Grundbegriffe der Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundbegriffe der Wahrscheinlichkeitsrechnung"

Transkript

1 Grundbegriffe der Wahrscheinlichkeitsrechnung Notation: Y y Zufallsvariable Merkmalswert Definition 1 Eine Zufallsvariable Y heißt a) diskret, falls sie nur endlich oder abzählbar unendlich viele Werte y 1,y 2,... annimmt. b) stetig, falls sie beliebig viele Werte annehmen kann und die Verteilungsfunktion F Y (y) = P(Y y) stetig ist. 2. Stichprobenverfahren - Einführung 1

2 Definition 2 Erwartungswert a) Sei Y eine diskrete Zufallsvariable, die Werte y i mit Wahrscheinlichkeit P(Y = y i ), i = 1,...,N annehmen kann. Dann heißt E(Y) = N i=1 y ip(y = y i ) Erwartungswert von Y. b) Sei Y eine stetige Zufallsvariable mit Dichte f Y (y). Dann heißt E(Y) = yf Y(y)dy Erwartungswert von Y. 2. Stichprobenverfahren - Einführung 2

3 Definition 3 Varianz, Standardabweichung, Variationskoeffizient a) Sei Y eine diskrete Zufallsvariable, die Werte y i mit Wahrscheinlichkeit P(Y = y i ), i = 1,...,N annehmen kann. Dann heißt σ 2 Y Var(Y) = N i=1 (y i E(Y)) 2 P(Y = y i ) Varianz von Y. b) Sei Y eine stetige Zufallsvariable mit Dichte f Y (y). Dann heißt σ 2 Y = Var(Y) = (y E(Y))2 f Y (y)dy Varianz von Y. c) Sei Y eine Zufallsvariable. Dann heißt σ Y = Var(Y) Standardabweichung von Y d) Sei Y eine Zufallsvariable. Dann heit CV(Y) = σ Y E(Y) Varianzkoeffizient von Y (hierüber lässt sich das Streuverhalten verschiedener Zufallsvariablen vergleichen). 2. Stichprobenverfahren - Einführung 3

4 Spezielle Verteilungen Definition 4 Binomial-Verteilung Eine diskrete Zufallsvariable Y, die die Werte 0,1,2,...,n mit Wahrscheinlichkeiten ( ) n P(Y = m) = P m (1 P) n m, m = 0,1,2,...,n m annehmen kann, heißt binomialverteilt mit Parametern n und P, oder Y B(n,P). Satz 1 Sei Y B(n,P). Dann gilt: a) E(Y) = np b) Var(Y) = np(1 P] 2. Stichprobenverfahren - Einführung 4

5 Definition 5 Hypergeometrische Verteilung Eine diskrete Zufallsvariable Y, die die Werte 0,1,2,...,n mit Wahrscheinlichkeiten ( M N M ) P(Y = m) = m)( n m ( N n) annimmt für m = 0,1,...,n, m M und n m N M heißt hypergeometrisch verteilt mit Parametern N, n, M, oder Y H(N,n,M). Satz 2 Sei Y H(N,n,M). Dann gilt: a) E(Y) = n M N (= np) (P = M/N Wahrscheinlichkeit von Erfolg ) b) Var(Y) = np(1 P) N n N 1 2. Stichprobenverfahren - Einführung 5

6 Definition 6 Normalverteilung Eine stetige Zufallsvariable Y heißt normalverteilt mit Parametern µ und σ 2, falls ihre Dichte die Form f Y (y) = 1 ( exp 1 (y µ) 2 ) 2πσ 2 σ 2 hat, oder Y N(µ,σ 2 ). Satz 3 Sei Y N(µ,σ 2 ). Dann gilt: a) E(Y) = µ b) Var(Y) = σ 2 2. Stichprobenverfahren - Einführung 6

7 Definition 7 Seien Y 1 und Y 2 Zufallsvariablen, dann heißen Y 1 und Y 2 stochastisch unabhängig, falls für alle a,b R gilt P(Y 1 a,y 2 b) = P(Y 1 a)p(y 2 b). Definition 8 Für zwei Zufallsvariablen Y 1,Y 2 bezeichnet Cov(Y 1,Y 2 ) = E[(Y 1 E(Y 1 ))(Y 2 E(Y 2 ))] die Kovarianz zwischen Y 1 und Y 2. Definition 9 Die Größe ρ(y 1,Y 2 ) = ρ = Cov(Y 1,Y 2 ) Var(Y1 )Var(Y 2 ) heißt Korrelationskoeffizient zwischen Y 1 und Y Stichprobenverfahren - Einführung 7

8 Zentraler Grenzwertsatz Satz 4 Für Zufallsvariablen S n B(n,P), n N, gilt S n np np(1 P) n N(0,1) (Schwache Konvergenz) Satz 5 Seinen Y 1,Y 2,... eine Folge stochastisch unabhängiger identisch verteilter (i.i.d.) Zufallsvariablen mit Erwartungswert E(Y k ) und Var(Y k ) < für alle k N. Dann gilt 1 n n k=1 Y k E(Y k ) Var(Yk ) n N(0,1) 2. Stichprobenverfahren - Einführung 8

9 Stichprobe Das Wort Stichprobe stammt ursprünglich aus der Eisenverhüttung und bezeichnete den Abstich am Hochofen zur Entnahme einer Probe des flüssigen Metalls. Aber auch bei Getreidesäcken gab es Stichproben. Zur Entnahme einer Getreideprobe wurde eine kegelförmige Sonde in den nicht geöffneten Jute-Sack geschoben (gestochen) und damit eine Probe entnommen, ohne dass der Sack beschädigt wurde. 2. Stichprobenverfahren - Einführung 9

10 Einführung Stichprobenmethode: Durch bewusste Auswahl und Messung eines Teils des Ganzen sollten Rückschlüsse auf das Ganze gemacht werden Welche Schwankungen treten in Stichprobenergebnissen auf und wie lassen sich diese beeinflussen Gibt es für eine gegebene Situation ein bestes Verfahren? Warum keine Vollerhebung? 2. Stichprobenverfahren - Einführung 10

11 Einführung Wie bekommt man nach Schließung der Wahllokale genaue Wahlprognosen durch eine Befragung von nur 2000 Personen? Wie wählt man die Personen aus? Wie hängt die Berechnung der Prognose von der Auswahl der Personen aus? Wie sollte man es nicht tun? Weitere Anwendungen von Stichprobenverfahren: Marktforschung Mikrozensus und Sozioökonomisches Panel Medizinisch-epidemiologische Studien Abschätzung von Umweltbelastungen Stichprobenverfahren - Einführung 11

12 Population und Stichprobe Die Population oder Grundgesamtheit ist die Menge alle Individuen oder Objekte, über die eine Aussage getroffen werden soll. Merkmalsträger, Untersuchungseinheiten, statistische Einheiten oder Individuen sind die Einheiten oder Objekte, an denen Untersuchungen, Messungen oder Beobachtungen vorgenommen werden Merkmale sind die Eigenschaften der statistischen Einheiten, die untersucht, beobachtet oder gemessen werden Eine Stichprobe S ist die Teilmenge der Population, an der die Merkmale erhoben werden Wir unterscheiden eine Vollerhebung und eine Teilerhebung 2. Stichprobenverfahren - Einführung 12

13 Notation Die Menge potentieller Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit (kurz: GG) vom Umfang N. Jeder Untersuchungseinheit U i wird ein eindeutig fester Merkmalswert Y i zugeordnet. Es wird eine zufällige Stichprobe vom Umfang n gezogen. Die Ergebnisse y i, i = 1,...,n, repräsentieren Zufallsvariablen. Notation bei Stichprobenverfahren In der Grundgesamtheit: Großbuchstaben, feste Werte (meist) unbekannt In der Stichprobe: Kleinbuchstaben, zufällige Werte, Realisationen von Zufallsvariablen 2. Stichprobenverfahren - Einführung 13

14 Studienpopulation Eine Studienpopulation ist eine zur Verfügung stehende Untermenge der Population Beispiel: Leute mit Telefon bei einer Telefonumfrage 2. Stichprobenverfahren - Einführung 14

15 Homograd und heterograd Ist Y i qualitativ, Y i {0,1}, sprechen wir vom homograden Fall. Hier interessieren uns in der Regel Anteilwerte. (Beispiele?) Sind die Merkmalswerte Y i quantitativ, Y i R, sprechen wir vom heterograden Fall. Hier interessieren uns in der Regel Mittelwerte. (Beispiele?) 2. Stichprobenverfahren - Einführung 15

16 Gütekriterien im Rahmen der Stichprobentheorie Erwartungstreue: Sei θ der interessierende Parameter, dann heißt T(y 1,...,y n ) erwartungstreu für θ, falls E(T(y 1,...,y n )) = E(T) = θ. Varianzvergleich: Seien T 1 und T 2 zwei erwartungstreue Schätzer für θ, dann heißt T 1 besser als T 2, falls Var(T 1 ) < Var(T 2 ). MSE-Vergleich: Seien T 1 und T 2 zwei beliebige Schätzer für θ, dann heißt T 1 besser als T 2, falls MSE(T 1 ) < MSE(T 2 ). (Hinweis: MSE(T) = Var(T)+[E(T) θ] 2 ) 2. Stichprobenverfahren - Einführung 16

17 Gütekriterien In der Regel interessiert uns der Mittelwert der Population N und die dazu gehörige Varianz Ȳ = 1 N i=1 Y i S 2 = 1 N 1 N ( Yi Ȳ ) 2. i=1 Außerdem interessiert uns für einen Schätzer ˆȲ Var(ˆȲ) 2. Stichprobenverfahren - Einführung 17

18 Gütekriterien Wir möchten diese Größen unverzerrt schätzen Wir wollen idealerweise ein Stichprobenverfahren und den dazu gehörigen Schätzer so wählen, dass die Varianz des Mittelwertschätzers so klein wie möglich ist Berechnung von Konfidenzintervallen Wie wählt man den Stichprobenumfang n unter bestimmten Zieloder Kostenfunktionen? 2. Stichprobenverfahren - Einführung 18

19 Nicht-zufällige Auswahlverfahren Auswahl auf Geratewohl, den Mann auf der Straße befragen Beispiel: Zufällige Befragung an einem Vormittag im Supermarkt zur Kundenzufriedenheit Typische Stichprobe Beispiele: Warenkorb zur Inflationsberechnung, Stadt Haßloch als Testmarkt Quotenstichprobe, z.b Altersgruppen und Geschlechterverteilung exakt auf die Population abstimmen Störgrößen werden kontrolliert, aber zufällige Auswahl nötig Systematische Stichproben: Wähle jedes p te Element aus der Population 2. Stichprobenverfahren - Einführung 19

20 Verzerrungen Eine Stichprobe kann für eine Fragestellung geeignet sein, für eine andere jedoch nicht Beispiel: Eine Gemeinde in einem Landkreis kann repräsentativ für das Konsumverhalten im Landkreis sein, aber nicht für die Parteipräferenz für eine bestimmte Partei, weil z.b. eine sehr beliebter Bürgermeister dieser Partei in der Gemeinde ist Man hat also eine verzerrte Stichprobe bezüglich der Parteipräferenz Anderes Beispiel: Man befragt vormittags in einem Supermarkt die Leute nach ihren Berufen 2. Stichprobenverfahren - Einführung 20

21 Auswahlform 1 Alle N Element sind verfügbar und mit Nummern (labels) versehen wir haben eine Populationsliste Zufallsauswahl aus den Nummern 1,...,N Die dazugehörigen Untersuchungseinheiten bilden die Stichprobe S Man kann mit Zurücklegen (mz) oder ohne Zurücklegen (oz) ziehen Eigentlich interessiert nur oz, aber Formeln für mz in der Regel einfacher Wenn der Auswahlsatz n/n klein ist kann man oz Stichproben wie mz behandeln 2. Stichprobenverfahren - Einführung 21

22 Auswahlform 1: Einfache Stichprobe Die Wahrscheinlichkeit einer bestimmten Stichprobe S vom Umfang n ist dann 1 P(S) = ) beim Ziehen mz und ( N+n 1 n P(S) = 1 ( N n) beim Ziehen oz. Jedes Element die gleiche Wahrscheinlichkeit in die Stichprobe zu gelangen. Diese Auswahlwahrscheinlichkeit ist im Fall ohne Zurücklegen gegeben durch π = n N 2. Stichprobenverfahren - Einführung 22

23 Auswahlform 2: Gebundene Hochrechnung Wir beobachten ein weiteres Merkmal X und wir kennen X Wir unterstellen einen linearen Zusammenhang zwischen X und Y Wir verwenden diese Vorkenntnis über X um Ȳ zu schätzen Führt in der Regel zu Varianzreduktion Beispiel: Bei der Wahlprognose kennen wir das Ergebnis bei der letzten Wahl genau und erfragen das Wahlverhalten bei der letzten Wahl 2. Stichprobenverfahren - Einführung 23

24 Auswahlform 3: Geschichtete Stichprobe Die Grundgesamtheit ist in M Teilgesamtheiten vom Umfang N h für die h-te Teilmenge zerlegt Diese Teilmengen nennt man Schichten Man zieht aus jeder Schicht und setzt die Gesamtstichprobe daraus zusammen Dies kann zu einer Reduktion der Varianz der Mittelwertschätzung im Vergleich zur einfachen Stichprobe führen Beispiel: Deutschland und die Bundesländer 2. Stichprobenverfahren - Einführung 24

25 Auswahlform 4: Klumpenstichproben Man zerlegt die GG in M disjunkte Teilmenge Man wählt zufällig m dieser Teilmengen Für jede dieser gewählten Teilmengen führt man eine Vollerhebung durch Beispiel: GG ist die Menge aller Schulanfänger in einer Stadt. Es werden ganze Klassen ausgewählt und vollständig befragt 2. Stichprobenverfahren - Einführung 25

26 Auswahlform 5: Zweiphasige Stichprobe Situation wie bei 2, aber X ist unbekannt Wir nehmen an, dass X relative günstig erhoben werden kann In Phase 1 ziehen wir eine Stichprobe und schätzen X In Phase 2 gehen wir vor wie in 2 2. Stichprobenverfahren - Einführung 26

27 Auswahlform 6: Größenproportionale Stichproben (pps) Wir wählen die Auswahlwahrscheinlichkeiten π i proportional zu Y i Hilfsvariable X i die mit Y i korreliert wird dazu verwendet So werden informativere Beobachtungen mit höherer Wahrscheinlichkeit gewählt Varianzreduktion bei der Mittelwertschätzung 2. Stichprobenverfahren - Einführung 27

28 Auswahlform 7: Capture-Recapture Verfahren Wie viele Ratten gibt es in New York? Fange 1000 Ratten Markiere diese und lasse Sie wieder frei Fange nach einem Monat wieder 1000 Ratten Wie viele sind davon markiert? 2. Stichprobenverfahren - Einführung 28

29 In der Praxis: Mehrstufige Verfahren Kombination von verschiedenen Stichprobenplänen Z.B. Auswahl von Wahlbezirken aus verschiedenen Bundesländern mit Wahrscheinlichkeiten proportional zur Größe Auswahl von zufälligen Haushalten Vollerhebung im Haushalt Praktische Vorteile wie Kostenersparnis in der Feldarbeit möglich Statistische Eigenschaften häufig schwierig zu analysieren 2. Stichprobenverfahren - Einführung 29

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

3.2 Stichprobenauswahl (Sampling)

3.2 Stichprobenauswahl (Sampling) 3.2 Stichprobenauswahl (Sampling) Stichprobe = als Stichprobe bezeichnet man eine Teilmenge einer Grundgesamtheit, die unter bestimmten Gesichtspunkten ausgewählt wurde. Der Stichprobenentnahme vorgelagert

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Vorlesung Stichproben WS 2009/2010

Vorlesung Stichproben WS 2009/2010 Institut für Statistik Statistisches Beratungslabor Prof. Dr. Helmut Küchenhoff WS 2009/2010 http://www.stat.uni-muenchen.de/~helmut/stichproben_0910.html Übung: Monia Mahling donnerstags 08:00 bis 10:00

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar Klausur zur Veranstaltung Erhebungstechniken

Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar Klausur zur Veranstaltung Erhebungstechniken Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar 2009 Klausur zur Veranstaltung Erhebungstechniken im Wintersemester 2008 / 2009 Name, Vorname: Studiengang (Bachelor/Diplom):

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Günther Bourier Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung Mit Aufgaben und Lösungen 3. F überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort Inhaltsverzeichnis

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Auswahlverfahren. Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl. Dipl.-Päd. Ivonne Bemerburg

Auswahlverfahren. Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl. Dipl.-Päd. Ivonne Bemerburg Auswahlverfahren Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl Blockseminar: Methoden quantitativer Grundgesamtheit und Stichprobe Die Festlegung einer Menge von Objekten, für die die Aussagen der

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Voraussetzung für die Anwendung von Stichproben: Stichproben müssen repräsentativ sein, d.h. ein verkleinertes

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Elementare Wahrscheinlichkeitsrechnung

Elementare Wahrscheinlichkeitsrechnung Johann Pfanzagl Elementare Wahrscheinlichkeitsrechnung 2., überarbeitete und erweiterte Auflage W DE G Walter de Gruyter Berlin New York 1991 Inhaltsverzeichnis 1. Zufallsexperimente und Wahrscheinlichkeit

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Untersuchungsarten im quantitativen Paradigma

Untersuchungsarten im quantitativen Paradigma Untersuchungsarten im quantitativen Paradigma Erkundungsstudien / Explorationsstudien, z.b.: Erfassung der Geschlechterrollenvorstellungen von Jugendlichen Populationsbeschreibende Untersuchungen, z.b.:

Mehr

Auswahlverfahren. Schnell, R. Hill, P. B. Esser, E. 1999, Methoden der empirischen Sozialforschung. München: Oldenbourg. Seiten ;

Auswahlverfahren. Schnell, R. Hill, P. B. Esser, E. 1999, Methoden der empirischen Sozialforschung. München: Oldenbourg. Seiten ; Auswahlverfahren Objektbereich & Grundgesamtheit Vollerhebung Volkszählung Teilerhebung angestrebte Grundgesamtheit Auswahlgesamtheit Inferenzpopulation Willkürliche Auswahl Bewußte Auswahl Schnell, R.

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter

Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Was für Kenngrößen von Verteilungen kennst du? Ortsparameter (Arithmetisches Mittel, Median, MedMed,

Mehr

Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente

Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente Kursthemen 11. Sitzung Folie I - 11-1 Spezielle diskrete Verteilungen: Auswahlexperimente Spezielle diskrete Verteilungen: Auswahlexperimente A) Kombinatorik (Folien bis 5) A) Kombinatorik (Folien bis

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Keine Panik vor Statistik!

Keine Panik vor Statistik! Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Kapitel 2 Einfache Stichprobenverfahren

Kapitel 2 Einfache Stichprobenverfahren Kapitel 2 Einfache Stichprobenverfahren 2.1 Grundbegriffe Bei der Durchführung einer statistischen Erhebung besteht die Absicht, Informationen über eine (üblicherweise große Menge von Individuen zu erhalten.

Mehr

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Systematische Stichprobe Rel. große Gruppe von Stichprobenverfahren. Allgemeines Merkmal: es existiert ein festes, systematisches Muster bei der Auswahl. Wie passt das zur allgemeinen Forderung nach Randomisierung

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Martin Hutzenthaler & Dirk Metzler 11. Mai 2011 Inhaltsverzeichnis 1 Deterministische und zufällige

Mehr

2. Beschreibende ( deskriptive ) Statistik 2.1 Grundbegriffe 2.2 Stichproben 2.3 Fehler, Ausreißer und fehlende Werte 2.4 Merkmale 2.

2. Beschreibende ( deskriptive ) Statistik 2.1 Grundbegriffe 2.2 Stichproben 2.3 Fehler, Ausreißer und fehlende Werte 2.4 Merkmale 2. 2.1 Grundbegriffe 2.3 Fehler, Ausreißer und fehlende Werte 2.4 Merkmale 2.5 Definition: Urliste, relative und absolute Häufigkeit 2.6 Tabellarische und graphische Darstellung: Häufigkeit 2.7 Klasseneinteilung

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Übungen mit dem Applet Vergleich von zwei Mittelwerten

Übungen mit dem Applet Vergleich von zwei Mittelwerten Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung

Mehr

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19 Inhaltsverzeichnis Über den Autor 7 Über den Fachkorrektor 7 Einführung 19 Über dieses Buch 19 Törichte Annahmen über den Leser 20 Wie dieses Buch aufgebaut ist 20 Teil I: Ein paar statistische Grundlagen

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Herzlich willkommen zur Vorlesung. Methoden der empirischen Sozialforschung I. Stichproben

Herzlich willkommen zur Vorlesung. Methoden der empirischen Sozialforschung I. Stichproben FB 1 W. Ludwig-Mayerhofer Methoden I Stichproben 1 Einstieg/Überblick Paradigmen Werturteile/Ethik Forschungslogik Hypothesen Forschungsdesign Messung Standardisierte Befragung Qualitative Interviews Beobachtung

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Kapitel 1: Elemente der Statistik

Kapitel 1: Elemente der Statistik 1 Kapitel 1: Elemente der Statistik 1.1 Beispiel Ein Elektromarkt erhält eine Lieferung von N = 10000 Glühbirnen. Darunter ist eine unbekannte Anzahl h defekt, wobei h 0 1 = {0, 1,..., N}. Um Kenntnisse

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Jung Kyu Canci Universität Basel HS2015 1 / 15 Literatur Kapitel 6 Statistik in Cartoons : Kapitel 8 Krengel : 6 und 14 Storrer

Mehr

Statistik ohne Angst vor Formeln

Statistik ohne Angst vor Formeln Statistik ohne Angst vor Formeln Das Studienbuch für Wirtschaftsund Sozialwissenschaftler 4., aktualisierte Auflage Andreas Quatember Statistik ohne Angst vor Formeln - PDF Inhaltsverzeichnis Statistik

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

10,24 ; 10,18 ; 10,28 ; 10,25 ; 10,31.

10,24 ; 10,18 ; 10,28 ; 10,25 ; 10,31. Bei einer Flaschenabfüllanlage ist die tatsächliche Füllmenge einer Flasche eine normalverteilte Zufallsvariable mit einer Standardabweichung = 3 [ml]. Eine Stichprobe vom Umfang N = 50 ergab den Stichprobenmittelwert

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

Statistik für das Psychologiestudium

Statistik für das Psychologiestudium Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 6. Ausgewählte Verteilungen (Distributions) * diskret: Bernoulli, Binomial, Geometrisch, Poisson * stetig: Uniform, Exponential, Normal, χ 2,

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Gewichtung in der Umfragepraxis. Von Tobias Hentze

Gewichtung in der Umfragepraxis. Von Tobias Hentze Gewichtung in der Umfragepraxis Von Tobias Hentze Gliederung 1. Einführung 2. Gewichtungsarten 1. Designgewichtung 2. Non-Response-Gewichtung 3. Zellgewichtung 3. Fazit Gewichtung Definition: Ein Gewicht

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Statistik Workshop. 12. und 14. Januar Prof. Dr. Stefan Etschberger HSA

Statistik Workshop. 12. und 14. Januar Prof. Dr. Stefan Etschberger HSA Workshop Mini-Einführung und Auffrischung zu einigen Teilen der angewandten 12. und 14. Prof. Dr. Stefan Etschberger HSA Outline 1 : Einführung Fehler durch Gute und schlechte Grafiken Begriff Grundbegriffe

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Rangkorrelationskoeffizient nach Spearman

Rangkorrelationskoeffizient nach Spearman Grundgesamtheit vs. Stichprobe Wer gehört zur Grundgesamtheit? Die Untersuchungseinheiten, die zur Grundgesamtheit gehören, sollten nach zeitlichen Kriterien räumlichen Kriterien sachlichen Kriterien Wie

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr