Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung

Größe: px
Ab Seite anzeigen:

Download "Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung"

Transkript

1 ehnishe niversität Münhen ommer 2016 Prof. J. Esprz / Dr. M. Luttenerger,. ikert 18. Juni 2016 HA-Lösung A-Lösung Einführung in die theoretishe Informtik Aufgenltt 8 Behten ie: oweit niht explizit ngegeen, sind Ergenisse stets zu egründen! Husufgen: Age is zum (Mittwoh) um 12:00 Aufge 8.1 CYK-Algorithmus 2P+2P Wir etrhten die Grmmtik G = ({,,, A, B, C}, {,, }, P, ) in CNF mit den folgenden Produktionen P : C A B AB A B C () Bestimmen ie mit dem CYK-Algorithmus, o L(G) und L(G). Geen ie dei uh die erehneten ellen n. () Beshreien ie eine Erweiterung des CYK-Algorithmus, mit welher für ein gegeens w L(G) lle Aleitungsäume zgl. G erehnet werden können, und wenden ie dieses Verfhren uf die Wörter us () n. () Nh dem CYK-Algorithmus ergeen sih folgende Berehnungstelle: 15, 14 25, , C, 22 C, 33, A 44, A 55 B 15, Also ist L(G) und L(G) , 11, A 22, A 33 B 44 C, 55 C, () Bei der Berehnung von V ij nnotiert mn die Elemente X V ij mit den verwendeten Regeln und dem Index. Im Bsisfll X V ii werden lle Vrilen der Produktion X w i nnotiert. ei X Y Z und sei Y V ik und Z V (k+1)j. Dnn wird X V ij mit (X Y Z, k) nnotiert. 15 (, 1), (, 2), (, 1), ( C, 1) (, 2), ( C, 2) 13 (, 2), (, 1) ( A, 3) 12 (, 1), ( C, 1) 23 (, 2) ( B, 4), ( AB, 4) 11 (C ), ( ) 22 (C ), ( ) 33 ( ), (A ) 44 ( ), (A ) 55 (B ) 1

2 C A B 15 (, 4), (, 3), (, 3) 14 (, 3) ( A, 1) ( AB, 2), ( B, 2) (, 4), ( C, 4) 11 ( ), (A ) 22 ( ), (A ) 33 (B ) 44 (C ), ( ) 55 (C ), ( ) A C A B Aufge 8.2 Infix-Ashluss 3P+1P Wir etrhten eine Zerlegung z = uvw für ds Wort z. Mn ezeihnet u dnn ls Präfix, w ls uffix und v ls Infix. Der Infixshluss einer prhe L ist dnn definiert ls L infix = {v u, w Σ. uvw L}. () Geen ie eine llgemeine Konstruktion n, die us einer CFG G in CNF mit L = L(G) eine Grmmtik G mit L(G ) = L infix erzeugt. () Wenden ie Ihr Verfhren uf die Grmmtik us HA8.1 n. () ei G = (V, Σ, P, ) CFG in CNF mit L = L(G) und L infix = {v Σ u, w Σ : uvw L(G)}. Idee: Es gilt: v L infix gdw. es git einen Aleitungsum zu uvw zgl. G für u, w Σ. Wir shneiden jetzt einen rehten und einen linken eil vom Aleitungsum zu uvw. Hierzu konstruieren wir G = (V V { }, Σ, P P, ) wie folgt: V = { X, X, X X V } P = {X Y Z, X Y, X Y Z, X Z, X Y Z, X Y, X Z X Y Z P } { X, X, X X P } { ε} 2

3 () ε C A B AB A B C C C A A A B B AB A C A B C AB A B B C C C A A A B B AB B A C Aufge 8.3 Pushdown Automten / Kellerutomten 2P+2P+2P Konstruieren ie für die folgenden prhen jeweils einen Kellerutomten. Der Automt soll mit leerem tk kzeptieren. Geen ie zusätzlih für jeden Automten jeweils ein niht-leeres Wort w mit kzeptierendem Luf n. () L 1 = { n 3n n 0} () L 2 = { n m {, } n m 2n} () L 3 = {w {, } 2 w = 3 w } () qx BBB qx ε ε qb BBBB qb pε pb pε (q,, X) (q,, BBB) (p,, BB) (p,, B) (p, ε, ε) () Idee: Für jedes lege nihtdeterministish entweder ein oder zwei uf den tk und üerprüfe dnn, o die gertene Anzhl von s mit der gegeenen üereinstimmt. qx B qx BB qx ε ε qb BB qb BBB qb pε pb pε (q,, X) (q,, BB) (q,, BBB) (p,, BB) (p,, B) (p, ε, ε) () Idee: Verwende tk ls (unären) Zähler und enutze explizites Bottom-ymol, um uf 0 zu testen. Für jedes zähle um 2 (odiert ls XX) hoh und für jedes ziehe 3 (odiert ls Y Y Y ). q XX qx XXX qy p + ε q Y Y Y qy Y Y Y Y qx p ε p + ε X p ε Y Y p ε Y p + Y ε ε p X ε p ε p X ε ε q ε ε (q,, ) (q,, XX ) (p,, X ) (p,, ) (q,, Y ) (q,, Y Y Y Y ) (p +,, Y Y Y ) (q,, Y Y ) (p +, ε, Y ) (q, ε, ) (q, ε, ε) 3

4 Aufge 8.4 Ogdens Lemm 2P Zeigen ie mit Hilfe des Lemms von Ogden (A7.3), dss die folgende prhe niht kontextfrei ist: L = { i j j i j} ei L kontextfrei. Dnn gilt Ogdens Lemm für L. ei p entsprehend dem Lemm für L gewählt. Wir wählen z = p+p! p p L, woei genu p mrkiert sei. Dmit sind in vwx stets höhstens p Zeihen mrkiert. Nh Ogdens Lemm enthält vx mindestens ein. Wir untersheiden zwei möglihe Fälle für vx: vx vx : Dnn git es er eine ngleihgewiht: uv 2 wx 2 y uv 2 wx 2 y und somit uv 2 wx 2 y L. vx = vx : Angenommen es git ein k > 0 mit v = k und x = k. Flls dies niht der Fll wäre, können wir sofort einen Widerspruh mit i = 2 erzeugen. Wir wählen nun i = 1 + p! k N zum ufpumpen. Dnn gilt und somit uv i wx i y L. uv i wx i y = p + p! = (p k) + (1 + p! k )k = uv i wx i y = uv i wx i y D jeder Fll einen Widerspruh erzeugt, ist L niht kontextfrei. 4

5 utorufgen: Besprehung in KW24 Erinnerung: Wir ezeihnen mit L ε (A), die prhe die von einem PDA A mit leerem tk kzeptiert wird. Weiterhin ezeihnen wir mit L F (A), die prhe die von einem PDA A mit Endzuständen kzeptiert wird. Nottion von PDA-Regeln : Ansttt der in den Folien verwendeten hreiweise (q, Y Z) δ(p,, X) für die Ersetzungsregeln eines PDA, shreit mn lterntiv px Y Z (p, q Q, X, Y, Z Γ, Σ) oder stellt diese entsprehend ls Grph mit Knotenmenge QΓ 2 dr, woei die Knte (px, qy Z) dnn mit eshriftet ist. Für den PDA δ(p,, ) = {(p, X )} δ(p,, X) = {(p, XX)} δ(p,, X) = {(p, ε)} δ(p, ε, ) = {(p, ε)} shreit mn dher lterntiv: p px px pxx px p p ε p oder der stellt diesen entsprehend ls Grph mit Knotenmenge Q dr, woei die Knte (p, q) dnn mit, X/Y Z eshriftet ist (siehe Hoproft t l. Introdution to Automt heory, Kpitel 6):, /X, X/ε p ε, /ε, X/XX Aufge 8.1 Deterministishe PDAs In der Vorlesung hen ie ie Lemm 3.65 ohne Beweis gesehen: ei L Σ. Dnn sind äquivlent: () Es git einen DPDA D mit L ε (D) = L () Es git einen DPDA D mit L F (D ) = L und kein Wort us L ist ein ehter Präfix von einem nderen Wort us L. Zeigen ie diese Äquivlenz. ei D mit L ε (D) = L. Erweitere D um explizites Bottom-ymol mit q ε F für lle q Q und q F neuer und einziger Endzustnd. Der so erhltene PDA ist noh deterministish mit L F (D ) = L ε (D). eien u, uv L. D D deterministish, muss D nh Lesen von u stets in derselen Konfigurtion sein, insesondere der tk somit leer, womit uv nur für v = ε kzeptiert werden knn. ei (1) D mit L F (D) = L und (2) kein Wort us L ist ein ehter Präfix eines weiteren Worts us L. Wieder nlog zu llgemeinen PDAs: Erweitere D so zu D, dss eim ersten Erreihen einer Konfigurtion mit Endzustnd einfh der tk deterministish geleert wird, der Automt somit keine weitere Rehnung usführen knn. Offensihtlih gilt dnn: L F (D) L ε (D ). ei w L F (D) \ L ε (D ). Dnn muss die eindeutige kzeptierende Berehnung von D uf w einen Endzustnd mindestens zweiml esuhen und shließlih in einer solhen Konfigurtion enden. Der Fll, dss mn nh dem ersten Besuh einer Endkonfigurtion nur noh ε liest, knn niht sein, d dnn ds gelesene Wort w uh von D noh kzeptiert wird. Dher git es er uh einen ehten Präfix von w, der von D kzeptiert und dmit in L liegt. Widerspruh zu (2). Es knn somit kein solhes w geen. Aufge 8.2 Booleshe Ausdrüke Wir etrhten folgende Grmmtik für ooleshe Ausdrüke üer den ooleshen Vrilen x, y (welhe somit erminle der Grmmtik sind): ( ) ( ) x y Konstruieren ie einen DPDA D mit L(G) = L ε (D). Die Üersetzung von CFG in PDA nh VL würde zu einem nihtdeterministishen Rten, welhe der eiden Relgen ( ) ( ) ngewendet werden soll, führen und somit niht einen DPDA ergeen. In diesem Fll knn mn die Fälle zusmmenführen zu (X op ) mit X op. Dher muss mn keine Aleitung rten. Einführen von Hilfssymolen, um die PDA-Regeln uf die Form QΓ Σ QΓ 2 zu ringen, ergit die folgenden Regeln: 5

6 q ( X op q q x,y ε qx op, X l qx l ) ε Der DPDA lässt sih dnn direkt ls reursive desent prser lesen, woei der tk des DPDA gerde dem Cll-tk entspriht, z.b. in Python: lss RDPrser : def _next_symol ( s e l f ) : i f s e l f. i >= len ( s e l f.w) : rise RuntimeError ( ) s e l f. = s e l f.w[ s e l f. i ] s e l f. i += 1 def _Xl ( s e l f ) : s e l f. _next_symol ( ) i f s e l f. == ) : # qx l ) ε rise RuntimeError ( ) def _Xop( s e l f ) : s e l f. _next_symol ( ) i f s e l f. in [, ] : # qx op, X l s e l f._( ) s e l f. _Xl ( ) else : rise RuntimeError ( ) def _( s e l f ) : s e l f. _next_symol ( ) i f s e l f. == ( : # q ( X op s e l f._( ) s e l f. _Xop( ) e l i f s e l f. == : # q q s e l f._( ) e l i f s e l f. in [ x, y ] : # q x,y qε rise RuntimeError ( ) def p r s e ( s e l f,w) : s e l f.w = w s e l f. i = 0 try : s e l f._( ) exept RuntimeError : print ( " Psrse e r r o r t % s ( p o s i t i o n %s ) i n % s. " % ( s e l f., s e l f. i 1, s e l f.w) ) F l s e s e l f. i == len ( s e l f.w) Aufge 8.3 CFG PDA Wir üen die Üersetzung zwishen CFG und PDA: () Üerführen ie folgende CFG G (trtsymol ) zunähst in CNF 1 und dnn in einen PDA A mit L ε (A) = L(G) \ {ε}: ε () Üersetzen ie folgenden PDA A (trtkonfigurtion qx) in eine CFG G mit L ε (A) = L(G): qx l X[Y XZ] q[y XZ] ε py [XZ] q[xz] ε XZ qx n X qx x,y ε py,o ε qz r ε Nottion : px Y Z steht kurz für (q, Y Z) δ(p,, X). () X X X X X X X X X X X X X X 1 Wenden ie die Regeln in der Reihenfolge (3) (4) (1) (2) n, um eine kompktere Grmmtik zu erhlten. 6

7 qx X X qx X q X X X q qx X X qx qx X X qx X qx () X q,[y XZ],p X p,y,q X q,[xz],p X p,y,p X p,[xz],p X p,y,q o X q,x,p lx q,x,p X p,[y XZ],p nx q,x,p lx q,x,q X q,[y XZ],p X q,x,q nx q,x,q y x lx q,x,p X p,[y XZ],q lx q,x,q X q,[y XZ],q X q,z,q r X q,[xz],q X q,x,q X q,z,q X q,x,p X p,z,q X q,[xz],p X q,x,q X q,z,p X q,x,p X p,z,p X q,[y XZ],q X p,y,q X q,[xz],q X p,y,p X p,[xz],q X q,x,p X q,x,q 7

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch.

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch. Einführung in die Theoretishe Informtik I/ Grundlgen der Theoretishen Informtik SS 2007 Jun.-Prof. Dr. Bernhrd Bekert Ulrih Koh Nhklusur 25. 09. 2007 Persönlihe Dten itte gut leserlih usfüllen! Vornme:...

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 7. Juni HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 7. Juni HA-Lösung. TA-Lösung Tehnishe Universität Münhen Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sikert 7. Juni 2016 HA-Lösung TA-Lösung Einführung in die theoretishe Informtik Aufgenltt 5 Behten Sie: Soweit niht explizit

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus Klusur Formle Sprchen und Automten Grundlgen des Compilerus 25. Novemer 2014 Nme: Unterschrift: Mtrikelnummer: Kurs: Note: Aufge erreichre erreichte Nr. Punkte Punkte 1 10 2 10 3 12 4 11 5 9 6 6 7 11 8

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

Lösungshinweise/-vorschläge zum Übungsblatt 2: Software-Entwicklung 1 (WS 2015/16)

Lösungshinweise/-vorschläge zum Übungsblatt 2: Software-Entwicklung 1 (WS 2015/16) Dr. Annette Bienius Mthis Weer, M.. Peter Zeller, M.. T Kiserslutern Fhereih Informtik AG oftwretehnik Lösungshinweise/-vorshläge zum Üungsltt 2: oftwre-entwiklung 1 (W 2015/16) Die Hinweise und orshläge

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 2

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 2 Prof. J. Esprz Tehnishe Universität Münhen S. Sikert, J. Krämer KEINE ABGABE Einführung in die theoretishe Informtik Sommersemester 2017 Üungsltt 2 Üungsltt Wir untersheiden zishen Üungs- und Agelättern.

Mehr

Übung zur Vorlesung Formale Systeme, Automaten und Prozesse

Übung zur Vorlesung Formale Systeme, Automaten und Prozesse RWTH Ahen Lehrgeiet Theoretishe Informtik Emmes Kneis Lnger Rossmnith SS 2009 Üungsltt 1 22.04.2009 Üung zur Vorlesung Formle Systeme, Automten und Prozesse Tutorufge T1 Es seien v, w Σ, so dß vw = wv.

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Formal Languages and Automata

Formal Languages and Automata Forml Lnguges nd Automt Aufgensmmlung Jn Hldik und Stephn Schulz 10. Novemer 2014 1 Üungsufgen 1.1 Endliche Automten 1.1.1 Aufge Sei Σ = {, }. Geen Sie für die folgenden Sprchen einen DFA n L 0 = {w Σ

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Üung Grundegriffe der Informtik 11. Üung Krlsruher Institut für Technologie Mtthis Jnke, Geäude 50.34, Rum 249 emil: mtthis.jnke ät kit.edu Mtthis Schulz, Geäude 50.34, Rum 247 emil: schulz ät ir.uk.de

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Üungsltt Vorlesung Theoretische Grundlgen der Informtik im WS 78 Ausge 9. Oktoer 27 Age 7. Novemer 27, : Uhr (im Ksten im UG von Geäude

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten 6.05.2015 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-kolenz.de 1 Üersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre Sprchen

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Reguläre Ausdrücke, In12 G8

Reguläre Ausdrücke, In12 G8 Reguläre Ausdrücke, In2 G8 Beweise, dss A* unendlich viele Elemente esitzt. Hinweis: Indirekter Beweis R A = {0,} Bilde A 3, A 4 A = {,, c} Bilde A 2, A 3 A = {,, c} Gi die Menge ller Wörter der Länge

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Algorithmentheorie. 15 Suchen in Texten (1)

Algorithmentheorie. 15 Suchen in Texten (1) Algorithmentheorie 15 Suhen in Texten (1) Prof. Dr. S. Alers Suhe in Texten Vershiedene Szenrien: Sttishe Texte Literturdtennken Biliothekssysteme Gen-Dtennken WWW-Verzeihnisse Dynmishe Texte Texteditoren

Mehr

L = L(a(a b) b b(a b) a)

L = L(a(a b) b b(a b) a) Lösungen zur Proeklusur mit Kommentren Aufge 1. Ein Wort w {,} liegt genu dnn in L, wenn es entweder mit nfängt und mit endet oder umgekehrt. Also erhält mn L = L(( ) ( ) ). Ein DEA, der die Sprche L kzeptiert,

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Automaten und formale Sprachen Bemerkungen zu den Folien

Automaten und formale Sprachen Bemerkungen zu den Folien Inhltsverzeichnis Automten und formle Sprchen Bemerkungen zu den Folien 1 Wiederholung Mengentheorie 3 Beispiele für die Potenzmenge (Folie 28)........................... 3 Beispiele für ds Kreuzprodukt

Mehr

Zusammenhänge zwischen Sprachen und Automaten:

Zusammenhänge zwischen Sprachen und Automaten: Kellerutomten Jörg Roth 273 4 Kellerutomten Zusmmenhänge zwischen prchen und utomten: $ x 12 v 9 q r 1 x Wir hen isher einen utomtentyp kennen gelernt, den endlichen utomten. Endliche utomten erkennen

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Verfhren Mthemtik für Studierende der Biologie und des Lehrmtes Chemie Dominik Shillo Universität des Srlndes 6. Vorlesung, 4..7 (Stnd: 4..7, 4:5 Uhr) Shreibe,,n.......... n, n,n Führe den Guÿlgorithmus

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Relationen: Verkettungen, Wege, Hüllen

Relationen: Verkettungen, Wege, Hüllen FH Gießen-Frieerg, Sommersemester 00 Lösungen zu Üungsltt 9 Diskrete Mthemtik (Informtik) 9./. Juni 00 Prof. Dr. Hns-Ruolf Metz Reltionen: Verkettungen, Wege, Hüllen Aufge. Es ezeihne R ie Reltion {(,

Mehr

Graphen vielseitig verwendbar zur Repräsentation von Zusammenhängen, etwa:

Graphen vielseitig verwendbar zur Repräsentation von Zusammenhängen, etwa: 7. Grphentheorie Grphen vielseitig verwenr zur Repräsenttion von Zusmmenhängen, etw: Stäte Personen Aktionen... Verinungswege Reltionen zwishen ihnen zeitlihe Ahängigkeiten Def. 7.1: Ein gerihteter Grph

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten)

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 2.7.24 Klusur üer den Stoff der Vorlesung Grundlgen der Informtik II (9 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (SS 24) Ich estätige,

Mehr

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis Pumping Lemm für reguläre Sprhen (1/2) Informtik II SS 2004 Teil 6: Sprhen, Compiler un Theorie 2 Ds Pumping Lemm ist eine Methoe, um herus zu finen, o eine Sprhe niht regulär. Prof. Dr. Dieter Hogrefe

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2004/05 ILKD Prof. Dr. D. Wgner 24. Ferur 2005 1. Klusur zur Vorlesung Informtik III Wintersemester 2004/2005 Lösung! Bechten Sie: Bringen

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Musterlösungen zur 4. Übung

Musterlösungen zur 4. Übung Deprtement Informtik Theoretische Informtik Prof. Dr. J. Hromkovič Prof. Dr. M. Bläser Musterlösungen zur 4. Üung Zürich, 2. Novemer 24 Lösung zu Aufge 2 Wir emerken zunächst, dss x mod 4 {, 3} nichts

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier Weihnchtsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 1 15. April 2014 Inhlt der gnzen Vorlesung Automten uf endlichen Wörtern uf undendlichen Wörtern uf endlichen Bäumen Spiele Erreichrkeitsspiele Ehrenfeucht-Frïssé Spiele

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

Zusatzaufgaben zur Vorlesung Grundlagen der Theoretischen Informatik h_da, FB Informatik, SS 2009

Zusatzaufgaben zur Vorlesung Grundlagen der Theoretischen Informatik h_da, FB Informatik, SS 2009 1 Zustzufgen zur Vorlesung Grundlgen der Theoretischen Informtik h_d, FB Informtik, SS 2009 Empfehlung: Bereiten Sie jede Aufge intensiv gleich, o Sie zu einer Lösung kommen oder nicht evor Sie sich die

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o Lndeswettewer Mthemtik Bden-Württemerg 999 Runde ufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder

Mehr

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19 Alger Vorlesung (.Teil) Mg. Dniel Zeller INHALTSVERZEICHNIS 0. Linere Gleihungen mit zwei Vrieln... 9 Eine linere Gleihung in Vrilen... 9 Geometrishe Deutung einer lineren Gleihung in Vrilen... Gleihungssystem

Mehr

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Probleme, SS 2017 Montg 12.6 $Id: dreiek.tex,v 1.33 2017/06/12 15:01:14 hk Exp $ 2 Dreieke 2.1 Dreieksberehnung mit Seiten und Winkeln Wir beshäftigen uns gerde mit den Konstruktionsufgben für

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Bezeichnungen. Arten von String-Matching-Problemen

Bezeichnungen. Arten von String-Matching-Problemen 4. Textlgorithmen String Mthing 4. Textlgorithmen Die Suhe von einem Muster in einem Text wird uh ls String Mthing oder Pttern Mthing ezeihnet. Generell esteht die Aufge drin, einen String (ds Muster,

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr