1. Löse die folgenden Gleichungen! Gib jede Äquivalenzumformung an! c = λ f (e) F 1 l 1 = F 2 l 2 (f) ω 2 = 1 LC

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Löse die folgenden Gleichungen! Gib jede Äquivalenzumformung an! c = λ f (e) F 1 l 1 = F 2 l 2 (f) ω 2 = 1 LC"

Transkript

1 Gleichungen 1. Löse die folgenden Gleichungen! Gib jede Äquivalenzumformung an! (a) + 6 = 1 (b) 10v = v + 9 v = 1 + z = 1 (f) w = w c = c (g) m ( + m) = m (4 m) y + 4(y ) = y (y 1) (i) ( 4) + 6 = ( 7) (j) ( + ) = + 4 (k) z = z (z + 1) (l) (u ) = (u 1) 7 (m) (y ) = (y + 4)(y 4) (1y ). Stelle jede Variable eplizit dar! (a) (b) v = s t Q = m c T W = 1 CU c = λ f F 1 l 1 = F l (f) ω = 1 LC (g) P = U I p V = N k T (i) P = 1 F(v + v 0). (a) 40 Euro sind im Verhältnis 4:9 aufzuteilen. Berechne die Teilbeträge! (b) 8 80 Euro sind im Verhältnis 7:11 aufzuteilen. Berechne die Teilbeträge! 770 Euro sind im Verhältnis 1:17 aufzuteilen. Berechne die Teilbeträge! Eine Strecke von 1 cm ist im Verhältnis : zu teilen. Berechne die Länge der Teilstrecken! Kupferoid besteht aus Kupfer und Sauerstoff im Massenverhältnis 4:1. Berechne, wieviel Gramm Kupfer und wieviel Gramm Sauerstoff in 60 g Kupferoid enthalten sind! (f) In einer Versammlung von 6 Personen war das Verhältnis der Anzahl der Damen zu der Anzahl der Herren 7:11. Berechne, wieviele Damen bzw. Herren anwesend waren! 4. Gib die Lösungsmenge der folgenden Gleichungen über der Grundmenge Q an! (a) = (b) = = (f) + 9 = = 4 1 =

2 . Bestimme in den folgenden Aufgaben jeweils die Definitionsmenge über Q und gib die Lösungsmenge an! (a) (b) (f) (g) (i) (j) = = = 1 7 = 4 = 1 1 = 1 + = = = = 9 9 (k) (l) (m) (n) (o) (p) (q) (r) (s) (t) ( 1) ( 4) = = = = ( ) = = = = ( ) = = Löse die folgenden quadratischen Gleichungen für die Grundmenge G = R: (a) 1 6 = 0 (b) = = = 0 0, 6 = 0 (f) 64 = 0 (g) + 1 = = 0 (i) = 0 (j) = 0 (k),8 14 = 0 (l) 8 + = 0 (m), 1 = 0 (n) = 0 7. Zerlege die folgenden quadratischen Polynome in ein Produkt von Linearfaktoren: (a) 4 1 = (b) = = = 4 = (f) + 6 = (g) = 6 + =

