UNIX Mechanismen Übung aus Systemprogrammierung & Systemnahe Programmierung. Armin Wasicek SS 2010

Größe: px
Ab Seite anzeigen:

Download "UNIX Mechanismen Übung aus Systemprogrammierung & Systemnahe Programmierung. Armin Wasicek SS 2010"

Transkript

1 UNIX Mechanismen Übung aus Systemprogrammierung & Systemnahe Programmierung Armin Wasicek SS 2010

2 Inhalt Kernel Struktur Prozessverwaltung Interprozesskommunikation Speicherverwaltung 2

3 UNIX Kernel Structure System call interface Process management component Memory management component IO and networking component Virtual file system Signal handling Virtual memory Terminals File systems Sockets Process/Thread creation/termination CPU Scheduling Paging page replacement Page cache line discipline Character devices drivers Generic block layer IO scheduler Block device drivers Network stacks Network device drivers Interrupts Dispatcher 3

4 Prozessverwaltung Erstellt, terminiert und verwaltet Prozesse Verbindet Prozesse untereinander (pipes, signals, IPC) Verbindet Prozesse mit der Außenwelt (I/O) Kontrolliert den Zugriff auf den Prozessor 4

5 Speicherverwaltung Hauptspeicher ist eine wesentliche Ressource Kernel bildet einen virtuellen Adressraum für jeden Prozess Prozesse können Speicher anfordern oder zurückgeben Wird dabei von der memory management unit (MMU) unterstützt 5

6 IO und Networking Virtual file system: abstrahiert über die Peripherie Everything is a file Der Kernel bildet unstrukturierte Hardware auf ein strukturiertes Dateisystem ab Neue Dateisysteme, Treiber und Geräte werden einfach in das virtuelle Dateisystem eingehängt. Dadurch werden Operationen read/write definiert 6

7 Inhalt Kernel Struktur Prozessverwaltung Interprozesskommunikation Speicherverwaltung 7

8 Prozessverwaltung Erstellung eines Ablaufplanes der Prozessen zeitlich begrenzt Ressourcen zuweist. Lernziele: Prozesserzeugung Prozessverwaltung Scheduling in Linux 8

9 Erschaffung neuer Prozesse Erstellen eines neuen leeren Prozesses: Prozess startet ohne zugeordnete Ressourcen Existierender Prozess beliefert neuen Prozess mit Daten und Anweisungen via Speicherseiten Kopieren eines bestehenden Prozesses erstellt eine Kopie von sich und seinem aktuellen Zustand Kopie arbeitet unabhängig vom Original, teilt ev. Ressourcen Ersetzen eines vorhandenen Prozesses setzt einen vorhandenen Prozess auf einen neuen Zustand 9

10 Prozesserzeugung Der Systemcall fork erstellt einen neuen Prozess: pid_t pid=fork(); if(pid<0) { handle_error(); } else if(pid>0) { /* program code for parent */ } else { /* program code for child */ } 1. Ein neuer Eintrag (task_struct) wird in die Taskliste eingefügt 2. Duplizieren der task_struct Struktur des Elterprozesses (Außer: PID) 3. Erzeugen einer Referenz auf die Ressourcen des Elternprozesses 4. Ein identes Speicherabbild des aufrufenden Prozesse wird erstellt 5. Anlegen von Wait Queue (wait_chldexit) 6. Scheduling des Kindprozesses 10

11 Prozesshierachien (pstree) init acpid ahc_dv_0 ahc_dv_1 bash clock-applet crond cups-config-dae cupsd 2*[dbus-daemon-1] dbus-launch dhcpd gdm-binary gdm-binary X gdmgreeter gdm-binary gnome-session ssh-agent 2*[sendmail] sesam_server sesam_server sesam_server 9*[sesam_server] smbd 5*[smbd] sshd sshd sshd bash pine-secure.sh pine sshd sshd bash pine 3*[sshd sshd bash] sshd sshd bash xterm bash pstree 11

12 Datenstrukturen zur Prozessverwaltung Prozesstabelle in Linux besteht aus Einträgen der task_struct Struktur Tabelle hat einen Eintrag pro laufendem Prozess Immer resident Verkettet Prozesse in Queues (z.b. run queue) Eltern Kind Hierachien struct task_struct { volatile long state; /* 1 unrunnable,... 0 runnable, >0 stopped */ struct list_head run_list; struct task_struct *next_task, *prev_task;... /* task state */ int exit_code, exit_signal; pid_t pid;... /* pointers to (original) parent process, etc.*/ struct task_struct *p_opptr, *p_pptr,... *p_cptr, *p_ysptr, *p_osptr; /* open file information */ struct files_struct *files;... /* signal handlers */ struct signal_struct *sig; } 12

13 Elemente der task_struct Struktur (1) Scheduling Identifikation Speicherverwaltung Synchronisation Signale Priorität, CPU Zeit, PID, Owner, Gruppe, Pointer auf MMU Info Wait Queue Mask, Pending Berechtigungen 13

14 Elemente der task_struct Struktur (2) Accounting Information Quotas, Timerverwaltung Process Control Block Register, PC, Statuswort, Segmentregister, Page Table Info Deskriptorentabelle Kernelstack System Calls, Traps 14

15 Scheduling: terms Processes can be either: I/O-bound: heavy use of I/O devices and spend much time waiting for I/O operations to complete CPU-bound: computationintensive applications that require a lot of CPU time Real-time processes are explicitly by the scheduler Quantum: time slice Kernel : 250 Hz = 4 ms UNIX Scheduling policy: fast process response time, good throughput for background jobs, avoidance of process starvation, reconciliation of the needs of low- and high-priority processes, etc. Linux (like all Unix kernels) implicitly favors I/O-bound processes over CPU-bound ones. 15

16 Scheduling in Linux prä 2.6 Nachteile Linux Prä 2.6 Scheduler: O(n) Aufwand, dh. die Rechenzeit des Schedulers war abhängig von der Anzahl der Tasks, dh. skaliert nicht Einzelnes runqueue lock sperrt bei Zugriff alle Prozessoren in einem SMP System Keine Task Preemption, dh. niedrigpriore Tasks können höherpriore Tasks verzögern 16

17 Linux O(1) Scheduler Scheduler: Wählt den höchstprioren Task In einer Bitmap (5x32bit) wird eine Prioritätsstufe markiert, wenn Tasks vorhanden sind Migration Thread priorities task c task d priorities task a task b task e Die Zeit um einen Task auszuwählen hängt somit von der Anzahl der Prioritätsstufen (=140) und nicht mehr von der Anzahl der Tasks ab. PRIO = MAX_RT_PRIO + NICE task f CPU bound Tasks erhalten Penalty [+5 ], I/O bound Tasks erhalten Bonus [ 5 ] 17

18 Linux Scheduler Comparison 18

19 Kontextwechsel Zwischen Prozessen Freiwillig durch sleep_on(), System Call Unfreiwillig durch Ende der Zeitscheibe (Kernel ruft schedule auf), Scheduler wählt nächsten Prozess aus Durch Interrupts Kontextwechsel durch Hardware und Interrupthandler (asynchron) Austausch der task_struct Struktur 19

20 Kontextsicherung Sicherung der Zustandsinformation des alten Prozesses in der task_struct Struktur User Mode Kontext auf Kernel Stack bei Eintritt in Kernel Mode Kernel Mode Kontext in PCB der task_struct Struktur bei freiwilliger Abgabe des Prozessors durch den Prozess mit sleep_on() 20

21 Zusammenfassung Prozessverwaltung Prozess ist ein laufendes Programm Prozesserzeugung (bspw. fork) Prozesstabelle task_struct Scheduling in Linux Kontextwechsel freiwillig/erzwungen Freigabe der Ressourcen bei Terminierung Prozessstatus muss abgeholt werden 21

22 Inhalt Kernel Struktur Prozessverwaltung Interprozesskommunikation Speicherverwaltung 22

23 Interprozesskommunikation (IPC) Wozu? Synchronisation Datenaustausch von Prozessen, entweder verwandt (fork), auf gleichem Rechner/Prozessor, oder auf verschiedenen Rechnern/Prozessoren. 23

24 IPC Mechanismen Signale Sockets Semaphore Shared Memory Message Queues 24

25 Signale Behandlung von Ausnahmezuständen Aktionen beim Eintreffen Ignorieren Terminieren des Prozesses Erzeugen eines Speicherabbildes Anhalten des Prozesses Ausführen einer Behandlungsroutine 25

26 Implementierung von Signalen in task_struct Struktur Bitfelder signal und blocked Array von Zeigern auf benutzerdefinierte Signalbehandlungsroutinen Senden eines Signals send_sig und generate Ausführung bei Prozessscheduling Check für eingetroffene und nicht ignorierte Signale Festlegen der auszuführenden Aktion (Terminierung, Signalbehandlungsroutine) 26

27 Sockets Endpunkte einer Kommunikation Netzwerkfähig Transparent Kompatibilität zu UNIX I/O (read, write) Parameter Domain (UNIX, Internet) Typ (Stream, Datagram, Raw) Protokoll (TCP/IP, UDP/IP) 27

28 System V IPC Semaphore binäre, counting Semaphore Semaphorfelder Shared Memory Mapping in Adressbereich der Prozesse Message Queues Prioritäten Eventnachrichten 28

29 Zusammenfassung Interprozesskommunikation Signale Sockets Semaphores Shared Memory Message Queues Rechner Netzwerk Synchronisation Datenaustausch 29

30 Inhalt Kernel Struktur Prozessverwaltung Interprozesskommunikation Speicherverwaltung 30

31 Speicherverwaltung Effektive Aufteilung und Verwaltung des Hauptspeichers für OS und Programme. Lernziele: Virtueller Speicher & MMU Swapping & Paging Heap & Stack 31

32 Speicherverwaltung Ausreichend Speicher 0x00 RAM Image1 CPU 0x0F Image2 Image3 Alle drei Prozessabbilder passen in den vorhandenen physikalischen Speicher Keine Speicherverwaltung nötig (ausser für Speicherschutz) 32

33 Speicherverwaltung Speicher zu klein 0x00 RAM Image1 CPU 0x0F Image2 Image3 Mehr Speicher benötigt als vorhanden Zusätzlich Festspeicher (Harddisk) Genug Speicher, inkohärente Adressen 0xA0 0xFF Festspeicher Image3 33

34 Speicherverwaltung Virtueller Speicher 0x00 0x00 RAM Image1 CPU load/store load/store Virtueller Speicher Abstraktion: verschiedene Speichertypen kohärenten Addressraum MMU Memory Management Unit (MMU) übersetzt virtuelle in physische Adressen Virtual memory 0xFF 0x0F 0xFF Image2 Festspeicher Image3 34

35 Zusammenfassung: Virtueller Speicher Homogener virtueller Speicher für verschiedene Speichertypen Anforderungen an virtuellen Speicher Größer als physikalischer Speicher Mehr Prozesse gleichzeitig aktiv als Hauptspeicher erlaubt o Zugriffschutz auf Prozessspeicherbereich Zugriff nicht langsamer als Hauptspeicher Transparente Erweiterung (unsichtbar für Nutzer) 35

36 Swapping 0x00 0x00 RAM CPU load/store MMU Swapping Auslagerung von ganzen Prozessen + Einfach zu implementieren - Zeitaufwändig - Nicht alle Anforderungen an virtuellen Speicher erfüllt Virtual memory 0xFF 0x0F 0xFF Image1 Image2 Image3 Festspeicher Image2 Image3 36

37 Paging CPU load/store MMU Paging Speicher in gleich große Seitenrahmen unterteilt, Seiten werden vom Swap Space in den Speicher eingelesen und zurückgeschrieben + nicht alle Seiten müssen gleichzeitig im Hauptspeicher liegen - Spezialhardware MMU 0x00 Virtual memory 0xFF x00RAM p6, img3 0x0F Swapspeicher 0xFF p1, img1 p3, img2 p2, img1 p4, img2 p5, img3 p9, img3 37

38 Memory Management Unit (MMU) Übersetzt von virtuellen Adressen in physische Adressen Jeder Speicherreferenz wird in der MMU ersetzt MMU verfügt über speziellen Cache Speicher, den Translation LookasideBuffer (TLB) CPU Virtual address MMU Translation Table Physical address Memory TLB 38

39 Adressraum und Umsetzung Unterteilung des Speicherbereichs Kernel: evt. physikalischen Adressmodus Userprozesse: virtueller Adressmodus Adressumsetzung Prozessorabhängig Makros verdecken: Anzahl der Seitentabellen Struktur eines Seitentabelleneintrags Struktur einer virtuellen Adresse 39

40 Zusammenfassung: Virtueller Speicher Homogener virtueller Speicher für verschiedene Speichertypen Anforderungen an virtuellen Speicher Größer als physikalischer Speicher Mehr Prozesse gleichzeitig aktiv als Hauptspeicher erlaubt o Zugriffschutz auf Prozessspeicherbereich Zugriff nicht langsamer als Hauptspeicher Transparente Erweiterung (unsichtbar für Nutzer) 40

41 Stack und Heap Text segment Progammcode Data segment: Konstanten Stack segment: Speicher für Variablen in Funktionen Stack Overflow Heap segment: Dynamisch zugewiesener Speicher Heap Overflow Memory Leak 0xFFFF Endadresse Adressraum Stack pointer Program Counter 0x0000 Startadresse Stack Heap Data Text grows down grows up 41

42 Stack 1. Vor dem Funktionsaufruf: 2. Während dem Funktionsaufruf: Argumente werden auf den Stack gepusht 3. Nach dem Funktionsaufruf: Ergebnis (return Wert) gespeichert Stack pointer Stack pointer Argumente Stack pointer Ergebnis 42

43 Verwaltung des Hauptspeicher Liste von mem_map_t (aka page ) Einträgen Anzahl der Referenzen auf Seitenrahmen Alter des Seitenrahmens (letzter Zugriff) Nummer des physikalischen Eintrags Info: Page Größe bei x86 Systemen beträgt 4 KB free_area Struktur Doppelt verkettete Liste von freien Einträgen Bitmap von Blockallokationsstatus 43

44 Verwaltung des Hauptspeichers (2) Buddy Verfahren: Seitenrahmen der Größe 2 n 44

45 Buddy Verfahren Der Speicher wird in Bereiche der Länge 2 n aufgeteilt. Zu Beginn gibt es nur einen Block, der möglichst den gesamten Speicher abdeckt Fordert nun ein Prozess eine bestimmte Menge Speicher an, so wird zur nächsthöheren Zweierpotenz aufgerundet und ein entsprechender Block gesucht. Falls es noch keinen Block dieser Größe gibt, wird nach einem Block doppelter Größe gesucht, der dann in zwei Hälften (bzw. Buddies) aufgeteilt wird, und einer dieser Blöcke wird dem Prozess zugewiesen. 45

46 Erzeugen eines Prozesses Aufruf von fork Anlegen des Swap Space für Kindprozess Neuer task_struct Tabelleneintrag Anlegen der Seitentabellen Duplizieren des gesamten (!) Adressraums Effizienter: nur Seitentabellen kopieren Fill on Demand Seiten Copy on Write nur bei Schreibzugriff Seiten kopieren 46

47 ENDE Danke für die Aufmerksamkeit! 47

Betriebssysteme Übung 2. Tutorium System Calls & Multiprogramming

Betriebssysteme Übung 2. Tutorium System Calls & Multiprogramming Betriebssysteme Übung 2. Tutorium System Calls & Multiprogramming Task Wiederholung 1 System SysCalls (1) Wozu? Sicherheit Stabilität Erfordert verschiedene modes of execution: user mode privileged mode

Mehr

Embedded-Linux-Seminare. Linux als Betriebssystem

Embedded-Linux-Seminare. Linux als Betriebssystem Embedded-Linux-Seminare Linux als Betriebssystem http://www.embedded-linux-seminare.de Diplom-Physiker Peter Börner Spandauer Weg 4 37085 Göttingen Tel.: 0551-7703465 Mail: info@embedded-linux-seminare.de

Mehr

Die L4-Mikrokern. Mikrokern-Familie. Hauptseminar Ansätze für Betriebssysteme der Zukunft. Michael Steil. Michael Steil 18.04.2002

Die L4-Mikrokern. Mikrokern-Familie. Hauptseminar Ansätze für Betriebssysteme der Zukunft. Michael Steil. Michael Steil 18.04.2002 Die L4-Mikrokern Mikrokern-Familie Hauptseminar Ansätze für Betriebssysteme der Zukunft 18.04.2002 Folie 1 Aufbau des Vortrags 1. Mikrokerne: Idee und Geschichte 2. L4: ein schneller Mikrokern 3. L4Linux:

Mehr

Dämon-Prozesse ( deamon )

Dämon-Prozesse ( deamon ) Prozesse unter UNIX - Prozessarten Interaktive Prozesse Shell-Prozesse arbeiten mit stdin ( Tastatur ) und stdout ( Bildschirm ) Dämon-Prozesse ( deamon ) arbeiten im Hintergrund ohne stdin und stdout

Mehr

Linux Paging, Caching und Swapping

Linux Paging, Caching und Swapping Linux Paging, Caching und Swapping Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 7 Prozesse und Threads Lothar Thiele Computer Engineering and Networks Laboratory Betriebssystem 7 2 7 3 Betriebssystem Anwendung Anwendung Anwendung Systemaufruf (syscall) Betriebssystem

Mehr

Betriebssysteme Kapitel E : Prozesse

Betriebssysteme Kapitel E : Prozesse Betriebssysteme Kapitel E : Prozesse 1 Inhalt Prozesse Zustand eines Prozesses» Kontext» Kontextswitch Prozessbeschreibungsblock PCB Zustandsübergänge» Zustandsdiagramm 2 Hinweis Ein Programm(code) kann

Mehr

A Kompilieren des Kernels... 247. B Lineare Listen in Linux... 251. C Glossar... 257. Interessante WWW-Adressen... 277. Literaturverzeichnis...

A Kompilieren des Kernels... 247. B Lineare Listen in Linux... 251. C Glossar... 257. Interessante WWW-Adressen... 277. Literaturverzeichnis... 1 Einführung................................................ 1 1.1 Was ist ein Betriebssystem?............................... 1 1.1.1 Betriebssystemkern................................ 2 1.1.2 Systemmodule....................................

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008

Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008 Name: Matrikel-Nr: Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008 Bitte schreiben Sie leserlich und antworten Sie kurz und präzise. 1. Zeichnen Sie das Schichten-Modell eines Computersystems und markieren

Mehr

Prozesse und Threads. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at

Prozesse und Threads. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Prozesse und Threads Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at 1 Ziel: Gleichzeitiges, kontrolliertes Ausführen von Programmen auf einem Rechner Welche Mechanismen sind

Mehr

Betriebssysteme. 4y Springer. Eine kompakte Einführung mit Linux. Albrecht Achilles. Mit 31 Abbildungen

Betriebssysteme. 4y Springer. Eine kompakte Einführung mit Linux. Albrecht Achilles. Mit 31 Abbildungen Albrecht Achilles 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Betriebssysteme Eine kompakte Einführung mit Linux

Mehr

Architektur Verteilter Systeme Teil 2: Prozesse und Threads

Architektur Verteilter Systeme Teil 2: Prozesse und Threads Architektur Verteilter Systeme Teil 2: Prozesse und Threads 21.10.15 1 Übersicht Prozess Thread Scheduler Time Sharing 2 Begriff Prozess und Thread I Prozess = Sequentiell ablaufendes Programm Thread =

Mehr

Betriebssysteme 1. Thomas Kolarz. Folie 1

Betriebssysteme 1. Thomas Kolarz. Folie 1 Folie 1 Betriebssysteme I - Inhalt 0. Einführung, Geschichte und Überblick 1. Prozesse und Threads (die AbstrakFon der CPU) 2. Speicherverwaltung (die AbstrakFon des Arbeitsspeichers) 3. Dateisysteme (die

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Betriebssysteme Aufgaben Management von Ressourcen Präsentation einer einheitlichen

Mehr

fork () Hans-Georg Eßer, Hochschule München Betriebssysteme I, SS 2008 2. Prozesse (2/2) Folie 4

fork () Hans-Georg Eßer, Hochschule München Betriebssysteme I, SS 2008 2. Prozesse (2/2) Folie 4 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: SAS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Speicherverwaltung (Swapping und Paging)

Speicherverwaltung (Swapping und Paging) Speicherverwaltung (Swapping und Paging) Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente 750k 0 Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente

Mehr

Der Scheduler von Windows Konzepte und Strategien

Der Scheduler von Windows Konzepte und Strategien Gliederung Der Scheduler von Windows Konzepte und Strategien Daniel Lohmann 1 Grundbegriffe 2 Eigenschaften des Schedulers Grundlegende Eigenschaften Prioritätenmodell Dynamische Prioritätenanpassungen

Mehr

Rechnernutzung in der Physik. Betriebssysteme

Rechnernutzung in der Physik. Betriebssysteme Rechnernutzung in der Physik Betriebssysteme 1 Betriebssysteme Anwendungsprogramme Betriebssystem Treiber BIOS Direkter Zugriff von Anwenderprogrammen auf Hardware nur in Ausnahmefällen sinnvoll / möglich:

Mehr

Betriebssysteme KU - Bewertung A2 - WS 15/16

Betriebssysteme KU - Bewertung A2 - WS 15/16 Betriebssysteme KU - Bewertung A2 - WS 15/16 TEAM:... Mögliche Punkte: 50 + Bonus Allgemein Design Design / PoC Implementation... Sonstiges/Abzüge +X Sonstiges / : Bewertung der einzelnen Gruppenmitglieder

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Kapitel VI. Speicherverwaltung. Speicherverwaltung

Kapitel VI. Speicherverwaltung. Speicherverwaltung Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Grundlagen Rechnerarchitektur und Betriebssysteme

Grundlagen Rechnerarchitektur und Betriebssysteme Grundlagen Rechnerarchitektur und Betriebssysteme Johannes Formann Definition Computer: Eine Funktionseinheit zur Verarbeitung von Daten, wobei als Verarbeitung die Durchführung mathematischer, umformender,

Mehr

Windows CE. Process Control and Robotics. Fabian Garagnon

Windows CE. Process Control and Robotics. Fabian Garagnon Windows CE Process Control and Robotics Fabian Garagnon 14.01.2009 Agenda 3 Geschichte & Timeline Echtzeit & Multithreading Architektur Memory Management & Context Switch Entwicklung unter CE Interrupts

Mehr

Sequentielle Programm- / Funktionsausführung innerhalb eines Prozesses ( thread = Ausführungsfaden )

Sequentielle Programm- / Funktionsausführung innerhalb eines Prozesses ( thread = Ausführungsfaden ) Threads Sequentielle Programm- / Funktionsausführung innerhalb eines Prozesses ( thread = Ausführungsfaden ) Ein thread bearbeitet eine sequentielle Teilaufgabe innerhalb eines Prozesses Mehrere nebenläufige

Mehr

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Memory Management Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at 1 Speicherverwaltung Effektive Aufteilung und Verwaltung des Arbeitsspeichers für BS und Programme Anforderungen

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 4 Prozesse Maren Bennewitz Version 20.11.2013 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern! 2 Wdhlg.: Attributinformationen in

Mehr

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft Prozeß: drei häufigste Zustände Prozeß: anatomische Betrachtung jeder Prozeß verfügt über seinen eigenen Adreßraum Sourcecode enthält Anweisungen und Variablen Compiler überträgt in Assembler bzw. Binärcode

Mehr

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012 Übung zu Grundlagen der Betriebssysteme 13. Übung 22.01.2012 Aufgabe 1 Fragmentierung Erläutern Sie den Unterschied zwischen interner und externer Fragmentierung! Als interne Fragmentierung oder Verschnitt

Mehr

Vortrag zum Seminar Konzepte und Techniken virtueller Maschinen und Emulatoren. Bruno Kleinert fuddl@gmx.de. 20. Juni 2007

Vortrag zum Seminar Konzepte und Techniken virtueller Maschinen und Emulatoren. Bruno Kleinert fuddl@gmx.de. 20. Juni 2007 User Mode Linux (UML) Vortrag zum Seminar Konzepte und Techniken virtueller Maschinen und Emulatoren Friedrich-Alexander-Universität Erlangen-Nürnberg Bruno Kleinert fuddl@gmx.de 20. Juni 2007 Überblick

Mehr

Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun. Übungsklausur

Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun. Übungsklausur Hochschule Mannheim Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun Übungsklausur Aufgabe 1: Definieren Sie den Begriff der Systemsoftware. Nennen Sie die Aufgaben und Komponenten

Mehr

Was machen wir heute? Betriebssysteme Tutorium 2. Organisatorisches. Frage 2.1.a. Theorieblätter Abgabe. Antwort. Probleme mit OS/161?

Was machen wir heute? Betriebssysteme Tutorium 2. Organisatorisches. Frage 2.1.a. Theorieblätter Abgabe. Antwort. Probleme mit OS/161? Was machen wir heute? Betriebssysteme Tutorium 2 Philipp Kirchhofer philipp.kirchhofer@student.kit.edu http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität Karlsruhe (TH) 1

Mehr

Operating System Kernels

Operating System Kernels Operating System Kernels von Patrick Bitterling 1 Themenübersicht -Eine Einleitung über Kernel -Begriffserklärung, Architekturen -Kernel Subsysteme -Prozess-Scheduling, Speichermanagement,... -Der Networking

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

ARM Cortex-M Prozessoren. Referat von Peter Voser Embedded Development GmbH

ARM Cortex-M Prozessoren. Referat von Peter Voser Embedded Development GmbH ARM Cortex-M Prozessoren Referat von Peter Voser Embedded Development GmbH SoC (System-on-Chip) www.embedded-development.ch 2 Instruction Sets ARM, Thumb, Thumb-2 32-bit ARM - verbesserte Rechenleistung

Mehr

Betriebssysteme Vorstellung

Betriebssysteme Vorstellung Am Anfang war die Betriebssysteme Vorstellung CPU Ringvorlesung SE/W WS 08/09 1 2 Monitor CPU Komponenten eines einfachen PCs Bus Holt Instruktion aus Speicher und führt ihn aus Befehlssatz Einfache Operationen

Mehr

Was ist ein Prozess?

Was ist ein Prozess? Prozesse unter UNIX Definition Was ist ein Prozess? Zeitliche Abfolge von Aktionen Ein Programm, das ausgeführt wird Prozesshierachie Baumstruktur INIT-Prozess ist die Wurzel (pid=1) und wird beim Booten

Mehr

Systemprogramme bezeichnen alle Programme, die bestimmte Aufgaben unterstützen, die unabhängig von einer konkreten Anwendung sind

Systemprogramme bezeichnen alle Programme, die bestimmte Aufgaben unterstützen, die unabhängig von einer konkreten Anwendung sind Betriebssysteme Systemprogramme bezeichnen alle Programme, die bestimmte Aufgaben unterstützen, die unabhängig von einer konkreten Anwendung sind Umfaßt z.b. auch Compiler, Interpreter und Dienstprogramme

Mehr

Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme

Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme Seite 1 Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme 1 11.07.2007 Hinweise: Bevor Sie mit der Bearbeitung der Aufgaben beginnen, müssen Sie auf allen Blättern Ihren Namen und Ihre

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

Tru64 UNIX Performance Tuning. Tuning. Was heißt Tuning. Know your environment. Inhalt. Grundregeln. Grundregeln

Tru64 UNIX Performance Tuning. Tuning. Was heißt Tuning. Know your environment. Inhalt. Grundregeln. Grundregeln Was heißt Tuning Tuning Tru64 UNIX Performance Tuning Reinhard Stadler TCSC München Reinhard.Stadler@compaq compaq.com Ziel von Tuning ist es, das Bottleneck auf die schnellste Komponente zu verschieben!!

Mehr

Inhaltsverzeichnis. 1.1 Der Begriff des Betriebssystems 1.2 Zur Geschichte der Betriebssysteme 1.3 Aufbau eines Rechners

Inhaltsverzeichnis. 1.1 Der Begriff des Betriebssystems 1.2 Zur Geschichte der Betriebssysteme 1.3 Aufbau eines Rechners Inhaltsverzeichnis Systemprogrammierung - Kapitel 1 Einführung 1/19 1.1 Der Begriff des Betriebssystems 1.2 Zur Geschichte der Betriebssysteme 1.3 Aufbau eines Rechners E/A-Operationen, Speicherstrukturen

Mehr

Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren (P)

Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren (P) Systempraktikum im Wintersemester 2009/2010 (LMU): Vorlesung vom 26.11. Foliensatz 5 Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren

Mehr

Inhaltsverzeichnis. 2.4 Thread-Systeme. 2.1 Was ist ein Prozess? 2.2 Scheduling. 2.3 Interprozesskommunikation

Inhaltsverzeichnis. 2.4 Thread-Systeme. 2.1 Was ist ein Prozess? 2.2 Scheduling. 2.3 Interprozesskommunikation Inhaltsverzeichnis Systemprogrammierung - Kapitel 2 Prozessverwaltung 1/21 2.1 Was ist ein Prozess? Definition Prozesszustände Prozesskontrollblöcke 2.4 Thread-Systeme Sinn und Zweck Thread-Arten Thread-Management

Mehr

3. Unix Prozesse. Betriebssysteme Harald Kosch Seite 57

3. Unix Prozesse. Betriebssysteme Harald Kosch Seite 57 3. Unix Prozesse Ein Prozeß ist die Umgebung eines laufenden Programms. Ein bißchen Analogie. Wer kocht gerne? Papa möchte mit Hilfe eines Rezeptes eine Torte für seine Tochter backen. Das Rezept ist das

Mehr

Vorlesung Betriebssysteme I

Vorlesung Betriebssysteme I 1 / 19 Vorlesung Betriebssysteme I Thema 4: Grundlegende Begriffe, Teil 2 Robert Baumgartl 22. November 2016 2 / 19 Begriffe: Schnittstelle beschreibt den statischen Aspekt einer Kommunikationsbeziehung

Mehr

bereit (oder Zombie genannt). Normales Ende (exit) und synchrone und asynchrone Signal-Ereignisse, z.b.

bereit (oder Zombie genannt). Normales Ende (exit) und synchrone und asynchrone Signal-Ereignisse, z.b. Prof. Dr. Michael Jäger FB MNI Lösungsvorschlag zur Klausur Betriebssysteme vom 1.10.2014 Blau gekennzeichnete Textstellen sind beispielhafte Lösungen bzw. Antworten zu den Aufgaben. Rot gekennzeichnete

Mehr

Threads and Scheduling

Threads and Scheduling Vorlesung Betriebssysteme WS 2010, fbi.h-da.de Threads and Scheduling Jürgen Saala 1. Threads 2. Scheduling 2 1. Threads 3 Prozesse mit je 1 Adressraum 1 Ausführungsfaden d.h. Unabhängiger Adressraum mit

Mehr

Architektur Verteilter Systeme Teil 6: Interprozess-Kommunikation

Architektur Verteilter Systeme Teil 6: Interprozess-Kommunikation Architektur Verteilter Systeme Teil 6: Interprozess-Kommunikation 09.05.15 1 Literatur [6-1] http://php.net/manual/de/book.sockets.php [6-2] http://de.wikipedia.org/wiki/socket_(software) [6-3] http://php.net/manual/de/book.network.php

Mehr

1.) Nennen Sie Aufgaben und mögliche Dienste der Transportschicht (Transport Layer) des ISO/OSI-Schichtenmodells.

1.) Nennen Sie Aufgaben und mögliche Dienste der Transportschicht (Transport Layer) des ISO/OSI-Schichtenmodells. Übung 7 1.) Nennen Sie Aufgaben und mögliche Dienste der Transportschicht (Transport Layer) des ISO/OSI-Schichtenmodells. 2.) Charakterisieren Sie kurz das User Datagram Protokoll (UDP) aus der Internetprotokollfamilie

Mehr

Domänenanalyse Threadverwaltung/Scheduling

Domänenanalyse Threadverwaltung/Scheduling Domänenanalyse Threadverwaltung/Scheduling Johannes Handl, Marc Rößler, Christian Strengert 15. Mai 2003 Domänenanalyse Threadverwaltung/Scheduling [1] Domänendefinition Die Erzeugung, Verwaltung, Umschaltung/Wechsel,

Mehr

Kapitel III. Prozessverwaltung. VO Betriebssysteme

Kapitel III. Prozessverwaltung. VO Betriebssysteme Kapitel III Prozessverwaltung V 1 Was ist ein Prozess? Prozesse ein exekutierendes Programm (aktive Einheit) ein Prozess benötigt Ressourcen: CPU-Zeiten, Speicher, Files, I/O Systeme Betriebssystem ist

Mehr

13. Übung mit Musterlösung

13. Übung mit Musterlösung 13. Übung mit Musterlösung 1 Lösung 1 Teil 1.Multiple Choice) Bewertung: Ein Punkt für richtige Antwort, für jede falsche Antwort ein Punktabzug. a) Für die Exponentialverteilung ist die Zeit bis zum nächsten

Mehr

Ein Laufzeitsystem für hochgradig parallele Simulationen

Ein Laufzeitsystem für hochgradig parallele Simulationen Ein Laufzeitsystem für hochgradig parallele Simulationen Luc Bläser ETH Zürich / LBC Informatik Seminar für Verkehrssimulation TU Berlin, 6. Juni 2008 Motivation Parallele Simulation Selbstaktive Agenten

Mehr

Verteilte Systeme. Verteilte Systeme. 5 Prozeß-Management SS 2016

Verteilte Systeme. Verteilte Systeme. 5 Prozeß-Management SS 2016 Verteilte Systeme SS 2016 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 31. Mai 2016 Betriebssysteme / verteilte Systeme Verteilte Systeme (1/14) i

Mehr

Prozesse und Scheduling

Prozesse und Scheduling Betriebssysteme für Wirtschaftsinformatiker SS04 KLAUSUR Vorbereitung mit Lösungen / Blatt 1 Prozesse und Scheduling Aufgabe 1 : Scheduling Gegeben seien die folgenden Prozesse und die Längen des jeweiligen

Mehr

Systemprogrammierung.: unter Linux :.

Systemprogrammierung.: unter Linux :. Systemprogrammierung.: unter Linux :. Einführung in Linux 1. Das Filesystem 2. Prozesse 3. Unix Tools 4. Die Shell 1. Das Filesystem 1.1 Dateien 1.2 Ordner 1.3 Links 1.1 Dateien Alles im Filesystem sind

Mehr

Betriebssysteme Kap A: Grundlagen

Betriebssysteme Kap A: Grundlagen Betriebssysteme Kap A: Grundlagen 1 Betriebssystem Definition DIN 44300 Die Programme eines digitalen Rechensystems, die zusammen mit den Eigenschaften dieser Rechenanlage die Basis der möglichen Betriebsarten

Mehr

Inhaltsverzeichnis. Carsten Vogt. Nebenläufige Programmierung. Ein Arbeitsbuch mit UNIX/Linux und Java ISBN:

Inhaltsverzeichnis. Carsten Vogt. Nebenläufige Programmierung. Ein Arbeitsbuch mit UNIX/Linux und Java ISBN: Inhaltsverzeichnis Carsten Vogt Nebenläufige Programmierung Ein Arbeitsbuch mit UNIX/Linux und Java ISBN: 978-3-446-42755-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42755-6

Mehr

Prozesse erzeugen, überwachen, killen und Prozessprioritäten ändern

Prozesse erzeugen, überwachen, killen und Prozessprioritäten ändern LPI Zertifizierung 1.103.5 6 Prozesse erzeugen, überwachen, killen und Prozessprioritäten ändern Copyright ( ) 2006-2009 by Dr. Walter Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share

Mehr

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley)

Kapitel 6 Speicherverwaltung Seite 1 zum Teil nach: Silberschatz&Galbin, Operating System Concepts, Addison-Wesley) Kapitel 6 Speicherverwaltung Seite 1 6 Speicherverwaltung 6.1 Hintergrund Ein Programm muß zur Ausführung in den Hauptspeicher gebracht werden und in die Prozeßstruktur eingefügt werden. Dabei ist es in

Mehr

Aufbau eines historischen UNIX-Betriebssystems

Aufbau eines historischen UNIX-Betriebssystems Aufbau eines historischen UNIX-Betriebssystems Process Management Rebecca Cramer 11.11.2014 1 / 29 Inhalt Warum Prozessmanagement? Prozesswechsel und Prioritäten Interrupts Swapping Grundlagen p stat und

Mehr

Sicheres C Programmieren in Embedded Systemen ARM II (ARM7TMDI [1] ) Wintersemester 2010-2011

Sicheres C Programmieren in Embedded Systemen ARM II (ARM7TMDI [1] ) Wintersemester 2010-2011 Sicheres C in Embedded Systemen ARM II (ARM7TMDI [1] ) Wintersemester 2010-2011 Dipl. Ing. (FH) Ebrecht Roland, Infineon Technologies AG M.Eng (Electronic Systems) Güller Markus, Infineon Technologies

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

PVFS (Parallel Virtual File System)

PVFS (Parallel Virtual File System) Management grosser Datenmengen PVFS (Parallel Virtual File System) Thorsten Schütt thorsten.schuett@zib.de Management grosser Datenmengen p.1/?? Inhalt Einführung in verteilte Dateisysteme Architektur

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Virtual Memory

Rechnerarchitektur und Betriebssysteme (CS201): Virtual Memory Rechnerarchitektur und Betriebssysteme (CS2): Virtual Memory 19 November 23 Prof Dr Christian Tschudin Departement Mathematik und Informatik, Universität Basel Wiederholung / Diskussion 1 Was ist ein inode?

Mehr

Betriebssysteme eine Einführung. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at

Betriebssysteme eine Einführung. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Betriebssysteme eine Einführung Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at 1 Betriebssystem Was ist das? Peter Puschner, TU Wien Vorlesung Betriebssysteme, Einführung; WS

Mehr

Hardware Virtualisierungs Support für PikeOS

Hardware Virtualisierungs Support für PikeOS Virtualisierungs Support für PikeOS Design eines Virtual Machine Monitors auf Basis eines Mikrokernels Tobias Stumpf SYSGO AG, Am Pfaenstein 14, 55270 Klein-Winternheim HS Furtwangen, Fakultät Computer

Mehr

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes PThreads Prozesse und Threads Ein Unix-Prozess hat IDs (process,user,group) Umgebungsvariablen Verzeichnis Programmcode Register, Stack, Heap Dateideskriptoren, Signale message queues, pipes, shared memory

Mehr

DBUS Interprozess-Kommunikation für Embedded-Plattformen

DBUS Interprozess-Kommunikation für Embedded-Plattformen DBUS Interprozess-Kommunikation für Embedded-Plattformen Andreas Schwarz Neratec Solutions AG Firmenprofil Neratec Solutions AG Produkt-Entwicklungen für kundenspezifische elektronische Produkte Produkte

Mehr

Konzepte von Betriebssystemkomponenten. Gerätetreiber. Mario Körner

Konzepte von Betriebssystemkomponenten. Gerätetreiber. Mario Körner Konzepte von Betriebssystemkomponenten Gerätetreiber Mario Körner 26.01.2004 Übersicht Einordnung in die Betriebssystemarchitektur Schnittstelle zur Hardware Schnittstelle zum Betriebssystem am Beispiel

Mehr

Betriebssysteme it-akademie Bayern z/os und OS/390 Lehrgang 2008 Prof. Dr.-Ing. Wilhelm G. Spruth Teil 5 Prozessverwaltung

Betriebssysteme it-akademie Bayern z/os und OS/390 Lehrgang 2008 Prof. Dr.-Ing. Wilhelm G. Spruth Teil 5 Prozessverwaltung Betriebssysteme it-akademie Bayern z/os und OS/390 Lehrgang 2008 Prof. Dr.-Ing. Wilhelm G. Spruth Teil 5 Prozessverwaltung copyright W. G. Spruth, 10-2005 Hardware Extern E/A Programm System- Fehler Aufruf

Mehr

Datenstrukturen, Alignment Stack Prozeduraufruf, Parameterübergabe und -rückgabe (Calling Conventions) Leaf procedures

Datenstrukturen, Alignment Stack Prozeduraufruf, Parameterübergabe und -rückgabe (Calling Conventions) Leaf procedures Vorbesprechung U8 Datenstrukturen, Alignment Stack Prozeduraufruf, Parameterübergabe und -rückgabe (Calling Conventions) Leaf procedures Basistypen Alignment der Basistypen auf deren Grösse Grössen (abhängig

Mehr

Protected User-Level DMA in SCI Shared Memory Umgebungen

Protected User-Level DMA in SCI Shared Memory Umgebungen Protected User-Level DMA in SCI Shared Memory Umgebungen Mario Trams University of Technology Chemnitz, Chair of Computer Architecture 6. Halle Chemnitz Seminar zu Parallelverarbeitung und Programmiersprachen

Mehr

Übung 4 - Betriebssysteme I

Übung 4 - Betriebssysteme I Prof. Dr. Th. Letschert FB MNI 9. Juni 2002 Übung 4 - Betriebssysteme I Aufgabe 1 1. Erläutern Sie die Begriffe der transparent und der virtuell mit ihrer in der Informatik üblichen Bedeutung. 2. Wie werden

Mehr

Bibliotheks-basierte Virtualisierung

Bibliotheks-basierte Virtualisierung Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2015/2016 V. Sieh Bibliotheks-basierte Virtualisierung (WS15/16)

Mehr

Tafelübung zu BS 4. Interprozesskommunikation

Tafelübung zu BS 4. Interprozesskommunikation Tafelübung zu BS 4. Interprozesskommunikation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Linux Memory Management für MySQL

Linux Memory Management für MySQL Linux Memory Management für MySQL SIG MySQL - Performance 13.03.2012 Marius Dorlöchter mdo@ordix.de www.ordix.de Vorstellung Marius Dorlöchter Consultant bei ORDIX seit 2006 Gruppe Systemintegration Betriebssysteme:

Mehr

ggf. page fault virtuelle Adresse physikalische Adresse Hauptspeicher Seitenrahmen Register Seitentabelle logical address page number frame number

ggf. page fault virtuelle Adresse physikalische Adresse Hauptspeicher Seitenrahmen Register Seitentabelle logical address page number frame number Se 19 14:20:18 amd64 sshd[20494]: Acceted rsa or esser rom :::87.234.201.207 ort 61557 Se 19 14:27:41 amd64 syslog-ng[7653]: STATS: droed 0 Se 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root) CMD (/sbin/evlogmgr

Mehr

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder

CA Übung 30.01.2006. Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder CA Übung 30.01.2006 Hallo zusammen! Christian kann heute nicht kommen => ich bin heute da, Christian das nächste Mal wieder Adrian Schüpbach: scadrian@student.ethz.ch Christian Fischlin: cfischli@student.ethz.ch

Mehr

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert?

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert? SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 2 2014-04-28 bis 2014-05-02 Aufgabe 1: Unterbrechungen (a) Wie unterscheiden sich synchrone

Mehr

kreative OS Betriebssystem Projekt Ubiquitous Computing II (WS 2009)

kreative OS Betriebssystem Projekt Ubiquitous Computing II (WS 2009) kreative OS Betriebssystem Projekt Ubiquitous Computing II (WS 2009) Sylvia Nischkowski Daniel Kuster Florian Schmid Matthias Gsteu Anton Biller 05.02.2010 Überblick 1.Anforderungen 2.Struktur 3.Entwicklung

Mehr

POSIX Echtzeit: Kernel 2.6 und Preempt-RT

POSIX Echtzeit: Kernel 2.6 und Preempt-RT POSIX Echtzeit: Kernel 2.6 und Preempt-RT Slide 1 - http://www.pengutronix.de - 21.01.2007 Echtzeit-Systemplanung Wenn das zeitliche Verhalten spezifiziert ist, kann auch spezifiziert werden, welche Applikationsteile

Mehr

Technische Informatik 2 Speichersysteme, Teil 3

Technische Informatik 2 Speichersysteme, Teil 3 Technische Informatik 2 Speichersysteme, Teil 3 Prof. Dr. Miroslaw Malek Sommersemester 2004 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher (Fortsetzung) Translation Lookaside Buffer

Mehr

Betriebssysteme Teil 10: Virtueller Speicher

Betriebssysteme Teil 10: Virtueller Speicher Betriebssysteme Teil 10: Virtueller Speicher 11.12.15 1 Übersicht Segmente Systemaufrufe Swapping Paging 2 Physikalischer Adressraum I - Wiederholung 3 Physikalischer Adressraum II - Wiederholung Es wird

Mehr

Design and Implementation of a Soft-error Resilient OSEK Real-time Operating System

Design and Implementation of a Soft-error Resilient OSEK Real-time Operating System Design and Implementation of a Soft-error Resilient OSEK Real-time Operating System Florian Lukas Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich Alexander Universität Erlangen

Mehr

8. Swapping und Virtueller Speicher

8. Swapping und Virtueller Speicher 8. Swapping und Virtueller Speicher Der physikalische Adreßraum wird weiter abgebildet auf Arbeitsspeicher und Plattenspeicher. Prozesse (deren benutzte Seiten) die nicht laufen (und bald nicht laufen)

Mehr

Betriebssysteme KU - Einführungstutorium

Betriebssysteme KU - Einführungstutorium Betriebssysteme KU - Einführungstutorium SWEB-Tutoren irc://irc.at.euirc.net/bs Teamwork Arbeitsaufteilung? Zeiteinteilung? Codeeinteilung? Kommunikation! Kommunikation Kommunikation mit dem Team Gruppentreffen

Mehr

Konzepte von Betriebssystem Komponenten. Aufbau eines Modernen Betriebssystems (Windows NT 5.0)

Konzepte von Betriebssystem Komponenten. Aufbau eines Modernen Betriebssystems (Windows NT 5.0) Konzepte von Betriebssystem Komponenten Aufbau eines rnen Betriebssystems (Windows NT 5.0) Moritz Mühlenthaler 14.6.2004 1.Das Designproblem a) Überblick b) Design Goals c) Möglichkeiten der Strukturierung

Mehr

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B.

Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme. Vorlesung 4: Memory. Wintersemester 2001/2002. Peter B. Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme Vorlesung 4: Memory Peter B. Ladkin Address Translation Die Adressen, die das CPU benutzt, sind nicht identisch mit den Adressen,

Mehr

(Prüfungs-)Aufgaben zum Thema Scheduling

(Prüfungs-)Aufgaben zum Thema Scheduling (Prüfungs-)Aufgaben zum Thema Scheduling 1) Geben Sie die beiden wichtigsten Kriterien bei der Wahl der Größe des Quantums beim Round-Robin-Scheduling an. 2) In welchen Situationen und von welchen (Betriebssystem-)Routinen

Mehr

Übung I Echtzeitbetriebssysteme

Übung I Echtzeitbetriebssysteme Übung I Echtzeitbetriebssysteme a) Von welchen drei Faktoren hängt bei der Echtzeitverarbeitung das korrekte Ergebnis ab? b) Wann ist ein System echtzeitfähig? c) Was versteht man unter Harter und Weicher

Mehr

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper 1. Der Prozess beginnt im Zustand Erzeugt, nachdem sein Vaterprozess den Systemaufruf fork() (s.u.) abgesetzt hat. In diesem Zustand wird der Prozess-Kontext initialisiert. 2. Ist diese Aufbauphase abgeschlossen,

Mehr

Technische Informatik II

Technische Informatik II Institut für Technische Informatik und Kommunikationsnetze Technische Informatik II Übung 1: Prozesse und Threads Aufgabe 1: Prozesse und Threads a) Wie verhält sich eine Applikation die aus mehreren Prozessen

Mehr

Prozesse und Prozessmanagement des BS. 1 Unterschied Prozess, Threads. 1.1 Prozess. 1.2 Threads

Prozesse und Prozessmanagement des BS. 1 Unterschied Prozess, Threads. 1.1 Prozess. 1.2 Threads Prozesse und Prozessmanagement des BS 1 Unterschied Prozess, Threads 1.1 Prozess Bei jedem Programm muss gespeichert werden, welche Betriebsmittel (Speicherplatz, CPU- Zeit, CPU-Inhalt,...) es benötigt.

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Probeklausur Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund http://ess.cs.uni-dortmund.de/ http://ess.cs.tu-dortmund.de/de/teaching/ss2014/bs/

Mehr

C. Betriebssystem-Strukturen C.1 Monolithische Betriebssysteme

C. Betriebssystem-Strukturen C.1 Monolithische Betriebssysteme C. Betriebssystem-Strukturen C.1 Monolithische Betriebssysteme Sammlung von Routinen, ohne Hierarchie, Kapselung und Schichtung. Jede Prozedur kann beliebige andere Prozeduren aufrufen und Datenstrukturen

Mehr

RTEMS- Echtzeitbetriebssystem

RTEMS- Echtzeitbetriebssystem RTEMS- Echtzeitbetriebssystem Name: Hussein Hammoud Matrikel- Nr.: 230768 Studiengang: Technische Informatik Fach: Projekt Eingebettete Kommunikation Technische Universität Berlin Sommersemester 2006 RTEMS-

Mehr

User Level Device Driver am Beispiel von TCP

User Level Device Driver am Beispiel von TCP September 17, 2004 Einleitung Motivation für Userlevel Device Driver Probleme von Userlevel Device Driver Motivation für Userlevel Device Driver Modularität, leichterer Austausch/Erneuerung von Komponenten.

Mehr

5.Vorlesung Betriebssysteme Hochschule Mannheim

5.Vorlesung Betriebssysteme Hochschule Mannheim Christian Baun 5.Vorlesung Betriebssysteme Hochschule Mannheim SS2011 1/41 5.Vorlesung Betriebssysteme Hochschule Mannheim Christian Baun Karlsruher Institut für Technologie Steinbuch Centre for Computing

Mehr