...)

9 Dokumentenorientiert (JSON) Queries per Map/Reduce Inkrementelle Replikation (Master to Master) Bi-Direktionales Konfliktmanagement REST-API

10 Leichtgewichtig Kein Treiber Internet-fähig

11 E6 RESTful APIs - warum REST mehr als http und XML ist Dr. Stefan Schlott ab 15:35 Uhr

12 Erste Eindrücke... Test-DB sandbox für Spielereien

13 Multi-Version-Concurrency

14 1 Client - 1 Database initial put Client w reply _1 v e r ith <Updating file> Update with rev_1 repl _2 v e r h y wi t CouchDB

15 2 Clients - 1 Database Client A initial put _1 v e r ith w y l rep get with rev_1 <Updating file> put with rev_1 reply w ith rev _2 CouchDB <Updating file> put with rev_1 l i ct f n o -c 409 Client B

16 2 Clients - 2 Databases initial put Replicate rev_1 rev_1 get with rev_1 Replication rev_2 Konflikt rev_2a rev_2b beide verfügbar rev_2 B Client B Couch B A rev_2 put with rev_1 Couch A Client A put with rev_1

17 Was ist NoSQL?

18 Neu entdeckt 2009 Not only SQL

19 Wir sind geprägt

20 Datenbank == Relationale Datenbank

21 gute Erfahrungen gute Tools Know-How

22 Wo liegt das Problem?

23 CAP-Theorem Brewer's Theorem

24 Consistency oder Availability opfern, um Partition Tolerance zu erreichen?

25 Bitte entscheiden Sie sich jetzt...

26 Partition Tolerance Funktioniert, auch wenn das Netzwerk mal hustet...

27 Consistency Jeder sieht zur selben Zeit die selben Daten

28 Änderungen sind atomar

29 Intuition: Absolut unerlässlich

30 Wirklich?

31 Availability Jeder kann immer Lesen und Schreiben

32 Wenn ein Netzwerk beteiligt ist, welches unter Umständen Pakete verlieren kann...

33 ... oder Hardware, die unter Umständen ausfallen kann...

34 ... dann können entweder Consistency oder Availability garantiert werden.

35 Consistency + Availability nur mit perfekter Netzwer-Infrastruktur und Hardware (Irgendwas geht immer schief)

36 Partition Tolerance P C Consistency A Availability

37 Partition Tolerance P Immer konsistent. Aber Downtime bei Ausfällen CP C Consistency A Availability

38 Postgres MySQL relational Partition Tolerance P BigTable Hbase Tabular MongoDB Terrastore Doc Redis Berkley DB Immer konsistent. Aber Downtime bei Ausfällen CP Key-Value C Consistency A Availability

39 weiterer Tradeoff: Consistency vs Latenz

40 Typisches Problem Zur Hauptzugriffszeit fällt das System aus

41 Partition Tolerance Immer verfügbar. P Aber nicht immer konsistent. CP C Consistency AP A Availability

42 Immer verfügbar. Tabular P Aber nicht immer konsistent. CP C Consistency Cassandra Partition Tolerance CouchDB SimpleDB Dynamo Voldemort AP Doc Key-Value A Availability

43 CouchDB opfert Consistency um immer verfügbar zu sein auch wenn keine Netzverbindung da ist

44 Anwendung muss dafür vorbereitet sein!

45 Replication

46 CouchDB: Alle DBs sind Master

47 Inkrementelles Replizieren put Replication Replication Replication

48 Änderungen werden (eventuell) verzögert propagiert

49 Eventual Consistency Local Consistency

50 Konflikte können auftreten

51 Konflikte müssen (manuell) gelöst werden

52 Konflikte praktisch kaum relevant wenn beim Design darauf geachtet wird

53 Updates möglichst vermeiden - statt dessen ergänzen

54 Beispiel: Blog-Kommentare Alle Kommentare in einem Dokument vs Pro Kommentar ein Dokument?

55 Wenn Konflikt-Vermeidung /-Resolving funktioniert, dann Availability maximieren Latenz minimieren

56 Local Data is King

57 Mindestens im LAN Sowieso auf mobilem Gerät (Notebook, Android, IOS)

58 Let's talk about Transactions

59 Gibt es nicht, braucht man nicht

60 Gibt es nicht, braucht man nicht Schreiben eines Dokuments ist (lokal) atomar

61 Faustregel Was bei RDBMs in einer Transaktion passiert, gehört bei CouchDB in ein Dokument

62 Serious Business

63 Open your mind

64 Noch ein kleiner Tipp C3: 11:10 Uhr Das nächste große (Java-)Ding Michael Wiedeking

65 Große Herausforderungen in Java-Land?

66 Johannes Schneider, cedarsoft GmbH

67 Quellen Visual Guide to NoSQL Systems CouchDB The Definitive Guide

68 Nachtrag

69 Was kommt in eine DB?

70 Was gemeinsam abgefragt wird

71 Security...

72 Wie speichert CouchDB die Daten?

73 Key Value (JSON-Dokument)

74 UUID / natural ID Key Value (JSON-Dokument) optional mit Attachments

75 { } "_id": "8629b62422fde9744c80f55c21000b09", "_rev": " c612f3e113912d5c1b6ef21ea77", "firstname": "Markus", "lastname": "Mustermann"

76 { } "_id": "8629b62422fde9744c80f55c21000b09", "_rev": "2-ed3408bb4c7fa9cf2d2cb32e34f49f04", "firstname": "Markus", "lastname": "Mustermann", "phones": { "mobile": " ", "work": " ", "private": " " }, "createdat": " "

77 Warum JSON-Dokumente?

78 Views Map/Reduce in der Datenbank

79 Aufbau von B-Trees Key JSON Value JSON

80 Query in B-Tree über Key-Range GET.../byName?startkey= a &endkey= z

81 JavaScript (oder andere Sprachen mit Hilfe von View Servern)

82 map: function(doc){ emit (doc.firstname, doc); }

83 Resultat Ein B-Tree nach firstname strukturiert

84 { "total_rows" : 2, "rows" : [ { "id" : "8629b62422fde9744c80f55c21000b09", "key" : "Markus", "value" : { "_id" : "8629b62422fde9744c80f55c21000b09", "_rev" : "3-3d7a92f5f459935df5b92bedc906bd7e" "firstname" : "Markus", [...] } }, { "id" : "8629b62422fde9744c80f55c21001a74", "key" : "Martha" [...] } ], "offset" : 0 }

85 Jedes Dokument wird gemappt pro Dokument können 0..n Einträge erstellt werden

86 { } "_id": "8629b62422fde9744c80f55c21000b09", "_rev": "2-ed3408bb4c7fa9cf2d2cb32e34f49f04", "firstname": "Markus", "lastname": "Mustermann", "phones": { "mobile": " ", "work": " ", "private": " " }, "createdat": " "

87 map: function(doc){ emit (doc.phones.mobile,doc); emit (doc.phones.work,doc); emit (doc.phones.private,doc); }

88 Key und Value sind JSON

89 Komplexer Key

90 map: function(doc){ emit ([doc.lastname, doc.firstname], doc); }

91 kein Schema

92 map: function(doc){ if (doc.lastname && doc.firstname) { emit ([doc.lastname, doc.firstname], doc); } }

93 Best practise [...] "person", 1, [..]

94 map: function(doc){ if ( == "person") { emit ([doc.lastname, doc.firstname], doc); } }

95 Reduce Mehrere Values werden verrechnet aber bitte auch wirklich reduzieren

96 Summen-Bildung Kontostand Anzahl Einträge Statistik Durchschnitts-Bewertungen Standard-Abweichung Min/Max/... Unique Values Top N Tags

97 Queries Start-Key End-Key Reverse Grouping (mit Level)

98 Query-Einschränkungen Keys müssen bekannt sein kein (performantes) Skip keine absolute Pagination (Linked List Pagination)

99 Queries machen Spaß Aber es geht nicht alles wie gewohnt Vorher kurz nachdenken

100 Serious Business: Banken

101 Konten-Bewegungen mit Transaktionen?

102 Jede Buchung ein Dokument aktueller Kontostand durch Map/Reduce Keine Konflikte möglich

103 Cleanup? DB pro Konto und Monat/Quartal? initialer Übertrag

Einführung in CouchDB

Einführung in CouchDB Einführung in CouchDB Zurücklehnen und entspannen! http://slog.io Thomas Schrader (@slogmen) 12/2010 Übersicht Bestandsaufnahme Ansatz Geschichte Technologien Features Skalierbarkeit Kurz & Gut Fazit Relationale

Mehr

Karl Glatz Oktober 2009. Vorstellung der verteilten NoSQL Datenbank CouchDB

Karl Glatz Oktober 2009. Vorstellung der verteilten NoSQL Datenbank CouchDB Karl Glatz Oktober 2009 Vorstellung der verteilten NoSQL Datenbank CouchDB Web Awendung (AJAX) MySQL SQL Web Server PHP HTTP (HTML) ORM (Framework) JSON API (AJAX) Web Browser Java Script HTTP RESTful

Mehr

NoSQL Datenbanken am Beispiel von CouchDB

NoSQL Datenbanken am Beispiel von CouchDB NoSQL Datenbanken am Beispiel von CouchDB OIO - Hauskonferenz 2011 Version: 1.0 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Ihr Sprecher Thomas Bayer Programmierer

Mehr

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1 NoSQL-Datenbanken Kapitel 1: Einführung Lars Kolb Sommersemester 2014 Universität Leipzig http://dbs.uni-leipzig.de 1-1 Inhaltsverzeichnis NoSQL-Datenbanken Motivation und Definition Kategorisierung, Eigenschaften

Mehr

Soziotechnische Informationssysteme

Soziotechnische Informationssysteme Soziotechnische Informationssysteme 8. NoSQL Relationale Datenbank NoSQL Datenbank Relationale Datenbank? NoSQL Datenbank RDBM 2 Warum? Skalierbarkeit Riesige Datenmengen Performanz und Elastizität Auslastung

Mehr

CouchDB & CouchApps. Strukturlose Speicherung von Daten und Anwendungen. B1 Systems GmbH. March 18, 2012. http://www.b1-systems.de

CouchDB & CouchApps. Strukturlose Speicherung von Daten und Anwendungen. B1 Systems GmbH. March 18, 2012. http://www.b1-systems.de CouchDB & CouchApps Strukturlose Speicherung von Daten und Anwendungen B1 Systems GmbH http://www.b1-systems.de March 18, 2012 c B1 Systems GmbH 2004 2012 Chapter -1, Slide 1 CouchDB Grundlagen CouchDB

Mehr

NoSQL. Hintergründe und Anwendungen. Andreas Winschu

NoSQL. Hintergründe und Anwendungen. Andreas Winschu NoSQL Hintergründe und Anwendungen Andreas Winschu 1 Inhalt 1. Motivation 2. RDBMS 3. CAP Theorem 4. NoSQL 5. NoSql Overview 6. NoSQl Praxis 7. Zusammenfassung und Ausblick 2 1.Motivation Datenbanken Permanente

Mehr

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg NoSQL Was Architekten beachten sollten Dr. Halil-Cem Gürsoy adesso AG Architekturtag @ SEACON 2012 Hamburg 06.06.2012 Agenda Ein Blick in die Welt der RDBMS Klassifizierung von NoSQL-Datenbanken Gemeinsamkeiten

Mehr

1 Einführung... 25. 2 Die Grundlagen... 55. 3 Praxis 1 das Kassenbuch (zentraler CouchDB-Server)... 139. 4 Praxis 2 das Kassenbuch als CouchApp...

1 Einführung... 25. 2 Die Grundlagen... 55. 3 Praxis 1 das Kassenbuch (zentraler CouchDB-Server)... 139. 4 Praxis 2 das Kassenbuch als CouchApp... Auf einen Blick 1 Einführung... 25 2 Die Grundlagen... 55 3 Praxis 1 das Kassenbuch (zentraler CouchDB-Server)... 139 4 Praxis 2 das Kassenbuch als CouchApp... 161 5 CouchDB-Administration... 199 6 Bestehende

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Inhalt: CAP (Consistency/Availability/Partition-Tolerance); BASE (Basically Available, Soft State, Eventually Consistent); Datenmodelle: Key-Value-Stores, Spaltenbasierte

Mehr

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank SimpleVOC-Yetanother Memcached? Bausteine für eine Key/Value- Datenbank SimpleVOC Yet another memcached? Bausteine für eine Key/Value Datenbank. Theorie (Martin Schönert) Praxis (Frank Celler) Eine Weisheit

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

The R(E)volution of Data Stores

The R(E)volution of Data Stores The R(E)volution of Data Stores Willkommen Schön, dass sie in diese Session kommen, ich bin Dominik Wagenknecht NoSQL Initiative Lead Technology Architect Accenture Wien Mobil: +43 676 8720 33921 dominik.wagenknecht@accenture.com

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Auf einen Blick. 1 Einführung 25. 2 Die Grundlagen 55. 3 Praxis 1 - das Kassenbuch. (zentraler CouchDB-Server) 139

Auf einen Blick. 1 Einführung 25. 2 Die Grundlagen 55. 3 Praxis 1 - das Kassenbuch. (zentraler CouchDB-Server) 139 Auf einen Blick 1 Einführung 25 2 Die Grundlagen 55 3 Praxis 1 - das Kassenbuch (zentraler CouchDB-Server) 139 4 Praxis 2 - das Kassenbuch als CouchApp 161 5 CouchDB-Administration 199 6 Bestehende Anwendungen

Mehr

Aktuelle SE Praktiken für das WWW

Aktuelle SE Praktiken für das WWW Aktuelle SE Praktiken für das WWW SQL vs. NoSQL W. Mark Kubacki 23.06.2010 Gliederung Zusammenfassung Entstehungsgeschichte SQL vs. NoSQL Systemarchitekturen und Wachstumsmuster SQL NoSQL Überblick und

Mehr

Suchen und Finden mit Lucene und Solr. Florian Hopf 04.07.2012

Suchen und Finden mit Lucene und Solr. Florian Hopf 04.07.2012 Suchen und Finden mit Lucene und Solr Florian Hopf 04.07.2012 http://techcrunch.com/2010/08/04/schmidt-data/ Suche Go Suche Go Ergebnis 1 In Ergebnis 1 taucht der Suchbegriff auf... Ergebnis 2 In Ergebnis

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

NoSQL Datenbanken. Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel

NoSQL Datenbanken. Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel NoSQL Datenbanken Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel 17. Juni 2010 Gliederung Der Begriff NoSQL Wichtige Konzepte NoSQL-Arten Cassandra

Mehr

Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie

Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter

Mehr

Groovy und CouchDB. Ein traumhaftes Paar. Thomas Westphal

Groovy und CouchDB. Ein traumhaftes Paar. Thomas Westphal Groovy und CouchDB Ein traumhaftes Paar Thomas Westphal 18.04.2011 Herzlich Willkommen Thomas Westphal Software Engineer @ adesso AG Projekte, Beratung, Schulung www.adesso.de thomas.westphal@adesso.de

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II SS 2015. NoSQL. http://www.w3resource.com/mongodb/nosql.php. Dr. Christian Senger.

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II SS 2015. NoSQL. http://www.w3resource.com/mongodb/nosql.php. Dr. Christian Senger. NoSQL http://www.w3resource.com/mongodb/nosql.php NoSQL 1 Short History of Databases 1960s - Navigational DBs CODEASYL (COBOL) IMS (IBM) 1980s to 1990s - Object Oriented DBs Object DB's Object-Relational-

Mehr

Persönlichkeiten bei bluehands

Persönlichkeiten bei bluehands Persönlichkeiten bei Technologien bei Skalierbare Anwendungen mit Windows Azure GmbH & co.mmunication KG am@.de; posts..de/am 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit

Mehr

Institut für Verteilte Systeme

Institut für Verteilte Systeme Institut für Verteilte Systeme Prof. Dr. Franz Hauck Seminar: Multimedia- und Internetsysteme, Wintersemester 2010/11 Betreuer: Jörg Domaschka Bericht zur Seminarssitzung am 2011-01-31 Bearbeitet von :

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra)

Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra) 1 Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? 2 SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra) 3 DB-Cluster in der Cloud? NoSQL?!? SQL Normalformen Come as you are Warum

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

NoSQL-Databases. Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de

NoSQL-Databases. Präsentation für Advanced Seminar Computer Engineering, Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de NoSQL-Databases Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de Klassische SQL-Datenbanken Anwendungsgebiet: Geschäftsanwendungen Behördenanwendungen

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt NoSQL & Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

NoSQL Databases and Big Data

NoSQL Databases and Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt NoSQL & Big Data Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner NoSQL Einstieg in die Web 2.0 Datenbanken 2., akutalisierte und erweiterte Auflage HANSER Geleitwort Vorwort Vorwort zur 2. Auflage

Mehr

Datenbanksysteme 2015

Datenbanksysteme 2015 Datenbanksysteme 2015 Kapitel 09: Datenbankapplikationen Oliver Vornberger Institut für Informatik Universität Osnabrück Datenbankapplikationen ODBC MS Visio MS Access Embedded SQL JDBC Application SQLJ

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

Kein blasses Schema? NoSQL und Big Data mit Hibernate OGM

Kein blasses Schema? NoSQL und Big Data mit Hibernate OGM Kein blasses Schema? NoSQL und Big Data mit Hibernate OGM Thomas Much thomas@muchsoft.com www.muchsoft.com 1 NoSQL und Big Data Herzlich Willkommen in der NoSQL-Welt OnlySQL Not 2 NoSQL und Big Data NoSQL

Mehr

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Geleitwort 1 Vorwort 1 1 Einführung 1 1.1 Historie 1 1.2 Definition und

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de MapReduce MapReduce - Veranschaulichung der Phasen Prof. Dr.-Ing. S. Michel TU Kaiserslautern

Mehr

Big Data Management Thema 14: Cassandra

Big Data Management Thema 14: Cassandra Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read

Mehr

Überblick und Vergleich von NoSQL. Datenbanksystemen

Überblick und Vergleich von NoSQL. Datenbanksystemen Fakultät Informatik Hauptseminar Technische Informationssysteme Überblick und Vergleich von NoSQL Christian Oelsner Dresden, 20. Mai 2011 1 1. Einführung 2. Historisches & Definition 3. Kategorien von

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Think Big. Skalierbare Anwendungen mit Azure. Aydin Mir Mohammadi Bluehands GmbH & co.mmunication KG

Think Big. Skalierbare Anwendungen mit Azure. Aydin Mir Mohammadi Bluehands GmbH & co.mmunication KG Skalierbare Anwendungen mit Azure Bluehands GmbH & co.mmunication KG 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit Skalierung http://www.flickr.com/photos/39901968@n04/4864698533/

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

PostgreSQL und memcached

PostgreSQL und memcached Building a Query Cache imos GmbH 11.11.2011 / PGconf.DE Outline Einführung 1 Einführung 2 3 Szenario Einführung Webapplikation Pro Request viele, größtenteils einfache, Queries Einteilung von Caches Tradeoff

Mehr

Web Technologien NoSQL Datenbanken

Web Technologien NoSQL Datenbanken Web Technologien NoSQL Datenbanken Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4

Mehr

NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen. Datenbank-Stammtisch, 8.

NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen. Datenbank-Stammtisch, 8. A Database Administrator walks into a NoSQL bar, but turns and leaves because he cannot find a table. NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen.

Mehr

Treffpunkt Semicolon. NoSQL. mit JPA und Hibernate OGM. Thomas Much 09.09.2014

Treffpunkt Semicolon. NoSQL. mit JPA und Hibernate OGM. Thomas Much 09.09.2014 Treffpunkt Semicolon NoSQL mit JPA und Hibernate OGM Thomas Much 09.09.2014 Über... Thomas Much Dipl.-Inform. (Universität Karlsruhe (TH)) Berater, Architekt, Entwickler, Coach (seit 1990) Trainer für

Mehr

DATENBANK LÖSUNGEN. mit Azure. Peter Schneider Trainer und Consultant. Lernen und Entwickeln. www.egos.co.at

DATENBANK LÖSUNGEN. mit Azure. Peter Schneider Trainer und Consultant. Lernen und Entwickeln. www.egos.co.at DATENBANK LÖSUNGEN mit Azure Peter Schneider Trainer und Consultant Agenda Cloud Services, Data Platform, Azure Portal Datenbanken in Virtuelle Maschinen Azure SQL Datenbanken und Elastic Database Pools

Mehr

Datenbanken. NoSQL-Datenbank MongoDB. von Maximilian Weber. Listing 1. Artikelserie

Datenbanken. NoSQL-Datenbank MongoDB. von Maximilian Weber. Listing 1. Artikelserie Gigantische Datenbank Die humongous database oder kurz MongoDB hat einen einprägsamen Namen und ist eine vielversprechende NoSQL-Datenbank. MongoDB möchte die Lücke zwischen Key-Value-Stores (die schnell

Mehr

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1)

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1) Datenbanken und SQL Kapitel 1 Übersicht über Datenbanken Übersicht über Datenbanken Vergleich: Datenorganisation versus Datenbank Definition einer Datenbank Bierdepot: Eine Mini-Beispiel-Datenbank Anforderungen

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Web & Datenbanken SoSe2013. Web & Datenbanken

Web & Datenbanken SoSe2013. Web & Datenbanken Web & Datenbanken Vorlesung Prof. Johann Christoph Freytag, Ph.D. Institut für Informatik, Humboldt-Universität zu Berlin Bitte Handys ausschalten! 1.1 Ziel des Vortrags Welche DBMS gibt es Welche ist

Mehr

Überblick über NoSQL Datenbanken

Überblick über NoSQL Datenbanken 1 Überblick über NoSQL Datenbanken Seminararbeit Software Systems Engineering - WS 2012 / 2013 Mario David - Student - Master Informatik (SSE) Universität zu Lübeck Zusammenfassung Diese Seminararbeit

Mehr

Key Value Stores. (CouchDB, BigTable, Hadoop, Dynamo, Cassandra)

Key Value Stores. (CouchDB, BigTable, Hadoop, Dynamo, Cassandra) Key Value Stores (CouchDB, BigTable, Hadoop, Dynamo, Cassandra) 1 Neue Herausforderungen große Datenmengen in Unternehmen Twitter, youtube, facebook, (social media) Daten als Ware bzw. Rohstoff x TB /

Mehr

CD! jquery mobile. CouchDB-Daten. Der neue Personalausweis. Das Web im Smartphone. Webarchitekturen mit JavaScript

CD! jquery mobile. CouchDB-Daten. Der neue Personalausweis. Das Web im Smartphone. Webarchitekturen mit JavaScript inkl. CD! Deutschland 6,50 Österreich 7,00 Schweiz sfr 13,40 Entwickler Magazin 3.11 CD-INHALT: 3BJMT t $POUJOVPVT *OUFHSBUJPO NJU )VETPO t +BWB t 3FWFSTF &OHJOFFSJOH t $PVDI%# t.z42- t 0QFO4PDJBM t )5.-

Mehr

GRAU DataSpace 2.0 DIE SICHERE KOMMUNIKATIONS- PLATTFORM FÜR UNTERNEHMEN UND ORGANISATIONEN YOUR DATA. YOUR CONTROL

GRAU DataSpace 2.0 DIE SICHERE KOMMUNIKATIONS- PLATTFORM FÜR UNTERNEHMEN UND ORGANISATIONEN YOUR DATA. YOUR CONTROL GRAU DataSpace 2.0 DIE SICHERE KOMMUNIKATIONS- PLATTFORM FÜR UNTERNEHMEN UND ORGANISATIONEN YOUR DATA. YOUR CONTROL Einführung Globales Filesharing ist ein Megatrend Sync & Share ist eine neue Produktkategorie

Mehr

Cloud-Plattform: Appscale Hochschule Mannheim

Cloud-Plattform: Appscale Hochschule Mannheim Florian Weispfenning Cloud-Computing Seminar Hochschule Mannheim WS0910 1/28 Cloud-Plattform: Appscale Hochschule Mannheim Florian Weispfenning Fakultät für Informatik Hochschule Mannheim florian.weispfenning@stud.hs-mannheim.de

Mehr

Big Data und Oracle bringen die Logistik in Bewegung

Big Data und Oracle bringen die Logistik in Bewegung OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln

Mehr

FH JOANNEUM Gesellschaft mbh. NoSQL Datenbanken. Bachelorarbeit 1. Betreuer: DI Johannes Feiner

FH JOANNEUM Gesellschaft mbh. NoSQL Datenbanken. Bachelorarbeit 1. Betreuer: DI Johannes Feiner FH JOANNEUM Gesellschaft mbh NoSQL Datenbanken Bachelorarbeit 1 eingereicht am 29.04.2015 Fachhochschul-Studiengang Software Design Betreuer: DI Johannes Feiner eingereicht von: Daniel Frech Personenkennzahl:

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

BigTable. 11.12.2012 Else

BigTable. 11.12.2012 Else BigTable 11.12.2012 Else Einführung Distributed Storage System im Einsatz bei Google (2006) speichert strukturierte Daten petabyte-scale, > 1000 Nodes nicht relational, NoSQL setzt auf GFS auf 11.12.2012

Mehr

Semantik und konzeptionelle Modellierung

Semantik und konzeptionelle Modellierung Semantik und konzeptionelle Modellierung Verteilte Datenbanken Christoph Walesch Fachbereich MNI der FH Gieÿen-Friedberg 18.1.2011 1 / 40 Inhaltsverzeichnis 1 Verteiltes Rechnen MapReduce MapReduce Beispiel

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

MySQL Replikation. Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de 19.11.2013. linsenraum.de

MySQL Replikation. Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de 19.11.2013. linsenraum.de MySQL Replikation Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de linsenraum.de 19.11.2013 Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de (linsenraum.de) MySQL Replikation 19.11.2013 1 / 37 Who

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de NoSQL für Java-Entwickler Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de 23.06.2013 Agenda Datengröße Key-value Stores 1. Wide Column 2. Cassandra Document

Mehr

CD! CouchDB Daten per map/reduce abfragen. Rails 3. Volle Fahrt voraus. Social Media API Soziale Netzwerke 2.0. Router, Rack, Middleware und I18N

CD! CouchDB Daten per map/reduce abfragen. Rails 3. Volle Fahrt voraus. Social Media API Soziale Netzwerke 2.0. Router, Rack, Middleware und I18N inkl. CD! Sichere Softwareentwicklung: Der Wandel muss her S. 109 Deutschland 6,50 Österreich 7,00 Schweiz sfr 13,40 Entwickler Magazin 1.11 Januar/Februar 1.2011 CD-INHALT: 3BJMT t $POUJOVPVT *OUFHSBUJPO

Mehr

Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3

Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3 Dominik Wagenknecht Accenture Der No Frills Big Data Workshop -Teil3 Der no frills BigData Workshop JAX 2012, 16.4.2012, Mainz Teil 3 Google ist ein Pionier von BigData und hat mit MapReduce und BigTable

Mehr

Infinispan - NoSQL für den Enterprise Java Alltag

Infinispan - NoSQL für den Enterprise Java Alltag Infinispan - NoSQL für den Enterprise Java Alltag Version: 1.1 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Gliederung NoSQL und Java EE Infinispan Integrationsszenarien

Mehr

Upgrade-Leitfaden. Apparo Fast Edit. Wechsel von Version 2 auf Version 3.0.6 oder 3.0.7. Wechsel von Version 3.0.6 auf Version 3.0.

Upgrade-Leitfaden. Apparo Fast Edit. Wechsel von Version 2 auf Version 3.0.6 oder 3.0.7. Wechsel von Version 3.0.6 auf Version 3.0. Upgrade-Leitfaden Apparo Fast Edit Wechsel von Version 2 auf Version 3.0.6 oder 3.0.7 Wechsel von Version 3.0.6 auf Version 3.0.7 1 / 12 2 / 12 Inhaltsverzeichnis 1 Download der neuen Version... 5 2 Sicherung

Mehr

PostgreSQL im praktischen Einsatz. Stefan Schumacher

PostgreSQL im praktischen Einsatz. Stefan Schumacher PostgreSQL im praktischen Einsatz 2. Brandenburger Linux Infotag 2005 Stefan Schumacher , PGP Key http:/// $Header: /home/daten/cvs/postgresql/folien.tex,v 1.11 2005/04/25

Mehr

Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER

Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen HANSER Inhalt Vorwort XI 1 Management Summary 1 2 Was? 7 2.1 Mein klassisches Business ist konkurrenzlos,

Mehr

MySQL Backup und Restore

MySQL Backup und Restore MySQL Backup und Restore DOAG Konferenz 2013 Nürnberg Oli Sennhauser Senior MySQL Consultant, FromDual GmbH oli.sennhauser@fromdual.com 1 / 22 Über FromDual GmbH FromDual bietet neutral und unabhängig:

Mehr

Brownbag Session mongodb im Einsatz Grundlagen

Brownbag Session mongodb im Einsatz Grundlagen Brownbag Session mongodb im Einsatz Grundlagen 10.08.2012 Nils Domrose inovex GmbH Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und uns selbst. MongoDB wasn t designed in a lab. We built

Mehr

SQL, MySQL und FileMaker

SQL, MySQL und FileMaker SQL, MySQL und FileMaker Eine kurze Einführung in SQL Vorstellung von MySQL & phpmyadmin Datenimport von MySQL in FileMaker Autor: Hans Peter Schläpfer Was ist SQL? «Structured Query Language» Sprache

Mehr

Universität Leipzig Institut für Informatik Abteilung Automatische Sprachverarbeitung Topicmapslab. Bachelorarbeit

Universität Leipzig Institut für Informatik Abteilung Automatische Sprachverarbeitung Topicmapslab. Bachelorarbeit Universität Leipzig Institut für Informatik Abteilung Automatische Sprachverarbeitung Topicmapslab Bachelorarbeit CouchTM - Eine Topic-Maps-Engine mit CouchDB-Backend Vorgelegt von Hans-Henning Koch Mainzer

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

NoSQL Deep Dive mit Cassandra. Kai Spichale

NoSQL Deep Dive mit Cassandra. Kai Spichale NoSQL Deep Dive mit Cassandra Kai Spichale 13.04.2011 1 NoSQL 13.04.2011 2 BerlinExpertDays NoSQL Wide Column Stores / Column Families Document Stores Graph Databases Key Value / Tupe Stores 13.04.2011

Mehr

Couchbase Syncpoint, GeoCouch und

Couchbase Syncpoint, GeoCouch und Couchbase Syncpoint, GeoCouch und MapQuery Volker Mische Couchbase Freie und Open Source Software für Geoinformationssysteme Konferenz 20. 22. März Dessau Volker Mische (@vmische) FOSSGIS 2012 Dessau 1

Mehr

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT Version: 1.1 Wir haben hier nur ein in Java implementierte Frontends vor einer hostbasierten Businesslogic, wir profitieren nicht von NoSQL in

Mehr

NoSQL für Anwendungen

NoSQL für Anwendungen NoSQL für Anwendungen Hochschule Mannheim Fakultät für Informatik Cluster Grid Computing Seminar SS 2012 Lemmy Tauer (729400) lemmy.coldlemonade.tauer@gmail.com NoSQL CAP / ACID / Kompromisse Key-Value

Mehr

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT Version: 1.1 Wir haben hier nur ein in Java implementierte Frontends vor einer hostbasierten Businesslogic, wir profitieren nicht von NoSQL in

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

Synchronisation von redundanten Datenbeständen

Synchronisation von redundanten Datenbeständen Synchronisation von redundanten Datenbeständen seit 1999 Themenübersicht Mobile Anwendungen Verteilte Datenbanksysteme Synchronisation Lösungsansätze Mobile Anwendungen Erwartungen der Anwender Der App-Stil

Mehr

Skalierbare Datenbanksysteme (NoSQL)- Document Stores (CouchDB) für das Cloud Computing-Seminar an der HS-Mannheim im SS2012

Skalierbare Datenbanksysteme (NoSQL)- Document Stores (CouchDB) für das Cloud Computing-Seminar an der HS-Mannheim im SS2012 Skalierbare Datenbanksysteme (NoSQL)- Document Stores (CouchDB) für das Cloud Computing-Seminar an der HS-Mannheim im SS2012 Marcel Sinn Hochschule Mannheim Fakultät für Informatik Paul-Wittsack-Straße

Mehr

NEWpixi* API und die Umstellung auf REST. Freitag, 3. Mai 13

NEWpixi* API und die Umstellung auf REST. Freitag, 3. Mai 13 NEWpixi* API und die Umstellung auf REST Fakten NEWpixi* API Technik REST-basierend.NET Webservice IIS Webserver Release 31. August 2013, zusammen mit dem NEWpixi* ELI Release Legacy API und erste NEWpixi*

Mehr

MySQL Replication: Eine Einführung

MySQL Replication: Eine Einführung MySQL Replication: Eine Einführung Erkan Yanar linsenraum.de 27. Februar 2013 Erkan Yanar (linsenraum.de) MySQL Replication: Eine Einführung 27. Februar 2013 1 / 21 Replikation Was ist Replikation? Die

Mehr

Analyse und Bewertung von relationalen Datenbanken gegenüber NoSQL Datenbanken

Analyse und Bewertung von relationalen Datenbanken gegenüber NoSQL Datenbanken FOM - Hochschule für Oekonomie & Management Essen in Kooperation mit der FH Dortmund Studienfach: IT-Management 2. Semester Wintersemester 2011 Betreuer: Prof. Dr. Gregor Sandhaus Analyse und Bewertung

Mehr

PHP + MySQL. Die MySQL-Datenbank. Hochschule Karlsruhe Technik & Wirtschaft Internet-Technologien T3B250 SS2014 Prof. Dipl.-Ing.

PHP + MySQL. Die MySQL-Datenbank. Hochschule Karlsruhe Technik & Wirtschaft Internet-Technologien T3B250 SS2014 Prof. Dipl.-Ing. PHP + MySQL Die MySQL-Datenbank Zusammenspiel Apache, PHP, PHPMyAdmin und MySQL PHPMyAdmin Verwaltungstool Nutzer Datei.php oder Datei.pl Apache HTTP-Server PHP Scriptsprache Perl Scriptsprache MySQL Datenbank

Mehr

Datenbanktechnologien für Big Data

Datenbanktechnologien für Big Data Datenbanktechnologien für Big Data Oktober 2013 Prof. Dr. Uta Störl Hochschule Darmstadt Big Data Technologien Motivation Big Data Technologien NoSQL-Datenbanksysteme Spaltenorientierte Datenbanksysteme

Mehr

NoSQL-Datenbanken. Markus Kramer. deren Probleme herauszuarbeiten und andere Grundlagen zu erläutern.

NoSQL-Datenbanken. Markus Kramer. deren Probleme herauszuarbeiten und andere Grundlagen zu erläutern. 1 NoSQL-Datenbanken Markus Kramer Zusammenfassung NoSQL-Datenbanken sind zu einer interessanten Alternative zu herkömmlichen Datenbanken geworden. In dieser Arbeit werden die dahinter liegenden Konzepte

Mehr

Replikation mit PostgreSQL 9.0

Replikation mit PostgreSQL 9.0 Replikation mit PostgreSQL 9.0 FrOSCon 2010 21.-22.08.2010 Andreas ads Scherbaum Web: http://andreas.scherbaum.la/ E-Mail: andreas[at]scherbaum.biz PGP: 9F67 73D3 43AA B30E CA8F 56E5 3002 8D24 4813 B5FE

Mehr

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131 Architekturen Von der DB basierten zur Multi-Tier Anwendung DB/CRM (C) J.M.Joller 2002 131 Lernziele Sie kennen Design und Architektur Patterns, welche beim Datenbankzugriff in verteilten Systemen verwendet

Mehr

Konsistenzproblematik bei der Cloud-Datenspeicherung

Konsistenzproblematik bei der Cloud-Datenspeicherung Konsistenzproblematik bei der Cloud-Datenspeicherung ISE Seminar 2012 Adrian Zylla 1 Cloud Bereitstellung von Speicher- und Rechenkapazität Die Cloud ist für den Anwender eine Blackbox Besitzt drei Servicemodelle

Mehr

IDS Lizenzierung für IDS und HDR. Primärserver IDS Lizenz HDR Lizenz

IDS Lizenzierung für IDS und HDR. Primärserver IDS Lizenz HDR Lizenz IDS Lizenzierung für IDS und HDR Primärserver IDS Lizenz HDR Lizenz Workgroup V7.3x oder V9.x Required Not Available Primärserver Express V10.0 Workgroup V10.0 Enterprise V7.3x, V9.x or V10.0 IDS Lizenz

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

Einführung in NoSql-Datenbanken und der Vergleich zu relationalen Datenbanken

Einführung in NoSql-Datenbanken und der Vergleich zu relationalen Datenbanken Fachhochschule Aachen Fachbereich 9 Medizintechnik und Technomathematik Seminararbeit im Studiengang Scientific Programming Einführung in NoSql-Datenbanken und der Vergleich zu relationalen Datenbanken

Mehr

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP Seminar WS 2012/13 S. Chaudhuri et al, CACM, Aug. 2011 Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP 2 Vorkonfigurierte, komplette Data Warehouse-Installation Mehrere Server,

Mehr

Dokumentenorientierte Datenbanken - MongoDB

Dokumentenorientierte Datenbanken - MongoDB Dokumentenorientierte Datenbanken - MongoDB Jan Hentschel Ultra Tendency UG Übersicht Dokumente sind unabhängige Einheiten Bessere Performance (zusammengehörige Daten werden gemeinsam gelesen) Objektmodell

Mehr