3 8. Löse die folgenden Gleichungen (1) für die Grundmenge G = R und () für die Grundmenge G = Z: (a) ( 4)( + 4) ( ) = ( 7) ( + )( ) 17 (b) (f) (g) (i) (r) 9. Tetaufgaben: 4 7 = + 7 1, + = = = = = = = (j) (k) (l) (m) (n) (o) (p) (q) 1 k 4k k + k 6 9 k 6k = 8k + 4k 16k + 16k = = = = = = = = (a) In einem Rechteck ist die Länge um 4cm größer als die Breite. Wenn man die Breite um 4 cm verkürzt und die Länge unverändert lässt, so erhält man ein Rechteck mit dem Flächeninhalt 768 cm. Berechne die Seitenlängen des ursprünglichen Rechtecks! (b) Verlängert man eine Seite eines Quadrats um cm und verkürzt die andere um 4 cm,so entsteht ein Rechteck mit 90 cm Flächeninhalt. Berechne die Seitenlänge des Quadrats! Der Flächeninhalt eines gleichschenkeligen Dreiecks beträgt 18 cm. Die Basis des Dreiecks ist um 9 cm kürzer als die Höhe des Dreiecks. Berechne die Länge der Höhe und die Länge der Basis des Dreiecks! Der Flächeninhalt eines gleichschenkeligen Dreiecks beträgt 4806 cm. Die Basis des Dreiecks ist um 19 cm länger als die Höhe des Dreiecks. Berechne die Länge der Höhe und die Länge der Basis des Dreiecks! 10. Tetaufgaben zu fortlaufenden Proportionen: (a) Die Seitenlängen eines Dreiecks verhalten sich wie ::4, der Umfang beträgt 1 m. Berechne die Länge der Seiten eines solchen Dreiecks! (b) Schwefelsäure enthält Wasserstoff, Sauerstoff und Schwefel im Massenverhältnis 1::16. Berechne, wieviel Gramm Sauerstoff und wieviel Gramm Schwefel in 70 Gramm Schwefelsäure enthalten sind!

4 In einem Testament wird den vier Erben ein Betrag von 400 Euro vermacht. Die Erbschaft ist im Verhältnis ::: zu teilen. Wieviel Euro erhält jeder der Erben? Wie groß ist der Gewinn eines Loses, wenn nach der Aufteilung an vier Personen im Verhältnis 1::: der größte Anteil 7 Euro beträgt? Drei Erben teilen einen Betrag von Euro im Verhältnis :4:7. Berechne die einzelnen Anteile! 11. Bestimme die Definitionsmenge und löse folgenden Gleichungen über R! (a) + = (b) + = = = = 4 (f) 9 7 = 7 (g) 10 6 = 6 1 = 1 (i) = (j) = (k) = 1 (l) (m) (n) (o) (p) (q) (r) (s) (t) + = = = 1 = = = = = = (u) = (v) = Löse die folgenden Gleichungen über R! (a) = 0 (b) + 10 = = = = 0 (f) 9 = 0 (g) + = = 0 (i) = 0 (j) = 0 (k) 4 4 = 0 (l) = 0 (m) = 0 (n) 4 = 0 (o) + 4 = 0 (p) 4 6 = 0 (q) = 0 (r) = 0

5 Lösungen: a) t = v s, s = t v b) m = Q c T, c = Q m T, c) C = W, U = ± U W C T = Q cm 1a) = 1b) v = 1 4 1c) v = 9 1d) z = 1 1e) w = 1 4 1f) c = 0 1g) L = /0 1h) y = 1i) L = R 1j) = 0 1k) L = /0 1l) L = R 1m) L = R d) λ = c f, f = c λ e) F 1 = F l l 1, l 1 = F l F 1, F = F 1 l 1 l, l = F 1 l 1 F 1 f) ω = ± LC, L = 1, C = 1 C ω Lω g) U = P I, I = U P h) V = N V k T p = N V k T N = pv k T, k = pv N T, i) F = v+v P 0, v = P F v 0 F, v 0 = P F F v T = pv N k a) 1. Teilbetrag: 19,1e,. Teilbetrag: 40,769e b) 1. Teilbetrag: 0e,. Teilbetrag: 060e c) 1. Teilbetrag: 160e,. Teilbetrag: 10e d) 1. Teilstrecke: 7, cm,. Teilstrecke: 4, cm e) 04 g Kupfer, 16 g Sauerstoff f) 14 Damen und Herren 4a) L = { 4b) L = { 4c) L = { 4d) L = { 4e) L = { 4f) L = { a) L = { b) L = { 8 c) L = { d) L = { e) L = { f) L = { g) L = {6 h) L = {6 i) L = { 7 j) L = { k) L = {6 l) L = {9 m) L = { n) L = { o) L = {1 p) L = {6 q) L = { 4 r) L = { s) L = {0 t) L = { 6a) L = { ; 7 6b) L = { 6; 4 6c) L = { 4; { 0 6d) L = ; 6e) L = { ; 6 6f) L = { 8 ; 8 6g) L = {1 6h) L = { 4; 6i) L = { 6j) L = { 1 6k) L = {0; 6l) L = {0,4;,068 6m) L = {,; 6 6n) L = {

6 7a) ( 7) ( + ) 7b) ( )( + ) 7c) (6 1)(7 + ) 7d) 4( 0,40)(,98) 7e) ( 4)( + 1) 7f) ( + )( ) 7g) 1( )( + ) 7h) ( + )( 7) 8a) L 1 = { 8 ; 14, L = {14 8b) L 1 = { ;, L = { ; 8c) L 1 = {, L = { 8d) L 1 = { 1; 1, L = { 1; 1 8e) L 1 = { 4; 4, L = { 4; 4 8f) L 1 = { 4 7 ;, L = { 8g) L 1 = { 9; 9, L = { 9; 9 8h) L 1 = { ;, L = { ; 8i) L 1 = {, L = { 8j) L 1 = {, L = { 8k) L 1 = { 7; 7, L = { 7; 7 8l) L 1 = {, L = { 8m) L 1 = { ;, L = { ; 8n) L 1 = { 7; 0, L = { 7; 0 8o) L 1 = {1, L = {1 8p) L 1 = {, L = { 8q) L 1 = { 60 ; 1, L = {1 8r) L 1 = { 1; 6 4, L = {1 9a) l = cm, b = 8 cm 9b) s = 10,61 cm 9c) h c = 7 cm, c = 8 cm 9d) c = 108 cm, h c = 89 cm 10a) a = 4 m, b = 1 m, c = 68 m, 10b) 4800 g Sauerstoff und 400 g Schwefel 10c) 1. Erbe: 900e,. Erbe: 10e,. Erbe: 900e, 4. Erbe: 0e, 10d) 1000e 10e) 1. Erbe: 1800e,. Erbe: 400e,. Erbe: 400e 11a) D = R + 0, L = {8 11b) D = R +, L = { c) D = R + 0, L = { 11d) D = [1; [, L = {.96 11e) D = [ 1 ; [, L = { 8 11f) D =] ; 7], L = { 11g) D =] ; 6], L = { 10 11h) D = [; [, L = { i) D = [ 1 ; [, L = { 11j) D = [1; [, L = { 11k) D = [ 6; [, L = {1 11l) D = R + 0, L = {4 11m) D = [ 1 ; [, L = {4 11n) D = [ 4 ; [, L = { o) D = R + 0, L = { 11p) D = R + 0, L = {16 11q) D = [ ; [, L = {4 11r) D = [ 7 4 ; [, L = { 11s) D = [; [, L = { 11t) D = [ ;, L = {6 11u) D = [1; [, L = { 11v) D = [1; [, L = {

7 1a) L = { ; 1; 4 1b) L = {0 1c) L = { ; ; ; 1d) L = { ; 1e) L = { ; 1; 1f) L = { 1g) L = {0; 1 1h) L = { ; ; 1i) L = { 7,87; ; 0,17 1j) L = {1; { ; ; 4 1k) L = ± 1l) L = {; 4; 1m) L = {1 1n) L = { 1; 0; 1o) L = {1 1p) L = { ; 1q) L = { 10; 0; 1r) L = { 0,7; ;,7

1 Einige Aufgaben zum Rechnen mit Mengen:

1 Einige Aufgaben zum Rechnen mit Mengen: Einige Aufgaben zum Rechnen mit Mengen: A.. Gib die folgenden Mengen im aufzählenden Verfahren an: a A { N 8} b B {y Z < y } c C {z N z ist Teiler von } d D { P 0} e E {y N y ist Vielfaches von 5} f F

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Quadratische Gleichungen. Üben. Lösung. Quadratische Gleichungen. Klasse. Schwierigkeit. Art. math. Thema. Nr. Löse mit der Lösungsformel:

Quadratische Gleichungen. Üben. Lösung. Quadratische Gleichungen. Klasse. Schwierigkeit. Art. math. Thema. Nr. Löse mit der Lösungsformel: 1a Löse mit der sformel: a) x 2 + 6x + 5 = 0 b) y 2 + 6y + 7 = 0 c) z 2 13z 48 = 0 1a a) a = 1, b = 6, c = 5 2 6 ± 6 4 1 5 x 1/ 2 = ; x1 5 ; x2 = 1 2 1 b) x 1 = 3 2 ; x 2 = 3+ 2 c) x1 = - 3 ; x2 = 16 1b

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

M3/I Übung für die 5. Schularbeit Name:

M3/I Übung für die 5. Schularbeit Name: 1)Das Dreieck ABC ist vom Eckpunkt A aus im Verhältnis : 4 zu vergrößern. a = 45 mm, b = 40 mm, c = 60 mm 2)Vergrößere das Rechteck (a = 46 mm; b = 25 mm) im Verhältnis 2 :. Wähle als Zentrum den Eckpunkt

Mehr

1. Schularbeit 3.E/RG Gruppe A Name:

1. Schularbeit 3.E/RG Gruppe A Name: Beachte: Wenn das Beispiel nicht händisch berechnet wird müssen alle Formeln und wesentlichen Teile im Heft angeschrieben werden. Die Rechnung mit dem TI-92 (Eingabezeile) muss mit einer Farbe im Heft

Mehr

Kompetenzraster Geometrie

Kompetenzraster Geometrie Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken

Mehr

1. Schularbeit, am 23. Oktober 1997

1. Schularbeit, am 23. Oktober 1997 Name:............ 3GR 1. Schularbeit, am 23. Oktober 1997 1) Eine 30 m lange Standlinie AB wird in einem Plan durch die Punkte A (0 0) und B (6 0) dargestellt. Einheit = 1 cm. Zu einem Geländepunkt P werden

Mehr

Kapitel 7: Gleichungen

Kapitel 7: Gleichungen 1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Vierte Schularbeit Mathematik Klasse 3B am

Vierte Schularbeit Mathematik Klasse 3B am Vierte Schularbeit Mathematik Klasse 3B am 23.05.2016 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

1. Schularbeit. Gruppe A

1. Schularbeit. Gruppe A 1. Schularbeit Gruppe A 18.10.1997 1)a) Berechne den Term (4a+3b-5c). 7x-(5a-4b+6c). 3x (2) und mache die Probe für a=b=5, c=-2, x=3. Gib die Befehle für den TI92 an, erkläre, was sie bewirken (sowohl

Mehr

LÖSEN VON TEXTAUFGABEN

LÖSEN VON TEXTAUFGABEN Schule Bundesgymnasium für Berufstätige Salzburg Thema Personen Mathematik 1 -Arbeitsblatt 1: LÖSEN VON TEXTAUFGABEN 1F Wintersemester 01/01 Unterlagen: LehrerInnenteam GFB LÖSEN VON TEXTAUFGABEN Beispiel:

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

ÜBUNGEN FÜR DIE VIERTE MATHEMATIK-SCHULARBEIT

ÜBUNGEN FÜR DIE VIERTE MATHEMATIK-SCHULARBEIT ÜBUNGEN FÜR DIE VIERTE MATHEMATIK-SCHULARBEIT Textgleichungen (S. 105-108) Aus einem Text eine sinnvolle Gleichung aufstellen, lösen, die Probe machen und die Lösung in einer Antwort interpretieren Definiere

Mehr

1. Schularbeit. 3F Gruppe A ) a) (je 1 Punkt) Gib, falls möglich, alle ganzen Zahlen an, für die die Aussage richtig ist!

1. Schularbeit. 3F Gruppe A ) a) (je 1 Punkt) Gib, falls möglich, alle ganzen Zahlen an, für die die Aussage richtig ist! 1. Schularbeit 3F Gruppe A 18.10.1997 1) a) (je 1 Punkt) Gib, falls möglich, alle ganzen Zahlen an, für die die Aussage richtig ist! () 1 x > 5 ( 2) c > c 3 8 und b) (3 Punkte) Gegeben sind die beiden

Mehr

Marco Bettner/Erik Dinges Vertretungsstunden Mathematik Klasse: Quadratische Gleichungen Marco Bettner/Erik Dinges Unterrichtsideen

Marco Bettner/Erik Dinges Vertretungsstunden Mathematik Klasse: Quadratische Gleichungen Marco Bettner/Erik Dinges Unterrichtsideen DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 9. Klasse: Marco Bettner/Erik Dinges Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: Vertretungsstunden Mathematik 9./0.

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6

Mehr

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b)

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung kannst du dir als eine Balkenwaage

Mehr

Rechnen mit Variablen

Rechnen mit Variablen E Rechnen mit Variablen 5. Gleichungen 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung

Mehr

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte.

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte. JAHRGANGSSTUFENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN IN BAYERN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Bestimme die Lösungsmenge

Mehr

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte 3.C Gruppe A 1. Schularbeit Name: Mo 27.10.97 / Schw 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) 3 + 2 ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 2) Gib die Elemente der Menge A = { x Z / x < 3 } und B = { y Z / -5

Mehr

Quadratische Gleichungen

Quadratische Gleichungen 1 Quadratische Gleichungen ax 2 + bx + c = 0 1. Löse folgende Gleichungen: a) x 2 + 2x 15 = 0 b) x 2 6x + 7 = 0 c) x 2 + 15x + 54 = 0 d) x 2 + 12x 64 = 0 e) x 2 34x + 64 = 0 f) x 2 + 15x 54 = 0 g) x 2

Mehr

Übungen für die 1. Schularbeit 5. Klassen

Übungen für die 1. Schularbeit 5. Klassen Übungen für die. Schularbeit 5. Klassen ) ) 4) 5) 6) 7) 8) Die folgende Grafik zeigt, wie sich im Schwimmbecken eines Hallenbades die Wassertiefe ( ) in den ersten 6 Stunden nach Öffnen des Abflusses verändert.

Mehr

1. SCHULARBEIT am c / RG

1. SCHULARBEIT am c / RG 1. SCHULARBEIT am 10. 10. 1996 5c / RG 1 ) Finde für die angegebene Summe eine allgemeine Darstellung und eine Summenformel. Schreibe alle verwendeten Befehle in dein Heft. Beweise deine Formel mit Hilfe

Mehr

Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen)

Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen) 40 cm Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen) 1. Zahlenarten und Rechnen b) ( ) 5 ( 2 8 ) ( 1,25) 25 1,8 5,2 ( ) Wie viel sind 20% von? 2. Kenntnisse der Elementargeometrie

Mehr

R. Brinkmann Seite Fläche = mm 2

R. Brinkmann  Seite Fläche = mm 2 R. Brinkmann http://brinkmann-du.de Seite 1 9.04.008 Lösungen zur Vergleichsarbeit 00 Lösungen Gruppe A Zu 1. dm : 10cm 1.3m + 10cm + 1500mm + 0.001km 160dm 13dm + 1dm + 15dm + 10dm 160dm a 100m : 0.6a

Mehr

1 Man zerlege die Zahl 63 in zwei Teile, die sich zueinander wie x : y = 6 : 8 verhalten. x = 27

1 Man zerlege die Zahl 63 in zwei Teile, die sich zueinander wie x : y = 6 : 8 verhalten. x = 27 1 Man zerlege die Zahl 63 in zwei Teile, die sich zueinander wie x : y = 6 : 8 verhalten. x = 27 Y = 36 2 Die Differenz aus 12 und einer Zahl verhält sich zur Summe aus 18 und der gleichen Zahl wie 4 :

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an; G = Z. a) 5(2x 4) + 3x 16 = 5(8 5x) b) 8(x 6) 3(8 x) = 4(x + 3) c) 12(2x

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe 1. Ist das Dreieck mit folgenden Maßen konstruierbar? Begründe! b = 6 cm, β = 76, Außenwinkel γ * = 59.. Ein Draht soll zu einem Dreieck gebogen werden. Eine Seite soll 1m lang

Mehr

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

6,5 34,5 24,375 46,75

6,5 34,5 24,375 46,75 Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6

Mehr

Grundwissen 8I/11. Terme

Grundwissen 8I/11. Terme Grundwissen 8I/ Termumformungen. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann Variablen

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Arbeitsblatt Lösen von Problemen mit Gleichungen

Arbeitsblatt Lösen von Problemen mit Gleichungen Arbeitsblatt Lösen von Problemen mit Gleichungen 203 L Die Summe von zwei aufeinander folgenden ganzen Zahlen ist a) 35, b) 50. Berechne die beiden Zahlen. 204 L Das 10fache einer Zahl ist um a) 32, b)

Mehr

(1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: c) Löse die Ungleichung durch Fallunterscheidung mit der Hand Schritt für Schritt!

(1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: c) Löse die Ungleichung durch Fallunterscheidung mit der Hand Schritt für Schritt! 1. Semesterschularbeit 10.12.1999 (50 Minuten) (1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: 1 1 x 4 2 a) Schreibe mit Hilfe deines TI-89/92 die Lösungsmenge an. b) Rechne mit der

Mehr

Mathematik-Arbeitsblatt Klasse: 4A

Mathematik-Arbeitsblatt Klasse: 4A Mathematik-Arbeitsblatt Klasse: 4A 16.10.2015 Aufgabe 1 (8S2.02-007-e) H2:I4:K1 0 1 2 Ein KFZ-Lehrling verdient im dritten Lehrjahr samtfahrtkostenzuschuss brutto 9555,00 S. Die Summe der Abzüge ist 1514,46

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK 22. Juni 2016 8:0 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Muster für den Schultest. Muster Nr. 1

Muster für den Schultest. Muster Nr. 1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält

Mehr

JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr

JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines: unbedingt

Mehr

Verkaufspreis Bruttopreis MWSt

Verkaufspreis Bruttopreis MWSt 1.SA 1. Löse die angegebene Formel nach c auf: x = aa ( + c) ( a+ b+ c) 6. Schreibe den Ansatz in Form einer Gleichung und löse diese: a) Nach Abzug von 3% Skonto werden für eine Ware S 15510,30 bezahlt.

Mehr

Hilfe Beispiel 1: Lösungsskizze und Ergebnis:

Hilfe Beispiel 1: Lösungsskizze und Ergebnis: Hilfe Beispiel 1: 1. Hauptbedingung erstellen (Volumen der Schachtel) 3. Nebenbedingungen finden, Grundkanten und Höhen ausdrücken, in Hauptbedingung einsetzen -> Funktion 4. 1. Ableitung, 0 setzen ->

Mehr

Repetition Mathematik 8. Klasse

Repetition Mathematik 8. Klasse Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 3 MATHEMATIK 3 ALGEBRA GLEICHUNGEN REPETITIONEN 4 TEXTGLEICHUNGEN MATHEMATIK

TG TECHNOLOGISCHE GRUNDLAGEN 3 MATHEMATIK 3 ALGEBRA GLEICHUNGEN REPETITIONEN 4 TEXTGLEICHUNGEN MATHEMATIK 1 Die Differenz zweier Zahlen beträgt 27. Multipliziert man die erste Zahl mit 2 und die zweite mit 3, so wird die Differenz gleich 41. Wie heissen die Zahlen? x = 40 y = 13 2 Zwei Zahlen verhalten sich

Mehr

Lösungen Mathematik Serie: A1

Lösungen Mathematik Serie: A1 Aufnahmeprüfung 206 für die Berufsmaturitätsschulen des Kantons Zürich Lösungen Mathematik Serie: A. Vereinfachen Sie den Term so weit wie möglich. 2a 2 b : -4a 9b 2 2a 2 b : -4a 9b = 2a2 9b 2 2 b (-4a)

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Lösungen Mathematik Serie: A2

Lösungen Mathematik Serie: A2 Aufnahmeprüfung 206 für die Berufsmaturitätsschulen des Kantons Zürich Lösungen Mathematik Serie: A2. Vereinfachen Sie den Term so weit wie möglich. 3r 2 5p : 2r 5p 2 3r 2 5p : 2r 5p = 3r 2 5p 2 2 5p 2r

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2, Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Thema aus dem Bereich Algebra Gleichungen III

Thema aus dem Bereich Algebra Gleichungen III Thema aus dem Bereich Algebra - 2.3 Gleichungen III Inhaltsverzeichnis 1 Quadrierte Gleichungen mit einer Unbekannten 2 2 Wurzelgleichungen 3 2.1 Definition einer Wurzelgleichung................................

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Übungsblatt 1 zum Propädeutikum 1. Gegeben seien die Mengen A = {,, 6, 7}, B = {,, 6} und C = {,,, 1}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geben Sie diese in aufzählender Form an.. Geben

Mehr

1 Man zerlege die Zahl 63 in zwei Teile, die sich zueinander wie x : y = 6 : 8 verhalten. x = 27

1 Man zerlege die Zahl 63 in zwei Teile, die sich zueinander wie x : y = 6 : 8 verhalten. x = 27 1 Man zerlege die Zahl 63 in zwei Teile, die sich zueinander wie x : y = 6 : 8 verhalten. x = 27 Y = 36 2 Die Differenz aus 12 und einer Zahl verhält sich zur Summe aus 18 und der gleichen Zahl wie 4 :

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

Gleichungen - Textaufgaben

Gleichungen - Textaufgaben DX1684_Lineare_Gleichungen_Textaufgaben.wxmx 1 / 20 Gleichungen - Textaufgaben Dokumentnummer: DX1684 Fachgebiet: Lineare Gleichungen Einsatz: 2HAK (erstes Lernjahr) Quelle: Internetseite von Jutta Gut

Mehr

1. Schularbeit

1. Schularbeit 1. Schularbeit 3.10.1997 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle x y x

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Aufnahmeprüfung: Mathematik

Aufnahmeprüfung: Mathematik Aufnahmeprüfung: Mathematik Alle Fragen orientieren sich am Lehrplan für die Unterstufe bzw. Neue Mittelschule. Beispiele für mögliche Fragestellungen (mit Lösungen) Zahlen und Maße Vorrangregeln Bruchrechnen

Mehr

Prüfung zum mittleren Bildungsabschluss 2004

Prüfung zum mittleren Bildungsabschluss 2004 Prüfung zum mittleren Bildungsabschluss 2004 Pflichtaufgaben Mathematik x+3 45 Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

M3 Übung für die 3. Schularbeit Name: 1)Die Klammerterme sind zu multiplizieren. a) (2x + 3y) (-2x) = b) (-2x - 3y) 2x =

M3 Übung für die 3. Schularbeit Name: 1)Die Klammerterme sind zu multiplizieren. a) (2x + 3y) (-2x) = b) (-2x - 3y) 2x = M3 Übung für die 3 Schularbeit Name: 1)Die Klammerterme sind zu multiplizieren a) (x + 3y) (-x) = b) (-x - 3y) x = )Vereinfache die Terme und kontrolliere die Ergebnisse mit folgenden Werten! a = 1; b

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Mathematik, 3. Sekundarschule

Mathematik, 3. Sekundarschule Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Veranschauliche alle Lösungen der Gleichung 3x + 5y = 0 in einem Koordinatensystem. Bestimme zwei Lösungspaare der Gleichung. Aufgabe : Bestimme rechnerisch

Mehr

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Seite http://www.realschulrep.de/ Seite 2 Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Aufgabe B2. Der Punkt A 2 2 ist gemeinsamer Eckpunkt von Rauten A B n C n D n. Die Eckpunkte B n 3 liegen auf

Mehr

3 E 1. Schularbeit Gruppe A

3 E 1. Schularbeit Gruppe A E 1. Schularbeit Gruppe A Bsp 1 : a) Löse graphisch, ohne das Kommutarivgesetz zu verwenden! (-9) - ( -4) (+6) + (-11) b) Berechne ohne Rechner : 184 - ( - 8 + 411-584 + 4 + 871-87 ) (-18) - [ (-29) 2

Mehr

Berechnen Sie die Länge von % im Körper. Tipp: Berechnung von % über den Kosinussatz. Lösung: (=69,1 ) %=8,3

Berechnen Sie die Länge von % im Körper. Tipp: Berechnung von % über den Kosinussatz. Lösung: (=69,1 ) %=8,3 Aufgabe W1a/2003 Zwei Quadrate mit den Seitenlängen 10,0 bzw. 7,0 werden wie rechts skizziert aneinandergelegt. und sind die Mittelpunkte der Diagonalen. ist der Mittelpunkt der Strecke. Berechnen Sie

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (1/5) 1 Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer 1,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (40 km; x km) Fahrt als Term dar. 2

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2011 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:

Mehr

Kompetenzen am Ende der Einheit GRUNDWISSEN

Kompetenzen am Ende der Einheit GRUNDWISSEN Kompetenzen am Ende der Einheit GRUNDWISSEN A) Grundrechenarten mit - 1.Natürlichen Zahlen : Berechne ohne Taschenrechner : a) 6438 + 64742 b) 8633 5877 c) 28 * 36 d) 7884 : 9-2. Brüchen : Berechne ohne

Mehr

Aufwärmübung 1 Lösungen

Aufwärmübung 1 Lösungen Aufwärmübung 1 1) Die Tabellen gehören zu direkt proportionalen Zuordnungen. Ergänze die fehlenden Werte. a) b) Weg in km Zeit in h Menge in kg Preis in 20 1 1_ 4 4 1_ 4 60 120 12 24 2) Vereinfache. (n

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen 1/10 Quadratische Gleichungen Teil 2 Die Aufgaben in diesem beziehen sich auf Quadratische Gleichungen Teil I Grundlagen. Sie können nach Durcharbeiten dieses Skriptums beantwortet

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000 Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen 1/10 Quadratische Gleichungen Teil 1 Grundlagen Lehrstoff Gleichungen und Gleichungssysteme - Lösen von linearen und quadratischen Gleichungen in einer Variablen Inhalt Quadratische

Mehr

Lösung Aufgabe P1: Abschlusspruefung Realschule Mathematik 2009 Loesung. 1 von Berechnung der Strecke : 2. Berechnung der Strecke :

Lösung Aufgabe P1: Abschlusspruefung Realschule Mathematik 2009 Loesung. 1 von Berechnung der Strecke : 2. Berechnung der Strecke : Lösung Aufgabe P1: 1. Berechnung der Strecke : 2. Berechnung der Strecke : Kosinusfunktion im gelben Dreieck 3. Berechnung der Strecke : 4. Berechnung der Dreiecksgrundseite : 1 von 47 5. Berechnung der

Mehr

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 006 Serie B Teil Fach: Teil Zeit: 45 Minuten Hilfsmittel: - Geometriewerkzeuge, kein Taschenrechner Vorschriften: - Der Lösungsvorgang muss vollständig ersichtlich sein. - Ungültiges ist

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

1 -fache des ursprünglichen Wertes. 1 heißt Wachstumsfaktor. 100

1 -fache des ursprünglichen Wertes. 1 heißt Wachstumsfaktor. 100 Grundwissen Mathematik 7. Klasse 1/6 Grundwissen 7. Klasse Algebra 1.Terme mit Variablen a) Allgemeines Treten in einem Term (Rechenausdruck) verschiedene Variablen auf, dann dürfen diese mit verschiedenen

Mehr

Aufgaben zu quadratischen Gleichungen. 1. x² = x² = 0, x² = x² = ax² = b. ax² c = --- b d. 7.

Aufgaben zu quadratischen Gleichungen. 1. x² = x² = 0, x² = x² = ax² = b. ax² c = --- b d. 7. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu quadratischen Gleichungen 1. x² =

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

1.Schularbeit, am 9.November 1998

1.Schularbeit, am 9.November 1998 NAME: Seite 1 von 1.Schularbeit, am 9.November 1998 1. In einigen wiener Lebensmittelgeschäften wurde erhoben, ob die verderbliche Ware vorschriftsmäßig bei mindestens -18 C gelagert wird. Man erhielt

Mehr