Stoffübersicht: Schwingungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Stoffübersicht: Schwingungen"

Transkript

1 Soübersich: Schwinunen Pendel Schallschwinunen Wellenbeweun haronische Schwinunen, (haronischer Oszillaor) inheien aheaische Grundlaen nerie der haronischen Schwinun Pendel leroaneische Schwinunen Haronische Schwinun Ruhelae: Feder üb eine Kra au Körper aus ( ) Masse nach rechs beween Feder üb Kra au Masse aus Schwinunen ensehen durch eine (leine) uslenun eines Syses aus einer sabilen Ruhelae F - (Hoosches Gesez) Federonsane Rücreibende Kra wir eneenez zur uslenun (daher Minus!)

2 Haronische Schwinun Hoosches Gesez : F.Newonsche Gesez : F a d a d Beschleuniun is proporional und eneenez zur uslenun Haronische Schwinun eines Körpers wenn: Beschleuniun proporional zur uslenun Beschleuniun der uslenun eneenez Beweunsleichun Kurve beschreiben durch sin oder -Funion : s il : sin + δ + π ) + δ + π ) δ + pliude Kreisrequenz [ ] [ s ] Phasenonsane δ ) Phase Schwinunsdauer (Periode): ( + ) + δ + δ + π ( + ) Phase( ) Phase π oder π π Frequenz : π +

3 Beweunsleichun ( ) aiale uslenun sin ) π sin 3π + Phasenonsane δ 3π Beweunsleichun () ür F - d d v sin dv d a Frequenz : Periode : bzw. Dierenialleichun + δ + π ) Lösunsansaz π π π Kreisrequenz a v a v sin ) ) )

4 Beispiel: Schwinunsdauer 3 c 5 c Zwei haronische Oszillaoren i idenischen Federn ( 9 N/) und zwei idenischen Massen ( ) Unerschiedliche uslenun aus der Ruhelae (3 c, 5 c) beide Massen werden leichzeii loselassen Ges: Zei bis die Massen wieder die Ruhelae erreichen Kreisrequenz / Frequenz : Periode : π s - 3 s Körper erreichen nach ewa,5 s wieder, π π,5 s die Ruheposiion (beide Körper!) Haronische Schwinun Bei haronischen Schwinunen hänen Frequenz ( ) undperiode ( ) nich von der pliude ab! Klavieresaie: onhöhe Frequenz Lausäre pliude onhöhe bleib leich, eal wie es an au die ase schlä.

5 Haronische Schwinunen und nerie F - F Kra rbei F + werden u die Feder zu dehnen uß auewende W Fd Änderun der eniellen nerie der Feder :?? W Fd,, ( ) ür leine Verschiebunen il : d Fd bzw. d d F Haronische Schwinun, Gesaenerie F - ( + δ ) in in in v sin ( sin + δ ) i - Kra F d d Kra bewir ier eine Beschleuniun in Richun leinerer enieller nerie

6 Haronische Schwinun, Gesaenerie F - in + [ sin + ] onsan! - in in sin Beispiel: nerie einer har. Schwinun Ge.: Masse 5, c,. Hz Ges.:, a. Geschwindiei, Federonsane ( π ) 4π. 5 s,97n π,97, N 9,85J v 9,85J v 9, J,6s

7 Beispiel: nerie einer har. Schwinun Ge.: Masse 5, c,. Hz Ges.:, a. Geschwindiei, Federonsane nderer Lösunswe ür v v sin v a v a v a Maialwer von sin a ( sin + δ ) a v a π,6 s Pendel l θ Z s θ -θ -sinθ Boenläne F a (.Newonsche Gesez) Masse bewe sich enlan des Kreisboens d s sinθ Näherun ür leine uslenunen : sinθ θ d s s r r s s rθ haronische Schwinun Lösun : π s s i π π r r Schwinunsdauer hän nur von der Pendelläne ab, nich von der Masse!

8 Beispiel: Pendel Wie roß is die Frequenz der Schwinun einespendelsi Läne? l Frequenz l π π π l π Schwinunsdauer s 9,8s,5 s Physialisches Pendel θ d d sinθ S Sarrer Körper schwin u uhänepun S Schwerpun Drehoen räheisoen d θ M Iα I d sinθ leine uslenun, daher : sinθ θ d θ d θ I M d sinθ Winelbeschleuniun I θ α Lösun : θ ( θ i d I

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN Übungsbuch Physi Peer Müller, Hilar Heineann, Hellu Zier, Heinz Kräer Grundlagen Konrollfragen Beispiele Aufgaben ISBN 3-446-478-4 Leseprobe Weiere Inforaionen oder Besellungen uner hp://www.hanser.de/3-446-478-4

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übunen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzi, Dr. Volker Körstens, David Maerl, Markus Schindler, Moritz v. Sivers Vorlesun 0..0, Übunswoche

Mehr

2. Kinematik punktförmiger Körper

2. Kinematik punktförmiger Körper . Kinemaik punkförmier Körper Beschleuniun: Körper werden als Massenpunke idealisier. Beweun im -dimensionalen Raum d( ) a( ) ɺ ( ) ɺɺ ( ) d Konenion: : Zei [s] (,y,) : Or [m] : Geschwindikei [m/s] a :

Mehr

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau,

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau, Lösun zur Klausur Technische Mechanik III Universität Sieen, Fachbereich Maschinenbau, 9.02.2008 Aufabe 1 (10 Punkte) y m 2 u M R MR v 0 h r x A l B s C Ein römischer Katapultwaen (Masse ) rollt beladen

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Insiu für Mechanische Verfahrensechnik und Mechanik Bereich newande Mechanik Technische Mechanik III (Dynamik) 8.6.4 Bearbeiunszei: h min ufabe y y (8 Punke) x m O α x β Ein Fußball der Masse m, der als

Mehr

Grundwissen Physik (10. Klasse)

Grundwissen Physik (10. Klasse) Grundwissen Physik (10. Klasse) 1 Astronomisches Weltbild 1.1 Entwicklun des astronomischen Weltbilds Geozentrisches Weltbild (Antike) Die Erde ist Mittelpunkt des Weltalls. Die Sonne bewet sich in einem

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Ein Pendel führt in 2 Minuten 90 Schwingungen aus. Bestimmen Sie die Frequenz der Schwingung in Hz. (f=0,75hz)

Ein Pendel führt in 2 Minuten 90 Schwingungen aus. Bestimmen Sie die Frequenz der Schwingung in Hz. (f=0,75hz) in Pende ühr in inuen 90 Schwinunen au. Beien Sie die Frequenz der Schwinun in Hz. (0,75Hz Wie viee Schwinunen ühr ein Fadenpende in inuen au, wenn e eine Frequenz von 0,8 Hz beiz? (n Schw. Weche Schwindauer

Mehr

Technische Mechanik III Übungsblatt Nr. 3

Technische Mechanik III Übungsblatt Nr. 3 Institut für Technische Mechanik Prof. Dr.-In. C. Proppe Prof. Dr.-In. W. Seeann Nae: Testat: Terin: (jew. 19:00 Uhr) Vornae: Di., 25.11.2008 Matr. Nr.: Technische Mechanik III Übunsblatt Nr. 3 Thea: Newtonsches

Mehr

Blatt 7. Lineare und Nichtlineare Schwingungen- Lösungsvorschlag

Blatt 7. Lineare und Nichtlineare Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmoloie, Prof. Dr. V. Mukhanov Übunen zu Klassischer Mechanik T1) im SoSe 11 Blatt 7. Lineare und Nichtlineare Schwinunen- Lösunsvorschla Aufabe 7.1.

Mehr

Energiemethoden, Prof. Popov, WiSe 11/12, 4. Woche Lösungshinweise Seite 1 Lagrangesche-Gleichungen 1. Art. 3m 2 r. Somit sind.

Energiemethoden, Prof. Popov, WiSe 11/12, 4. Woche Lösungshinweise Seite 1 Lagrangesche-Gleichungen 1. Art. 3m 2 r. Somit sind. Eneriemethoen, Prof. Popov, WiSe 11/1, 4. Woche Lösunshinweise Seite 1 Tutorium Aufabe 47 Auf einer schiefen Ebene Neiunswinkel α befinet sich ein Sstem aus einem Klotz Masse m 1 un einem Vollzliner Masse

Mehr

K l a u s u r N r. 1 Gk Ph 12

K l a u s u r N r. 1 Gk Ph 12 K a u u r N r. 1 Gk Ph 1.11.010 Aufabe 1 Leiten Sie die Fore für die Schwinundauer einen chwinenden Füikeit in eine U-Rohr her. Zeien Sie zunächt, da diee Schwinun haronich it. Benutzen Sie dann für die

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Übungsbuch Physik. Grundlagen - Kontrollfragen - Beispiele - Aufgaben. von Peter Müller, Hilmar Heinemann, Heinz Krämer, Hellmut Zimmer. 1.

Übungsbuch Physik. Grundlagen - Kontrollfragen - Beispiele - Aufgaben. von Peter Müller, Hilmar Heinemann, Heinz Krämer, Hellmut Zimmer. 1. Übungsbuch Physi Grundlagen - Kontrollfragen - Beispiele - Aufgaben von Peter Müller, Hilar Heineann, Heinz Kräer, Hellut Zier 1. Auflage Übungsbuch Physi Müller / Heineann / Kräer / et al. schnell und

Mehr

Aufgaben zur Vorbereitung der Klausur für Studierende der Studiengänge Vermessungswesen/Kartographie Teil II

Aufgaben zur Vorbereitung der Klausur für Studierende der Studiengänge Vermessungswesen/Kartographie Teil II Aufgaben zur Vorbereitung der Klausur für Studierende der Studiengänge Veressungswesen/Kartographie Teil II 1) Eine Zentrifuge dreht sich anfänglich it 480 Udrehungen pro Minute und bleibt bei Ausschalten

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Atomvorstellung: Antike bis 19. Jh.

Atomvorstellung: Antike bis 19. Jh. GoBack Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell 1 / 24 Atomvorstellung der Griechen Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell Die

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Aufgabe 1. Übungsblatt 7. Woche

Aufgabe 1. Übungsblatt 7. Woche T II SS Übunsb 7. Woche Pof. Oseeye Aufbe Zeichnen Sie die Le de oennpoe fü Sb, und Sb und beechnen Sie die Winkeeschwindikei ω des dien Sbes fü die ezeichnee Le. ω Geeben:, ω. b Zeichnen Sie die Le de

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Abschlussklausur zur Vorlesung Wirtschaftswachstum. 4. August Was versteht man unter dem Harrod-Paradoxon, und wie ist es zu erklären?

Abschlussklausur zur Vorlesung Wirtschaftswachstum. 4. August Was versteht man unter dem Harrod-Paradoxon, und wie ist es zu erklären? Prof. Dr. Oliver Landmann SS 2009 bschlusslausur zur Vorlesun Wirschafswachsum 4. uus 2009 ufabe 1 (10%) Was verseh man uner dem Harrod-Paradoxon, und wie is es zu erlären? ufabe 2 (15%) Nennen Sie drei

Mehr

GRUNDWISSEN 8. KLASSE

GRUNDWISSEN 8. KLASSE Physik: GD 8. KL G als HLTGGÖ GÖ FOL HT nerie kann [ ] 1 - in verschiedenen nerieforen vorlieen 1 1 - von einer neriefor in eine andere ueandelt erden k nerie 1 1 - von eine Körper auf andere übertraen

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker Beibläe zu Volesung Physik fü Elekoechnike und Infomike, Mschinenbue und Mechonike WS 4/5 Pof. D. Min Senbeg, Pof. D. Eckehd Mülle Ohne Veändeungen zugelssen zu Klusu GPH Kinemik Dynmik Abei und Enegie

Mehr

Kapitel 9. Geldmengenwachstum,

Kapitel 9. Geldmengenwachstum, Kapiel 9 Geldmenenwachsum, Inflaion und Produkion Inflaion, Beschäfiun und Geldmenenh (Blanchard Kap 9 & 3.) wachsum ) 9. Übersich 9.2 Okun'sches Gesez ohne N- und A-Wachsum 9.3 Okun'sches Gesez mi N-

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur?

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur? Aufaben zu freien Fall 0. Von der Spize eine Ture lä an einen Sein fallen. Nach 4 Sekunden ieh an ihn auf de Boden aufchlaen. a) Wie hoch i der Tur? b) Mi welcher Gechwindikei riff der Sein auf den Erdboden

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Elektrodynamik II - Wechselstromkreise

Elektrodynamik II - Wechselstromkreise Physik A VL36 (18.1.13 Elekrodynamik II - Wechselspannung und Wechselsrom Wechselspnnung durch Indukion Drehsrom Schalungen mi Wechselsrom Kirchhoff sche h egeln Maschenregel bei Indukiviäen und Kapaziäen

Mehr

Dichte besitzt Messing bei einer Temperatur von 35 C? (1 cm³ Messing vergrößert seinen Rauminhalt beim Erwärmen um 1 K um 0, cm³).

Dichte besitzt Messing bei einer Temperatur von 35 C? (1 cm³ Messing vergrößert seinen Rauminhalt beim Erwärmen um 1 K um 0, cm³). Aufaben Länen- und oluenausdehnun 0. Mit eine tahlaßband, das für eine Teperatur von 0 eeicht ist, wird bei einer Teperatur von 5 die Läne der eite eines Gartens eessen. Welche Aussae ist richti? a) Die

Mehr

Aufgaben zum Energieerhaltungssatz

Aufgaben zum Energieerhaltungssatz Aufben zu nerieerlunz. Bei Zuenellen eine eiezue wird ein Won i Me bereieell. r roll einen Ablufber i de eiunwinkel,7 von einer Höe,0 i der Anfnecwindikei,40 - inb und bewe ic dnn in der orizonlen bene

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels R. Brinkmann http://brinkmann-du.de Seite 1 25.11.213 Bechreibung von Schwingungen. FOS: Die harmoniche Schwingung Veruch: Wir beobachten die Bewegung eine Fadenpendel Lenken wir die Kugel au und laen

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phamazeuen und Biologen (PPh Mechanik, Elekiziäslehe, Opik Übung : Volesung: Tuoials: Monags 13:15 bis 14 Uh, Buenand-HS Monags 14:15 bis 15:45, Liebig HS Monags 16:00 bis 17:30,

Mehr

Musterbeispiele zur Zinsrechnung

Musterbeispiele zur Zinsrechnung R. Brinkann h://brinkann-du.de Seie 1 20.02.2013 Muserbeisiele zur Zinsrechnung Ein Bankkunde uss Zinsen zahlen, wenn er sich bei der Bank Geld leih. Das Geld was er sich leih, nenn an aial. Die Höhe der

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

4) Bewegungsgleichungen

4) Bewegungsgleichungen 4) Beweunsleichunen 4.) Allemeiner Formalismus zum Lösen on Beweunsleichunen 4.) Geradlinie, leichförmie Beweun ( = cons., a = ) 4.3) Geradlinie, leichmäßi beschleunie Beweun (a = cons.) 4.4) Mehrdimensionale

Mehr

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1 Karlsruher Institut für Technoloie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösun 3 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Technische Mechanik III

Technische Mechanik III epetitoriu Technische echanik III Version 3., 09.0.00 Dr.-In. L. Pannin Institut für Dynaik und Schwinunen Gottfried Wilhel Leibniz Universität Hannover Dieses epetitoriu soll helfen, klassische Aufabentypen

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Modulation. Frequenzlagen Trägermodulation Amplitudenmodulation Trägerfrequenztechnik Digitale Modulation OFDM CDMA. Martin Werner WS 2010/11

Modulation. Frequenzlagen Trägermodulation Amplitudenmodulation Trägerfrequenztechnik Digitale Modulation OFDM CDMA. Martin Werner WS 2010/11 Modulaion Frequenzlagen modulaion Ampliudenmodulaion requenzechnik Digiale Modulaion OFDM CDMA Marin Werner WS 2010/11 Marin Werner, 11.11.2010 1 Frequenzlagen in der Nachrichenechnik sym. NF Kabel sym.

Mehr

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec (1) Zwei Signale liegen im Protonenspektrum bei 1.45 und 4.57 ppm, das Spektrometer hat eine Frequenz von 400.13 MHz. Wieweit liegen die Signale in Hz bzw. in rad/sec auseinander? 4.57 ppm 1.45 ppm = 3.12

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Grundwissen Klasse 7

Grundwissen Klasse 7 Grundwissen Klasse 7 Zahlenmenen = {1; 2; 3; 4; 5; 6;... } Die ene der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die ene der anzen Zahlen. Die ene der rationalen Zahlen. ultiplikation und

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

7.6 Transversale und longitudinale Wellen. z.b. Schall. ρ, p. Mittelwerte. z.b. Licht. = konstant. Darstellung in komplexer Zahlenebene

7.6 Transversale und longitudinale Wellen. z.b. Schall. ρ, p. Mittelwerte. z.b. Licht. = konstant. Darstellung in komplexer Zahlenebene 7.6 Transversale und longiudinale Wellen Longiudinale Welle uslenkung in usbreiungsrichung.b. Schall ρ, p ρ, p Mielwere λ Kopression Dilaaion (Verdünnung) Transversale Welle uslenkung senkrech u usbreiungsrichung.b.

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6 6. Diagramme mit Mathcad In diesem Kapitel geht es um andere, als X Y Diagramme. 6.. Kreisdiagramme. Schritt: Die darzustellende Funktion muß zunächst als Funktion definiert werden, zum Beispiel f(x):=

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Lösungen zur Prüfung 2005: Pflichtbereich

Lösungen zur Prüfung 2005: Pflichtbereich 005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Parameterdarstellung einer Funktion

Parameterdarstellung einer Funktion Parameterdarstellung einer Funktion 1-E Eine ebene Kurve Abb. 1-1: Die Kurve C beschreibt die ebene Bewegung eines Teilchens 1-1 Eine ebene Kurve Ein Teilchen bewegt sich in einer Ebene. Eine ebene Kurve

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den M Geoppelte Pendel Versuchsprotooll von Thomas Bauer und Patric Fritzsch Münster, den.1.1 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Die Pendelbewegung. Dder Kopplungsgrad 3. Versuchsbeschreibung

Mehr

4.3 Systeme von starren Körpern. Aufgaben

4.3 Systeme von starren Körpern. Aufgaben Technische Mechanik 3 4.3-1 Prof. Dr. Wandiner ufabe 1: 4.3 Ssteme von starren Körpern ufaben h S L h D L L L D h H L H SH Ein PKW der Masse m mit Vorderradantrieb zieht einen Seelfluzeuanhäner der Masse

Mehr

Kugelfallmethode nach Stokes

Kugelfallmethode nach Stokes Phyikaliche Grunrakiku Veruch 09 Veruchrookolle alf Erlebach uelfallehoe nach Soke Aufaben. Meen er Fallzeien on ieren Sahlkueln in izinuöl.. Berechnen er ynaichen Vikoiä e Öl.. Berechnen er kineaichen

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Übung 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1. Ein U-förmiger Schlauch ist etwa zur Hälfte mit Wasser gefüllt. Wenn man

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Der lineare harmonische Oszillator

Der lineare harmonische Oszillator Als Beispiel für ein schwingungsfähiges Syse haen wir ereis das aheaische Pendel kennengelern. Der Auslenkwinkel ϕ des Pendels schwing haronisch u einen Gleichgewichswer ϕ = 0. Schwingungen ähnlicher Ar

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man Aufaben zu freien Fall 8. Au welcher Höhe üen Fallchirpriner zu Übunzwecken frei herab prinen, u i derelben Gechwindikei (7 - ) anzukoen wie bei Abprun i Fallchir au roßer Höhe? 0. Von der Spize eine Ture

Mehr

Gekoppelte Schwinger & Normalschwingungsanalyse Eine Einführung

Gekoppelte Schwinger & Normalschwingungsanalyse Eine Einführung Gekoppelte Schwinger & Noralschwingungsanalyse Eine Einführung Stilianos Louca. Juli 007 Inhaltsverzeichnis Vorwort. Kurze Beschreibung des Probles........................................... Fehler gefunden.....................................................

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

Kreise Winkel Drehung

Kreise Winkel Drehung Kreise Winkel Drehun.) Der Kreis: ufabe: Zeichne in ein Koordinatensystem folende Punkte ein: M(4/) ; (/) ; (6/8) ; D(/8) ; E(6/) 9 8 D Durchmesser (d) 7 6 M Sehne (s) 4 Radius (r) E - 4 6 7 8 9 a.) Zeichne

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung von Teilchenbewegung Kinemaik: Quaniaive

Mehr

1 a) Ω = {(00), (01), (10), (03), (30), (11), (13), (31), (33)} b) Minimaler Gewinn: {(00), (01), (10), (03), (30)}; Maximaler Gewinn: {(33)}

1 a) Ω = {(00), (01), (10), (03), (30), (11), (13), (31), (33)} b) Minimaler Gewinn: {(00), (01), (10), (03), (30)}; Maximaler Gewinn: {(33)} Schülerbuchseie 0 Lösungen orläufig Zufallsgrößen S. 0 a) Ω = {(00), (0), (0), (0), (0), (), (), (), ()} b) Minimaler Gewinn: {(00), (0), (0), (0), (0)}; Maimaler Gewinn: {()} S. a) ω 7 8 Å0 ÅÅ Å Å Å Å

Mehr

Übung zur Vorlesung Makroökonomik

Übung zur Vorlesung Makroökonomik Übun zur Vorlesun Makroökonomik Bachelor Modul WT 2010 BachelorModul) Übun zur Vorlesun Makroökonomik WT 2010 1 / 10 Aufabe 5-1: IS-LM-Modell Aufabe 5.5 IS-LM-Modell Leiten Sie rafisch die IS- aus dem

Mehr

Aus der Schwingungsdauer eines physikalischen Pendels.

Aus der Schwingungsdauer eines physikalischen Pendels. 2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Heterogene Keimbildung

Heterogene Keimbildung Heterogene Keimbildung - heterogene Keimbildung ist der allgemeinste Fall, da sich der Einfluss von Grenzflächen praktisch nicht ohne weiteres ausschalten lässt. - Voraussetzung: Benetzbarkeit Eigentlicher

Mehr

PARS. Kategorie C: Lösungen. Grundlagen. Aufgabe 1. s = 1 2 a t2 (t 0, umstellen nach a) s = 1 2 a t2 2 (1) 2 s = a t 2 : t 2 (2) 2 s. t 2.

PARS. Kategorie C: Lösungen. Grundlagen. Aufgabe 1. s = 1 2 a t2 (t 0, umstellen nach a) s = 1 2 a t2 2 (1) 2 s = a t 2 : t 2 (2) 2 s. t 2. Kategorie C: Lösungen PARS Grundlagen Aufgabe s = 2 a t2 (t 0, ustellen nach a) s = 2 a t2 2 () 2 s = a t 2 : t 2 (2) 2 s t 2 = a (3) a = 2 s t 2 Zu Zeile (): Es ist nicht nötig, die gesuchte Größe nach

Mehr

d zyklische Koordinaten oder Terme der Form F(q, t) dt

d zyklische Koordinaten oder Terme der Form F(q, t) dt 6 Woche.doc, 3.11.10.5 "Reep" u Lösung von Bewegungspoblemen mi Hilfe de Lagange- Gleichungen II.. Beispiele 1. Wähle geeignee ( Zwangbedingungen, Smmeie) veallgemeinee Koodinaen ( 1,,..., f ) n (, ) n.

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Systemtheorie: Übertragungssystem: Beispiele

Systemtheorie: Übertragungssystem: Beispiele Sysemheorie: lieer mahemaische Werkzeuge, um die Umwandlung einer physikalisch kodieren Inormaion in einer andere Darsellung z.b. vom Orsraum in den Fourierraum ohne Inormaionsverlus zu beschreiben. Überragungssysem:

Mehr

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis)

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Westfälische Wilhelms-Universität Münster Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Ausarbeitung im Rahmen des Seminars Einführung

Mehr

Hydrodynamik (A) ds dt. v =

Hydrodynamik (A) ds dt. v = Hdrodnamik () Dnamik ist der Teil der Mechanik der insbesondere die Änderun des Beweunszustandes on Körpern - infole der Einwirkun on Kräften - behandelt. In der Fluiddnamik (Mechanik der Flüssikeiten

Mehr

2. Klausur Physik Leistungskurs Dauer: 90 min Hilfsmittel: Tafelwerk, GTR, Hefter, Lehrbuch

2. Klausur Physik Leistungskurs Dauer: 90 min Hilfsmittel: Tafelwerk, GTR, Hefter, Lehrbuch . Klauur Phyik Leitunkur 6.11.1 Dauer: 9 in Hilfittel: Tafelwerk, GTR, Hefter, Lehrbuch 1. Ein Pendel it über eine Rolle it eine Federkrafteer erbunden. Wa zeit der Krafteer i Verleich zu ruhenden Pendel

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr