Zusammenfassung: Komplexe Zahlen

Größe: px
Ab Seite anzeigen:

Download "Zusammenfassung: Komplexe Zahlen"

Transkript

1 LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe Zhleeee Bektlich k m jede Pukt der Eee mit wei Koordite eschreie Ist die erste Koordite ud die weite Koordite, d P schreit m de Pukt i der Form P( ) = = + i Defiitio: Jede Pukt P( ) der Eee k m ls eie komplexe Zhl = + i schreie Fsst m die Pukte der Eee ls komplexe Zhle uf, d et m die Eee die komplexe Zhleeee Defiitio: Die Mege heißt Mege der komplexe Zhle { i, } { = = + Defiitio: Für eie komplexe Zhl = + i heißt der lteil ud der giärteil = Schreiweise: = ud Zhle der Form = (lso giärteil = 0 ) liege uf der chtschse, die m i der komplexe Zhleeee die reelle Achse et Diese Zhle sid die reelle Zhle, ud die reelle Achse ist die gewöhliche Zhlegerde Jede reelle Zhl ist lso eie speielle komplexe Zhl Zhle der Form = i (lso lteil = 0 ) heiße imgiäre Zhle Sie liege uf der Hochchse, die m i der komplexe Zhleeee die imgiäre Achse et Defiitio: Der Betrg eier komplexe Zhl = + i ist = + = + i Der Betrg eier komplexe Zhl ist der Astd der Zhl i der komplexe Zhleeee vom Ursprug Für eie reelle Zhl = + 0i ist 0 = + = =, lso der üliche Betrg us_komplexehle /

2 LGÖ Ks VM Schuljhr 06/07 Beispiel: { = } { ist i der komplexe Zhleeee der Kreis um 0 mit dem Rdius Defiitio: Für eie komplexe Zhl = + i heißt = i die kojugiert komplexe Zhl = + i Die kojugiert komplexe Zhl etsteht durch eie Spiegelug der reelle Achse = i Für eie reelle Zhl ist die kojugiert komplexe Zhl gleich der Zhl selst che mit komplexe Zhle + i + c+ di = + c + + d i Defiitio (Additio): Deutug i der komplexe Zhleeee: De komplexe Zhle = + i ud w= c+ di Q c d mit de d c Ortsvektore OP = ud OQ = d Der Summe + w etspricht der Pukt mit dem Ortsvektor OP + OQ = d d + c + d etspreche die Pukte ( ) P ud ( ) w + w Für reelle Zhle = + 0i ud w c 0i Additio + w= + c + + i = + c, lso die üliche = + ist ( 0 0) Feststellug: Für die Additio komplexer Zhle gilt: ds Kommuttivgeset: + = + ; ds Assoitivgeset: ( + ) + = + ( + ) ; es git ei eutrles Elemet: + 0 = ; 4 jede Zhl = + i ht eie Gegehl, ämlich i =, so dss gilt: ( ) 0 + = Für eie reelle Zhl = + 0i ist die Gegehl = 0i =, lso die üliche Gegehl Ds Negtive eier komplexe Zhl etsteht durch eie Spiegelug m Ursprug = i = + i Wie ei reelle Zhle wird die Sutrktio defiiert ls die Additio der Gegehl: Defiitio (Sutrktio): w= + ( w) us_komplexehle /

3 LGÖ Ks VM Schuljhr 06/07 Also ist ( + i) ( c+ di) = ( c) + ( d) i Der Astd weier reeller Zhle ud uf der Zhlegerde ist für komplexe Zhle: Ds gilt etspreched Merke: Der Astd weier komplexer Zhle ud w i der komplexe Zhleeee ist w Beispiel: { i = } { ist i der komplexe Zhleeee der Kreis um i mit dem Rdius Defiitio (Multipliktio): ( + i) ( c + d i) = ( c d ) + ( d + c) i i i = 0+ i 0+ i = i = Beispiel: Für reelle Zhle = + 0i ud w= c+ 0i ist w = + 0i c + 0i = c c = c, lso die üliche Multipliktio Feststellug: Für die Multipliktio komplexer Zhle gilt: ds Kommuttivgeset: = ; ds Assoitivgeset: ( ) = ( ) ; es git ei eutrles Elemet: = Feststellug: Für die Additio ud die Multipliktio komplexer Zhle gilt ds Distriutivgeset: + = + Ttsächlich muss m sich die Defiitio der Multipliktio icht merke, soder m schreit die komplexe Zhle i Klmmer, multipliiert wie ülich us ud ersett i i durch Beispiel: + i 4 + 5i = 4 + 5i + i 4 + i 5i = 8 + 0i + i + 5ii = 8 + i 5 = 7 + i Defiitio (-te Pote): Beispiel: i = i i = = Fktore ( =,,, ) Feststellug: Jede komplexe Zhl = + i, 0 ht eie Kehrhl, ämlich = i, + + so dss gilt: = i Beweis: Es ist i =, lso us_komplexehle / ( + i)( i) ( i) i + = ( + i) = = = =

4 LGÖ Ks VM Schuljhr 06/07 Bemerkug: Es ist =, lso = = Wege = ist = 0 Für eie reelle Zhl = + 0i ist = = = , lso die üliche Kehrhl Defiitio (Divisio): = ( w 0 ) w w Diese Defiitio ergit für reelle Zhle die üliche Divisio Ttsächlich muss m sich die Defiitio der Divisio icht merke, soder m erweitert de Bruch mit dem komplex kojugierte Neer ud wedet die dritte iomische Formel Beispiel: ( 4+ 5i) ( 6 8i) 4 + 5i 4 i+ 0i i 64 6 = = = = i = i 6 + 8i 6 + 8i 6 8i Für Experte: Die komplexe Zhle ilde eie Körper Polrform komplexer Zhle Feststellug ud Defiitio: Jeder komplexe Zhl 0 k m de Wikel ϕ wische der positive reelle Achse ud der Strecke 0 uorde, woei 80 < ϕ 80 gilt Dieser Wikel heißt ds Argumet vo Schreiweise: rg ( ) 0 ϕ Beispiel: rg ( i ) = 90 Berechug vo ϕ = rg ( ) : Soderfälle: reell, lso = : ) > 0 : ϕ = 0 ) < 0: ϕ = 80 imgiär, lso = i: c) > 0 : ϕ = 90 d) < 0 : ϕ = 90 Allgemeier Fll: Für = + i ist tϕ = ϕ = + i us_komplexehle 4/

5 LGÖ Ks VM Schuljhr 06/07 Achtug: Fll < 0 ud > 0 ist 90 < ϕ < 80, ud m muss 80 um GTR-Ergeis ddiere Beispiel: = + i tϕ = = ϕ, = 46, < 0 ud < 0 ist 80 < ϕ < 90, ud m muss 80 vom GTR-Ergeis sutrhiere Beispiel: = i tϕ = = ϕ, 7 80 = 46, Eie komplexe Zhl = + i, 0 k m mit ihrem Betrg r = ud ihrem Argumet ϕ = rg ( ) drstelle: Soderfll r = (Vergleiche Sius ud Kosius im Eiheitskreis ) gilt = cosϕ = siϕ ϕ = + i llgemeie Fll mit elieigem r dekt m sich ds oige Bild etrisch gestreckt, mit dem Ursprug ls Strecketrum ud dem Streckfktor r D erhält m = r cosϕ = r siϕ r r ϕ = + i r Also gilt i r cosϕ r siϕ i r ( cosϕ siϕ i) = + = + = + Ds ist die Drstellug mit dem Betrg ud dem Argumet: Defiitio: Die Polrform eier komplexe Zhl 0 ist = r cosϕ + siϕ i mit r = ud rg ( ) ϕ = Bemerkug: Der GTR stellt die Polrform i der Form = r e ϕ i dr Gegest ur Polrform heißt die Drstellug = + i die Normlform us_komplexehle 5/

6 LGÖ Ks VM Schuljhr 06/07 Umrechug vo der Normlform i r = = + Bestimme ϕ = rg ( ) wie oe erläutert Umrechug vo der Polrform r ( cosϕ siϕ i) = + i die Polrform r ( cosϕ siϕ i) = + : = + i die Normlform = + i : = r cosϕ + r siϕ i, lso = r cosϕ ud = r siϕ Feststellug (Beweis siehe Für Experte ): Für komplexe Zhle r ( cosϕ siϕ i) = r ( cosϕ + siϕ i) ist = rr cos( ϕ + ϕ ) + si ( ϕ + ϕ ) i Also gilt: = ud rg ( ) = rg ( ) + rg ( ) Für Experte: M muss evtl 60 ddiere oder sutrhiere Merke: Bei der Multipliktio komplexer Zhle multipliiere sich die Beträge ud ddiere sich die Argumete = + ud Durch -fche Awedug dieser Formel w durch vollstädige Iduktio folgt der St (Formel vo Moivre): Die -te Pote ( =,,, ) eier komplexe Zhl = r cosϕ + siϕ i ist Also gilt: = rg ( ) = rg ( ) ( cos( ϕ) si ( ϕ) ) = + r i Für Experte: M muss evetuell 60 oder ei Vielfches vo 60 ddiere oder sutrhiere Wurel komplexer Zhle Defiitio: Gegee ist eie komplexe Zhl ud eie türliche Zhl Eie komplexe Zhl w mit w = heißt eie -te Wurel vo ; im Fll = heißt w eie Qudrtwurel vo Liest m die Formel vo Moivre rückwärts, d erhält m de St: Jede komplexe Zhl ht eie -te Wurel ( =,, 4, ), ämlich die Zhl w, für die gilt: rg ( ) w = ud rg ( w) = us_komplexehle 6/

7 LGÖ Ks VM Schuljhr 06/07 Also ist ( w) rg ( ) = cos ud ( w) rg ( ) = si Stdrdufge: Bereche eie -te Wurel w eier komplexe Zhl = + i Lösug: Bereche Bereche = + t ( rg ) = rg ( ) = < ud > 0 muss m 80 um GTR-Ergeis ddiere, ud im Fll < muss m 80 vom GTR-Ergeis sutrhiere! rg ( ) rg ( ) w = cos ud ( w ) = si Achtug: Fll 0 < 0 ud 0 Bereche Feststellug: Ist die Zhl w eie -te Wurel der Zhl ( =,, 4, ), d erhält m eie weitere -te Wurel w vo, idem m ds Argumet vo w um 60 vergrößert Beweis: D = Drus folgt w eie -te Wurel vo ist, gilt rg ( w ) rg ( ) 60 rg w = rg w + = rg w + 60 = rg w = rg Also ist uch w eie -te Wurel vo Folgerug: Eie komplexe Zhl 0 ht für jede türliche Zhl midestes verschiedee -te Wurel Beweis: M k ds Argumet eier -te Wurel -ml um 60 erhöhe, is m ds ursprügliche Argumet plus 60 ud dmit die ursprügliche -te Wurel erhält Feststellug: Eie komplexe Zhl ht für jede türliche Zhl höchstes verschiede -te Wurel Beweis: Eie -te Wurel vo ist eie Nullstelle des Polyoms x = 0, ud wie im elle ht ei Polyom vom Grd höchstes Nullstelle Drus folgt der St: Eie komplexe Zhl 0 ht für jede türliche Zhl geu verschiedee -te Wurel Bei reelle Zhle ist ds ektlich ders: Eie positive reelle Zhl x ht geu eie reelle -te Wurel, ämlich x Ist x eie egtive reelle Zhl ud ugerde, d ht x geu eie reelle -te Wurel, ämlich x us_komplexehle 7/

8 LGÖ Ks VM Schuljhr 06/07 Ist x eie egtive reelle Zhl ud gerde, d ht x keie -te Wurel Fll = : Eie komplexe Zhl 0 ht wei verschiedee Qudrtwurel: Die Zhl w mit w die Zhl w = w rg = ud rg ( w ) = ; Soderfll: Eie egtive reelle Zhl x ht die eide Qudrtwurel w Beispiel: Die Zhl ht die eide Qudrtwurel i ud i = xiud w = xi Alle -te Wurel eier komplexe Zhl he desele Betrg uterscheide sich jeweils um 60 Drus folgt die, ud ihre Argumete Feststellug: Die -te Wurel eier komplexe Zhl liege i der Zhleeee uf dem Kreis um de Ursprug mit dem Rdius, ud sie sid die Eckpukte eies regelmäßige -Ecks Beispiel: Die vierte Wurel vo sid i,, i ud Sie liege uf dem Eiheitskreis ud sid die Ecke eies Qudrts i i Feststellug: Ist die Zhl w eie -te Wurel der Zhl, d ist w eie -te Wurel vo Beweis: D w eie -te Wurel vo ist, gilt w = M k chreche, dss w = w gilt Drus folgt durch vollstädige Iduktio: w = w Also ist w =, d h w ist eie -te Wurel vo Formel vo Crdo Für eie speielle Form eier Gleichug dritte Grdes git es eie Lösugsformel: St (Formel vo Crdo; ohe Beweis): Gegee ist eie Gleichug der Form x + px + q = 0 ( p, q ) Bei geeigeter Whl der Wurel ist q q p q x = + D + D mit D = + eie reelle Lösug der Gleichug Es git wei Fälle: Ist D 0, d ist D eie reelle Zhl, ud ei der Berechug der Lösug trete ur reelle Zhle uf, weil m ls dritte Wurel eier reelle Zhl immer eie reelle Zhl ehme k us_komplexehle 8/

9 LGÖ Ks VM Schuljhr 06/07 Ist D < 0, d ist D = Di Sett m q : = + D, d lutet die Formel vo Crdo: x = + Ist w eie dritte Wurel vo, d ist w eie dritte Wurel vo Also ergit die Formel vo Crdo die Lösug x = w+ w Die Zhl x ist eie reelle Zhl, de für jede komplexe Zhl w = + i ist w+ w = + i + i = = w Stdrdufge: Bestimme eie reelle Lösug der Gleichug x px q + + = 0 Lösug: p q Bereche D = + q q Fll D > 0 : Bereche x = + D + D Fll D < 0: q Bereche = + D mit D= Di 4 Bereche de lteil ( w ) = rg ( ) cos eier dritte Wurel w vo x = w 5 Bereche Bemerkug: Eie (elieige) Gleichug dritte Grdes x + x + cx + d = 0 ( cd,, ) k durch eie geeigete Sustitutio i eie Gleichug der Form + p + q = 0 üerführt werde, siehe Für Experte Also k m mit der Formel vo Crdo elieige Gleichuge dritte Grdes löse Nullstelle ud Fktorisierug vo Polyome Defiitio: Ei Polyom p( x) = x + x + + x + 0 heißt ei reelles Polyom (w komplexes Polyom), we lle Koeffiiete 0,,, reelle Zhle (w komplexe Zhle) sid Ei reelles Polyom ist lso ei speielles komplexes Polyom us_komplexehle 9/

10 LGÖ Ks VM Schuljhr 06/07 Bektlich ht ei reelles ormiertes qudrtisches Polyom x + px + q die Nullstelle Ist x, p p = ± q p q < 0, d ht ds Polyom die eide komplex kojuigerte Nullstelle p p, = + q i Bemerkuge: Eigetlich drf m im Komplexe ds Wureleiche icht verwede Wege ± ist ds er i Ordug Ds Polyom ht keie reelle Zerlegug, er die komplexe Zerlegug x + px+ q = x x Ht ei reelles Polyom p( x ) eie reelle Nullstelle x 0, d lässt sich vo x x 0 splte, d h es git ei reelles Polyom q( x ) mit p( x) = ( x x0 ) q( x) Etspreched gilt: Ht ei (reelles oder komplexes) Polyom p( x ) eie komplexe Nullstelle 0, d lässt sich vo p( x ) ei Lierfktor x 0 splte, d h es git ei komplexes Polyom q( x ) mit p( x) = ( x ) q( x) Feststellug: Für jede komplexe Zhl gilt x x = x x+ Isesodere ist ds Polyom p( x) = ( x )( x ) reell 0 p x ei Lierfktor Beweis: p x = x x = x x x+ = x + x+ = x x+ Fudmetlst der Alger (ohe Beweis): Der Körper der komplexe Zhle ist lgerisch geschlosse, d h jedes ichtkostte komplexe Polyom ht (midestes) eie komplexe Nullstelle Bemerkuge: Also ht uch jedes ichtkostte reelle Polyom (midestes) eie komplexe Nullstelle Der St sgt icht, wie m eie Nullstelle estimme k us_komplexehle 0/

11 LGÖ Ks VM Schuljhr 06/07 Folgerug: Jedes ichtkostte (reelle oder komplexe) Polyom lässt sich ls Produkt vo komplexe Lierfktore schreie, d h für ei ormiertes Polyom -te Grdes p( x) = x + iedrigere Terme gilt p( x) = ( x ) ( x ) ( x ) Diese Nullstelle köe teilweise gleich sei Feststellug (Beweis siehe Für Experte ) : Ht ei reelles Polyom eie komplexe Nullstelle, d ist uch die kojugiert komplexe Zhl eie Nullstelle des Polyoms Ei reelles Polyom k m lso immer folgedermße fktorisiere: Zu jeder reelle Nullstelle gehört ei reeller Lierfktor Ei Polyom ugerde Grdes ht immer eie reelle Nullstelle Nch dem Asplte des ugehörige Lierfktors leit ei Polyom gerde Grdes ürig We dieses Polyom keie reelle Nullstelle ht, d ht es wei kojugiert komplexe Nullstelle Ds Produkt der eide ugehörige Lierfktore ist ei reelles qudrtisches Polyom, ds m splte k Drus folgt ds Ergeis: Jedes ichtkostte reelle Polyom lässt sich ls ei Produkt vo reelle Lierfktore ud reelle qudrtische Terme schreie, d h für ei ormiertes Polyom p( x) = x + iedrigere Terme gilt p x = x x x x x x x + p x+ q x + p x+ q x + p x+ q Für Experte ( r)( )( ) ( k k) Beweis der Feststellug: Für komplexe Zhle r ( cosϕ siϕ i) = r ( cosϕ + siϕ i) gilt = rr ( cos( ϕ + ϕ) + si ( ϕ + ϕ) i) = + ud Beweis: Ohe Begrüdug: Additiostheoreme für Sius ud Kosius: si α + β = siα cos β + cosα si β cos α + β = cosα cos β siα si β Drus folgt = r cosϕ + siϕ i r cosϕ + siϕ i ( cosϕ cosϕ siϕ siϕ ) ( cosϕ siϕ siϕ cosϕ ) ( cos( ϕ ϕ ) si ( ϕ ϕ ) i) = r r + + i = rr us_komplexehle /

12 LGÖ Ks VM Schuljhr 06/07 Feststellug: Eie Gleichug der Form x + x + cx + d = 0 ( cd,, ) wird durch die Sustitutio = x+ w x = i eie Gleichug der Form + p + q = 0 üerführt Beweis: Die Sustitutio ergit + + c + d = 0 c c + d = 0 9 c c + d = c + + c + + d = 0 7 Beweis der Feststellug: Ht ei reelles Polyom eie komplexe Nullstelle, d ist uch die kojugiert komplexe Zhl eie Nullstelle des Polyoms p x = x + x + + x + 0 D gilt p = 0 Beweis Sei = = = 0 + w= + w = 0 w= w = 0 für ist = = = p = 0 us_komplexehle /

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

Potenzen, Wurzeln und ihre Rechengesetze

Potenzen, Wurzeln und ihre Rechengesetze R. Brik http://rik-du.de Seite 9.0.00 Poteze, Wurzel ud ihre Rechegesetze Der Potezegriff Defiitio: Eie Potez ist eie Multipliktio gleicher Fktore (Bsis), ei der der Epoet die Azhl der Fktore git. : =...

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene...

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene... KAPITEL 1 Komplexe Zahle 1.1 Lerziele im Abschitt: Komplexe Zahle...................... 1. Was sid komplexe Zahle?............................. 1. Komplexe Zahleebee............................... 1. Grudrechearte

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

2. Zehnerpotenzen 2.1 Zehnerpotenzen mit positivem Exponenten 2.2 Zehnerpotenzen mit negativem Exponenten 2.3 Zusammenfassung von 2.

2. Zehnerpotenzen 2.1 Zehnerpotenzen mit positivem Exponenten 2.2 Zehnerpotenzen mit negativem Exponenten 2.3 Zusammenfassung von 2. Mthemtik Buch / 5. Poteze ud Wurzel /ZUSAMMENFASSUNG -502- Zusmmefssug: Poteze / Wurzel Potez 1 Ws ist eie Potez? 2 Poteze mit positivem Expoete 3 Poteze mit egtivem Expoete 4 Zusmmefssug vo 2. Zeherpoteze

Mehr

Prof. U. Stephan Studiengang BAU 1. Fachsemester Formelsammlung, V. 1 TFH Berlin, FB II LV Mathematik Seite 1 von 6

Prof. U. Stephan Studiengang BAU 1. Fachsemester Formelsammlung, V. 1 TFH Berlin, FB II LV Mathematik Seite 1 von 6 Prof. U. Steph Studiegg BAU 1. Fchsemester Formelsmmlug, V. 1 TFH Berli, FB II LV Mthemtik Seite 1 vo 6 Formelsmmlug ur LV Mthemtik im Studiegg Buigeieurwese Umgg mit dem Tscherecher: Formel: Nottio: Die

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Potenzen und Wurzeln

Potenzen und Wurzeln Poteze ud Wurzel.) Poteze mit türliche ud gze Epoete: Epoet Potez: Bsis Ei Produkt us gleiche Fktore lässt sich ls Potez schreie er: ( ) ( ) ( ) ( ) 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) 0 (

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

Fachschaft Mathematik der Staatlichen Fachoberschule und Berufsoberschule Augsburg

Fachschaft Mathematik der Staatlichen Fachoberschule und Berufsoberschule Augsburg Fchschft Mthemtik der Sttliche Fchoberschule ud Berufsoberschule Augsburg Auf de folgede Seite sid i kurzer Form die Schverhlte der Algebr drgestellt, mit eiige relevte Übugsbeispiele, i der Regel ch Schwierigkeitsgrd

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

6.1 Einführung Wenn bei einer Multiplikation lauter gleiche Faktoren auftreten, so wird dafür meistens die Potenzschreibweise gewählt.

6.1 Einführung Wenn bei einer Multiplikation lauter gleiche Faktoren auftreten, so wird dafür meistens die Potenzschreibweise gewählt. Poteziere 6 Poteziere 6. Eiführug We bei eier Multipliktio luter gleiche Fktore uftrete, so wird dfür meistes die Potezschreibweise gewählt.... = Fktore Potezwert Es ist =, =, =, : Bsis oder Grudzhl, R

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y =

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y = Lösugsmethode Differetilgleihuge erster Ordug Für gewisse Tpe vo Differetilgleihuge läßt sih ei Weg gee, uf dem m, die Lösug der Differetilgleihug uf Qudrture d.h. uf ds Ausrehe vo Itegrle, urükführe k..

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studiekolleg ei de Uiversitäte des Freisttes Byer Üugsufge zur Vorereitug uf de Mthemtiktest . Polyomdivisio:. Dividiere Sie! ) ( 6 8 ):( ) Lös.: ) ( 9 7 0 8 9):(6 ) Lös.: 7 9 c) ( - ):() Lös.: d) (8 9

Mehr

Inhalt 1. Zahlenbereiche / Zahlenmengen 2. Terme

Inhalt 1. Zahlenbereiche / Zahlenmengen 2. Terme Mthemtische Grudlge für die Eiggsklsse des TG Ihlt. Zhlebereiche / Zhlemege. Terme.. Grudbegriffe.. Summe ud Differeze.. Produkte.. Auflöse vo Klmmer.. Ausklmmer ud Ausmultipliziere... Ausklmmer... Ausmultipliziere...

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Formelsammlung MATHEMATIK Oberstufe

Formelsammlung MATHEMATIK Oberstufe Formelsmmlug MATHEMATIK Oerstufe Diese Formelsmmlug erhet keie Aspruch uf Vollstädigkeit ud Richtigkeit. Sie wird ei Bedrf durch weitere Kpitel ergäzt..poteze Fktorezerleguge, R r,s R k Z m, N r s r+ s

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

f) n n 2 x x 4 für n gerade; x für n ungerade

f) n n 2 x x 4 für n gerade; x für n ungerade R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Der binomische Lehrsatz

Der binomische Lehrsatz Der iomische Lehrstz Ei Biom ist die Summe us zwei Glieder, etw +. Poteziert m dieses Biom mit eier ichtegtive gze Zhl, so gilt ch dem iomische Lehrstz (1) Beweis 1 + = k= 0 k k Für die trivile Fälle =

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

2.1.1 Potenzen mit natürlichen Exponenten

2.1.1 Potenzen mit natürlichen Exponenten .. Poteze mit türliche Expoete Eie Potez (gelese: hoch ) ist eie bgekürzte Schreibweise für ds Produkt us gleiche Fktore : = wobei > eie türliche Zhl ist heisst Bsis, Expoet der Potez. Beispiele: 5 = =

Mehr

Differenziation 5 Ableitung der elementaren Funktionen 6 Differenziationsregeln 6 Ableitung der Umkehrfunktion

Differenziation 5 Ableitung der elementaren Funktionen 6 Differenziationsregeln 6 Ableitung der Umkehrfunktion Prof. Dr. Elmr Müller-Horsche FH Augsurg Formelsmmlug Igeieurmthemtik Ihlt (. Semester) Seite Grudegriffe 3 Trigoometrische Fuktioe 3 Additiostheoreme 3 Hl- Doppelwikelformel 3 Verschieuge ud Dehuge 4

Mehr

Mathematische Grundlagen 1. Zahlenrechnen

Mathematische Grundlagen 1. Zahlenrechnen Mthemtische Grudlge. Zhlereche Ihltsverzeichis:. Zhlereche..... Die Grudrecherte..... Reche i der Mege der türliche Zhle..... Reche i der Mege der gze Zhle... 5.. Reche i der Mege der rtiole Zhle... 7...

Mehr

Mathe Basics für's Studium

Mathe Basics für's Studium Mthe Bsics für's Studiu Grudlge zur Mthetikvorlesug eies etrieswirtschftliche Studius vo Stef Schidt Versio: J. Ihltsverzeichis Vorll... Ws ietet dieses Skript?... Für we ist dieses Skript?... TEIL Bsic

Mehr

2 Mathematische Grundlagen

2 Mathematische Grundlagen Mthemtische Grudlge. Mthemtische Grudbegriffe.. Grudgesetze Kommuttivgesetze + b b + b b ssozitivgesetze ( + b) + c + (b + c) ( b) c (b c) Distributivgesetz (b + c) b + c.. Gesetze der ordug < b b > (b

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge

Mehr

Vektorrechnung und Analytische Geometrie : Punkt, Gerade, Ebene, Projektionen und Schnitte

Vektorrechnung und Analytische Geometrie : Punkt, Gerade, Ebene, Projektionen und Schnitte Vektrrechug ud Alytische Gemetrie : ukt, Gerde, Eee, rjektie ud Schitte Siehe : de.wikipedi.rg, drt ises.: http://de.wikipedi.rg/w/idex.php?titlegerdegleichug http://de.wikipedi.rg/wiki/vektrrechug http://de.wikipedi.rg/wiki/alytische_gemetrie

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Teil I.1 Rechnen mit reellen Zahlen

Teil I.1 Rechnen mit reellen Zahlen Brückekurs Mthetik Ihlt Teil I. Reche it reelle Zhle Sttliche Studiekdeie Leipzig Studierichtug Ifortik Reelle Zhle. Zhlbereiche.2 Grudrecherte.3 Potez- ud Wurzelrechug.4 Logrithe Dr. Christi Heller 2.

Mehr

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Mekhilfe Mthemtik m Gymsium Ihlte de Mittelstufe Lösugsfomel fü qudtische Gleichuge c / 4c Poteze m m s s s s s s Logithme logc log logc log

Mehr

Fachbereich Mathematik

Fachbereich Mathematik OSZ Kfz-Techik Berufsoberschule Mthemtik Oberstufezetrum Krftfhrzeugtechik Berufsschule, Berufsfchschule, Fchoberschule ud Berufsoberschule Berli, Bezirk Chrlotteburg-Wilmersdorf Fchbereich Mthemtik Arbeits-

Mehr

Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen.

Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen. Mthemtikiformtio Vom Potezreche zum Logrithmus Nr. Zweite korrigierte Auflge. Jur 00 ISSN -9 Mthemtikiformtio ist eie Zeitschrift vo Begbteförderug Mthemtik e.v. Herusgbe ud Redktio: Professor Dr. Hrld

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Formelsammlung WS 2005/06

Formelsammlung WS 2005/06 Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer

Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer Mthemtik Vorkurs Fchhochschule Kostz Fchbereich Versio 5.8 Copright 0 Versio 5.8 Copright 0 Mthemtik Wozu, Wie, Ws?.... Mthemtik Wozu?..... Hitergrud: Aspekte der Mthemtik..... Mthemtische Aspekte im Alltg

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Lambacher-Schweizer Baden-Württemberg Klasse 10. I Potenzen 6 Rationale Hochzahlen

Lambacher-Schweizer Baden-Württemberg Klasse 10. I Potenzen 6 Rationale Hochzahlen Lmcher-Schweizer Bde-Württemerg Klsse 0 I Poteze Rtiole Hochzhle Seite Nr. Die folgede Wurzel öe m Beste vereifcht werde, we m zuerst eiml die Zhl uter der Wurzel ls Potez schreit, d die gze Wurzel ls

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

4 Deckungsrückstellung

4 Deckungsrückstellung eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,

Mehr

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

I. Quadratische Funktionen und quadratische Gleichungen (Seite 1)

I. Quadratische Funktionen und quadratische Gleichungen (Seite 1) I. Qudrtische Fuktioe ud qudrtische Gleichuge (Seite ) Allgemeie qudrtische Fuktioe: Der Grph eier Fuktio der Form f(x) = x² heißt Normlprbel. Der Pukt mit dem kleiste Fuktioswert heißt Scheitelpukt ud

Mehr

Skript für. Mathematik 1

Skript für. Mathematik 1 Skript für Mthemtik Erstellt vo : Ostermeier Reihrd Dieses Skript ht keie Aspruch uf Vollstädigkeit! Gedruckt m 4. Jur 003 Skript Mthemtik I Seite - - Ihltsverzeichis...Mege. Defiitio: Mege (Ctor)... 5.

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse GANZRATIONALE FUNKTIONEN 7 0 7 7 Gazratioale Futioe Ihaltsverzeichis Kapitel Ihalt Seite Eiührug. Das Pascal sche Dreiec. Verschobee Potezutioe Verlau der Graphe gazratioaler Futioe im Koordiatesystem.

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr