Partialbruchzerlegung

Größe: px
Ab Seite anzeigen:

Download "Partialbruchzerlegung"

Transkript

1 Partialruchzerlegung Unknown: Letzte Änderung:

2 Contents 1 Nutzen/Ziel [Integration] 3 2 Partialruchzerlegung Rellee Nullstellen (einfach) Komplexe Nullstellen Mehrfache Nullstellen (reell) Verfahren Koezientenvergleich Zuhaltemethode/Grenzwertmethode Einsetzmethode Beispiele Einfache Nullstellen, reell Reelle Nullstellen Komplexe Nullstellen

3 1 Nutzen/Ziel [Integration] Unter einer gerochen rationalen Funktion versteht man eine Funktion f : D R, die als Quotient zweier Polynome mit reellen Koezienten gegeen ist. Es gilt demnach f(x) = q(x) p(x) mit q(x), p(x) P ol R daei einhaltet der Denitionsereich D keine Nullstellen des Nennerpolynoms p(x)! Des Weiteren gilt, dass p(x) irreduziel ist und Grad p(x)>grad q(x). Stellt sich nun die Frage nach der Integration einer solchen Funktion, so treten keine Proleme auf, sollten die Polynome von derartiger Gestalt sein: q(x) = 1und p(x) = x n Die Stammfunktion F 1 der Funktion f n für n=1 ist uns wohl ekannt. f 1 (x) = 1 x 1 F 1 = ln(x) Auch ereitet F 2 keine gröÿeren Schwierigkeiten: f 2 (x) = 1 x 2 F 2 = 1 x Es ergit sich, wie sich schnell erkennen lässt: f n (x) = 1 x F n n = fn 1 n 1 die Stamm- 1 Genauso einfach lässt sich für n>1 sagen, dass für f(x) = (x a) n funktion dieses Aussehen hat: F (x) = 1 n 1 f n 1(x a) Umkehrung: Wir schreien t(x) = x a und leiten F = fn 1 n 1 t(x) a (Kettenregel; t'(x)=1) F (x) = ( fn 1 n 1 t ) = fn (t(x)) t (x) = f n (x a) = f(x) Wollen wir aer nun eine Integration einer elieigen rationalen Funktion q(x) p(x) durchführen, so wird p(x) in seine Linearfaktoren zerlegt und die Partialruchzerlegung kommt ins Spiel. Mit ihr lässt sich dann oiges Anwenden und damit "einfach" integrieren. 3

4 2 Partialruchzerlegung Grundsätzlich sind drei verschiedene Fälle zu unterscheiden. - Einfache reelle Nullstellen - komplexe Nullstellen - mehrfache Nullstellen (hier: reell) 2.1 Rellee Nullstellen (einfach) Es sei angenommen, dass das Polynom als Linearfaktorzerlegung geschrieen werden kann. Daei tritt keine Vielfachheit einer Nullstelle auf p(x) = (x x 1 ) (x x 2 )... (x x m ). Die zugehörige Partialruchzerlegung hat dann diese Gestalt. q(x) p(x) = a x x 1 + x x Die Berechnung soll später geklärt werden. 2.2 Komplexe Nullstellen Gilt für p(x), dass keine reellen Nullstellen exisitieren, so lässt es sich nicht als Produkt von Linearfaktoren darstellen. p(x) = (x 2 + ux 1 + v 1 ) +... mit u, v R Man kann das Rechnen mit komplexen Zahlen aer direkt vermeiden, weil mit jeder komplexen Nullstelle z i auch die konjugiert komplexe Zahl z i Nullstelle ist. a Anstatt x z i und x z i lässt sich das ganze auch als ein Term c+dx x 2 +ux+v darstellen, woei gilt x 2 + ux + v = (x z i )(x z i ). Da x 2 + ux + v einer reellen quadratischen Form entspricht, sind auch c und d reell. 2.3 Mehrfache Nullstellen (reell) Der Nennerterm p(x) sei auf die Form geracht: p(x) = (x x 1 ) k1 (x x 2 ) k2... (x x m ) km für k i > 1 Eine Vielfachheit der Nullstelle ist hier möglich. Für den zu wählenden Ansatz gilt folgendes: p(x) (x x n) = a k (x x + z n) (x x n) (x x n) k 4

5 3 Verfahren Eine Partialruchzerlegung hat folgende Form (hier: einfache reelle Nullstellen) q(x) p(x) = a (x x 1) + (x x 2) +... Daei sind die Koezienten im Zähler zu estimmen und x n steht für die Nullstellen. In diesem Kapitel sollen verschiedene Ansätze zur Bestimmung der Koezienten dargelegt werden Koezientenvergleich 3.2. Zuhaltemethode/Grenzwertmethode 3.3. Einsetzmethode Die Herangehensweise soll jeweils an einem Beispiel veranschaulicht werden. 3.1 Koezientenvergleich Es sei folgende Funktion gegeen: f(x) = x 1 (x 2) 3 Man erkennt sofort, dass man hier nach 2.3. vorzugehen hat. Hier liegt eine mehrfache Nullstelle vor! Es gilt demnach folgender Ansatz: x 1 (x 2) = a 3 x 2 + (x 2) + c 2 (x 2) 3 Mit Anwendung des Koezientenvergleichs ist es nun nötig, den gemeinsamen Hauptnenner zu nden und mit diesem zu multiplizieren. Der gemeinsame Hauptnenner ist in unserem Fall (x 2) 3. Es ergit sich daraus eine neue Gleichung, die dieses Aussehen hat: x 1 = a(x 2) 2 + (x 2) + c Um die Koezienten zu vergleichen muss die Gleichung vereinfacht werden. 1 x 1 = a(x 2 4x + 4) + (x 2) + c = ax 2 + ( 4a + )x + (4a 2 + c) 5

6 Nun können die Koezienten verglichen werden, indem man sich folgendes vor Augen führt: 0 x x 1 = ax 2 + ( 4a + )x + (4a 2 + c) x 2 : 0 = a x 1 : 1 = 4a + x 0 : 1 = 4a 2 + c Aus erster Zeile folgt, dass a = 0 sein muss. Damit in die zweite Zeile und es folgt = 1. Aus der dritten Gleichung erhält man dann c = 1. Dies wird nun in oige Gleichung eingesetzt und man erhält: x 1 (x 2) = 0 3 x (x 2) (x 2) = 1 3 (x 2) (x 2) Zuhaltemethode/Grenzwertmethode Dieses Verfahren ist edeutend schneller als der Koezientenvergleich, doch lässt es sich nur auf Linearfaktoren anwenden. Bei einer mehrfachen Nullstelle ist es mit der Grenzwertmethode nicht getan. Es ietet sich an, die den höchsten Potenzen der Linearfaktoren entsprechenden Unekannten nach der Grenzwertmethode, die ürigen nach der Koezientenvergleichsmethode zu estimmen. Auch hier sei an einem Beispiel das Vorgehen veranschaulicht. Gegeen sei folgendes: 2x+3 (x 1)(x+1) = a x 1 + x+1 Wir haen hier nur einfache reelle Nullstellen und somit lassen sich eide Koezienten nach der Grenzwertmethode estimmen. Um a zu estimmen, werden eide Seiten mit dem zugehören Linearfaktor (hier: (x-1)) multipliziert. Es wird sogleich gekürzt und folgendes leit stehen: 2x+3 x+1 = a + (x 1) x+1 Nimmt man nun den Grenzwert, sagt x 1, so ergit sich: = a + 0 Es ergit sich a = 5 2. Für wird genau dassele Verfahren verwendet. Es wird mit dem zugehörigen Linearfaktor (hier: (x+1)) multipliziert und dann der Grenzwert errechnet. Es gilt für x = a 0 + = 1 2 Die Partialruchzerlegung lautet demnach: 6

7 2x+3 (x 1)(x+1) = 5 2 (x 1) Einsetzmethode (x+1) = (x 1) (x+1) Mit der Einsetzmethode erzeugt man so viele lineare Gleichungen, wie man unekannte Koezienten angesetzt hat, indem man in die Ansatzgleichung für die Partialrüche für x elieige Werte einsetzt ( D). Diese Methode wendet man vorteilhaft an, wenn mit der Zuhaltemethode schon Koezienten estimmt sind und nur noch wenige Koezienten unekannt sind. Wiederum sei an einem Beispiel das Vorgehen erläutert. x+1 x 2 (x 1) = a x + x 2 + c (x 1) Anmerkung: Mit der Grenzwertmethode lassen sich hier nicht alle Koezienten estimmen. Mittels der Grenzwertmethode lieÿe sich nur und c estimmen. Es gilt drei Koezienten zu estimmen. Drei Unekannte fordern drei Gleichungen. Für die Einsetzmethode sei x=-1, x=2 und x=3 gewählt (x=0 oder x=1 dürfen nicht gewählt werden! Sie liegen auÿerhal von D). Es ergit sich folgendes Gleichungssystem, das es zu lösen gilt: x = 1 : 0 = a 1 + ( 1) + c x = 2 : 4 = a c 1 4 x = 3 : 18 = a c 2 In vereinfachter Form: x = 1 : 0 = a c 3 x = 2 : 4 = 1 2 a c 2 x = 3 : 9 = 1 3 a c Als Lösung ergit sich: a=-2, =-1, c=2 Die Partialruchzerlegung lautet demnach: x+1 x 2 (x 1) = 2 x 1 x (x 1) 7

8 4 Beispiele Am einfachsten lassen sich Dinge durch Veranschaulichung wie Beispiele erklären. Es folgen drei Vorrecheneispiele: - Einfache Nullstellen, reell - Reelle Nullstellen - Komplexe Nullstellen 4.1 Einfache Nullstellen, reell Integrieren Sie x 2 +5x 14! Um dies zu integrieren sollte man eine Partialruchzerlegung durchführen. Dafür muss der Nenner zuerst einmal zerlegt werden. Mit der Mitternachtsformel/pq- Formel erhält man die Nullstellen x 1 = 7 und x 2 = 2. Die Linearfaktorzerlegung des Nenners ergit dann: x 2 +5x 14 = (x+7)(x 2) Nun kann man für die Partialruchzerlegung folgendermaÿen ansetzen: x 2 +5x 14 = a x+7 + x 2 Lösungsvoschlag 1: (Grenzwertmethode) x=-7: Es wird mit (x+7) multipliziert und der Grenzwert x 7genommen: x 2 = a = a a = 1 3 Für x=2 wird dassele gemacht. Aer um das mühsame Schreien zu ersparen, sei hier erklärt, warum es auch "Zuhaltemethode" heiÿt. Für die Zuhaltemethode edecke man auf der linken Seite (x-2). Rechts etrachte man allein. Es steht also für das Auge nur noch folgendes da: (x+7) = Den Grenzwert x 2 eingesetzt ergit das = 4 3. Wie sich leicht nachprüfen lässt, ist das korrekt und es erklärt sich sowohl der Name "Zuhaltemethode", wie auch warum es sich um ein so schnelles Verfahren handelt. Lösungsvoschlag 2: (Einsetzmethode) Zur Erinnerung: x 2 +5x 14 = a x+7 + x 2 Es werden nun zwei elieige Werte für x D gewählt, denn es liegen zwei Unekannte vor, die zwei Gleichungen verlangen. Es sei x=0 und x=3 gewählt: = a = a

9 Es ergeen sich also die eiden Gleichungssysteme: = a = a Aus diesem LGS ergit sich die Lösung a = 1 3, = 4 3 Das stimmt mit "Lösungsvorschlag 1" üerein Ergenis: Man erhält am Ende: x 2 +5x 14 = 1 3(x+7) + 4 3(x 2) Um die Aufgae azuschlieÿen wird nun integriert: x 2 +5x 14 dx = 1 3(x+7) + 4 3(x 2) dx = [ 1 3 ln x ln x 2 ] 4.2 Reelle Nullstellen Partialruchzerlegung dieses Beispiels: 4x 2 +9x 4 (x 1)(x+2) 2 Zu wählender Ansatz: 4x 2 +9x 4 (x 1)(x+2) 2 = a x 1 + x+2 + c (x+2) 2 Mit a=1 und c=2 (aus der Grenzwertmethode) ( lässt sich mit der Grenzwertmethode nicht estimmen. Ist nun aer einfacher zu estimmen, da einzige Unekannte): x+2 = 4x2 +9x 4 (x 1)(x+2) 1 2 x 1 2 (x+2) 2 Danach versucht man eide Seiten auf den gleichen Nenner zu ringen: x+2 = (4x2 +9x 4) (x+2) 2 2(x 1) (x 1)(x+2) 2 = 4x2 +9x 4 (x 2 +4x+4)+2x 2 (x 1)(x+2) 2 = 3x2 +3x 6 (x 1)(x+2) 2 = 3(x 1)(x+2) (x 1)(x+2) 2 = 3 (x+2) Man sieht also, dass x+2 = 3 x+2 9

10 woraus folgt, dass =3 ist. Es ergit sich damit insgesamt: 4x 2 +9x 4 (x 1)(x+2) = 1 2 x x (x+2) Komplexe Nullstellen Partialruchildung von 2x3 +5x 2 +2x+3 Es gilt als erstes zu eachten, dass der Nennergrad nicht gröÿer ist als der Zählergrad! Also Polynomdivision: 2x 3 +5x 2 +2x+3 = 2 + x 2 1 Wir haen eine komplexe Nullstelle und eine einfache reelle Nullstelle. Es gilt daher folgender Ansatz (Der Summand 2 wird nicht weiter etrachtet): x 2 1 = a x+2 + x+c x 2 +1 Wie eschrieen wird nun der Hauptnenner geildet und dann geordnet: x 2 1 = a(x2 +1)+(x+c)(x+2) = (a+)x2 +(2+c)x+(a+2c) Mit dem Koezientenvergleich ergit sich: x 2 : a + = 1 x 1 : 2 + c = 0 x 0 : a + 2c = 1 a = 3 5, = 2 5, c = 4 5 2x Das Ergenis ist dann: 3 +5x 2 +2x+3 = x x 4 5 x

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Berechnungen mit dem Horner-Schema

Berechnungen mit dem Horner-Schema Berechnungen mit dem Horner-Schema Das Hornerschema kann als Rechenhilfsmittel zur Berechnung von Funktionswerten von Polynomfunktionen, zur Faktorisieriung von Polynomen alternativ zur Polynomdivision

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Lineare Gleichungen und lineare Gleichungssysteme mit zwei Variablen. 1.1 Beispiel einer linearen Gleichung mit zwei Variablen 2

Lineare Gleichungen und lineare Gleichungssysteme mit zwei Variablen. 1.1 Beispiel einer linearen Gleichung mit zwei Variablen 2 KBWR, Duisurg Seite von 30 9..006 Lineare Gleichungen und lineare Gleichungssysteme mit zwei Varialen Inhalt: Seite. Beispiel einer linearen Gleichung mit zwei Varialen. Normalform einer linearen Gleichung

Mehr

Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1

Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1 Interne Links auf dieser Seite: Abbildungsverzeichnis Inhaltsverzeichnis Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1 Man löse die Gleichung x 3 2x 2 112 = 0 Dies ist eine kubische Gleichung.

Mehr

Integralrechnung - Einführung Seite 1 von 6. Vergleicht man die Ergebnisse miteinander, so kann man folgende Entdeckung machen:

Integralrechnung - Einführung Seite 1 von 6. Vergleicht man die Ergebnisse miteinander, so kann man folgende Entdeckung machen: Integralrechnung - Einführung Seite von 6 Berechnung von Flächeninhalten zwischen dem Graphen einer Funktion und der x-achse: Beispiel : f(x)= Fläche zwischen Graph und x-achse üer dem Intervall [;]: Bei

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Polynome. David Willimzig. Wir beschäftigen uns zunächst mit Polynomen in einer Variablen x. Diese haben die Gestalt

Polynome. David Willimzig. Wir beschäftigen uns zunächst mit Polynomen in einer Variablen x. Diese haben die Gestalt Polynome David Willimzig 1 Grundlagen Wir beschäftigen uns zunächst mit Polynomen in einer Variablen x. Diese haben die Gestalt p(x) = a n x n +... + a 1 x + a 0 = Die Zahlen a 0, a 1,..., a n werden Koezienten

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen

WURZEL Werkstatt Mathematik Polynome Grundlagen Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die

Mehr

Grundwissen Mathematik 8. Klasse

Grundwissen Mathematik 8. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 8. Klasse Wissen Aufgaen/Beispiele Lösungen Funktionale Zusammenhänge Eindeutige Zuordnungen nennt man in der Mathematik Funktionen. Bei einer Funktion

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Ableitungsübungen. W. Kippels 16. Mai 2011

Ableitungsübungen. W. Kippels 16. Mai 2011 Ableitungsübungen W. Kippels 16. Mai 2011 Inhaltsverzeichnis 1 Einleitung 3 2 Übungsaufgaben 3 2.1 Funktion 1................................... 3 2.2 Funktion 2................................... 3 2.3

Mehr

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)

Mehr

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation

Mehr

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion.

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion. rof. Dr. H. Brenner Osnabrück SS 200 Mathematik II Vorlesung 34 Wir erinnern an den Begriff einer rationalen Funktion. Definition 34.. Zu zwei olynomen,q K[X], Q 0, heißt die Funktion D K, z (z) Q(z),

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II

WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II Die WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II Polynome nur zu addieren, multiplizieren oder dividieren ist auf die Dauer langweilig. Polynome können mehr. Zum Beispiel ist es manchmal gar

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5.1 Einführung Die Gleichung 3x 9 hat die Lösung 3. 3x 9 3Z 9 x 3 3 Die Gleichung 3x 1 hat die Lösung 1 3. 3x 1 1 3 Z 1 x 3 Definition Die Gleichung bx a, mit a, b Z und b 0, hat die Lösung: b x a a

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr.

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr. Ratt und Skonto Rechnung Computersystem Computer P7 '650.00 Fr. Drucker XX 300.00 Fr. Total '950.00 Fr. 15% 44.50 Fr. '507.50 Fr. % 50.15 Fr. '457.35 Fr. Bruttopreis Ratt Nettopreis Skonto Zahlung Worterklärungen

Mehr

Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution

Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution Teil Ganzrationale und Gebrochen rationale Funktionen ANALYSIS Einführung in die Integralrechnung Unbestimmte Integrale und Stammfunktionen auch mit Substitution Kurze Theorie und dann Viel Praxis Datei

Mehr

Teil 2. Mittelstufen-Algebra. Auf dem Niveau der Klasse 8 bis 10. Datei Nr

Teil 2. Mittelstufen-Algebra. Auf dem Niveau der Klasse 8 bis 10. Datei Nr ALGEBRA mit dem CASIO ClassPad 00PLUS Teil Mittelstufen-Algebra Auf dem Niveau der Klasse 8 bis 0. Datei Nr. 70 Hier nur 5 Seiten als Demo Die Originaldatei gibt es auf der Mathe-CD Friedrich W. Buckel

Mehr

A.12 Nullstellen / Gleichungen lösen

A.12 Nullstellen / Gleichungen lösen A12 Nullstellen 1 A.12 Nullstellen / Gleichungen lösen Es gibt nur eine Hand voll Standardverfahren, nach denen man vorgehen kann, um Gleichungen zu lösen. Man sollte in der Gleichung keine Brüche haben.

Mehr

Quadratische Funktion und Parabel: Darstellungsformen

Quadratische Funktion und Parabel: Darstellungsformen Zurück Quadratische Funktion und Parael: Darstellungsformen Kleine Vorüungen, die Sie zum Einstieg durchführen sollten: Erste Üung: Zeichnen Sie die Normalparael y = x in ein Koordinatensystem ein. Verschieen

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

2.1 Polynome, Polynomfunktionen und Nullstellen. k=0

2.1 Polynome, Polynomfunktionen und Nullstellen. k=0 Kapitel 2 Polynome 2.1 Polynome, Polynomfunktionen und Nullstellen Der Polynomring R[x] Definition: Ein Polynom mit einer Variablen x über einem kommutativen Ring R ist ein formaler Ausdruck der Form p(x)

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

( ) ( ) Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0. y s s

( ) ( ) Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0. y s s R. Brinkmann http://brinkmann-du.de Seite 07.0.0 Achsenschnittpunkte ganzrationaler Funktionen Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0 y s s f = f 0 = 0 0 = 0 0 = P ( 0 ) oder P ( 0 f(0)

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

Zwei unbekannte Zahlen und alle vier Rechenarten

Zwei unbekannte Zahlen und alle vier Rechenarten Zwei unekannte Zahlen und alle vier Rechenarten HELMUT MALLAS Online-Ergänzung MNU 8/1 (15.1.015) Seiten 1, ISSN 005-58, Verlag Klaus Seeerger, Neuss 1 HELMUT MALLAS Zwei unekannte Zahlen und alle vier

Mehr

Kapitel 8 Einführung der Integralrechnung über Flächenmaße

Kapitel 8 Einführung der Integralrechnung über Flächenmaße 8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Die projektive Ebene Was sind unendlich ferne Punkte?

Die projektive Ebene Was sind unendlich ferne Punkte? Die projektive Ebene Was sind unendlich ferne Punkte? Prof. Dr. Hans-Georg Rück Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Zusammenfassung: Wir konstruieren

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Extrema gebrochen rationaler Funktionen

Extrema gebrochen rationaler Funktionen Übungen zum Thema: Extrema gebrochen rationaler Funktionen Hier angewandte Lösungsmethode: Grenzwertmethode Versionsnummer: Version in Arbeit vom 6.09.007 / 19.00 Uhr Finde lokale Extrema der gebrochen

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Natur der Zahlen und Zahlen der Natur

Natur der Zahlen und Zahlen der Natur Natur der Zahlen und Zahlen der Natur Teilnehmer: Artur Wiee Jonas Knapp Pierre Vallon Ron Wenzel Toias Theis Vo Tran Van Immanuel-Kant-Oerschule, Berlin Ceciliengmynsium, Bielefeld Herder-Oerschule, Berlin

Mehr

Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die Bruchgleichungen. Vielen Dank, lieber Gott.

Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die Bruchgleichungen. Vielen Dank, lieber Gott. Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die. Vielen Dank, lieber Gott. Bei gibt es drei wichtige Begriffe, die man errechnen muss: ) die Definitionsmenge 2) den Hauptnenner

Mehr

Faktorisierung bei Brüchen und Bruchtermen

Faktorisierung bei Brüchen und Bruchtermen Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die

Mehr

6 Gleichungen und Gleichungssysteme

6 Gleichungen und Gleichungssysteme 03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Grundlage für das Lösen von Quadratischen Gleichungen ist die Lösungsformel, auch als p-q-formel bekannt. Diese Formel bezieht sich auf die Quadratische Gleichung in Normalform:

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

4 Ganzrationale Funktionen

4 Ganzrationale Funktionen FOS, Jahrgangsstufe (technisch) 4 Ganzrationale Funktionen 4 Polynomfunktionen Eine Funktion, die man auf die Form f : x a n x n + a n x n + + a 2 x 2 + a x + a 0 mit x R bringen kann, heißt ganzrationale

Mehr

Lösungsmethoden von quadratischen Gleichungen

Lösungsmethoden von quadratischen Gleichungen Lösungsmethoden von quadratischen Gleichungen Lösen durch quadratische Ergänzung Eine quadratische Gleichung löst man folgendermaßen über das Verfahren der quadratischen Ergänzung: x 8x + 6 = 0 Dividiere

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [1] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing. Anni Schmalz HWS 2015/

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing. Anni Schmalz HWS 2015/ Vorkurs Mathematik Anni Schmalz Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing HWS 2015/2015 14. 18.09.2015 2 Mathe Online Kurs Hier mit seinem Namen und seiner Normalen email

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des

Mehr

Gleichungen, Ungleichungen, Beträge

Gleichungen, Ungleichungen, Beträge KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix.

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix. LINEARE ALGEBRA Lösbarkeit von linearen Gleichungssystemen Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix Gleichungssysteme

Mehr

6.3 Exakte Differentialgleichungen

6.3 Exakte Differentialgleichungen 6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

1.5 lineare Gleichungssysteme

1.5 lineare Gleichungssysteme 1.5 lineare Gleichungssysteme Inhaltsverzeichnis 1 Was ist ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten? 2 2 Wie lösen wir ein lineares Gleichungssystem mit zwei Unbekannten?

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr