Museumswächter, Bühnenbeleuchtung, Staubsaugerroboter

Größe: px
Ab Seite anzeigen:

Download "Museumswächter, Bühnenbeleuchtung, Staubsaugerroboter"

Transkript

1 Museumswächter, Bühnenbeleuchtung, Staubsaugerroboter Hat das etwas miteinander zu tun? Aufgabenheft Bjarnheiður Kristinsdóttir (Bea) 2017

2 Wer ich bin? Bea aus Island B.Sc. in Mathematik von der Uni Islands Diplom der angewandten Mathematik in Geowissenschaften (Schwerpunkt: Fernerkundung) von der TU Bergakademie Freiberg in Deutschland

3 Stellt euch ein Museum vor... Das Museum hat einen Grundriss in Form eines einfachen in der Ebene liegenden Polygons. Wie viele Überwachungskameras braucht man, um das Museum komplett zu überwachen? Wo sollte man diese positionieren?

4 Diebstahl oder nicht? Es war nicht unsere Absicht zu stehlen. Nur, auf die beklagenswerte Sicherheitsleistung aufmerksam zu machen. Manchester Whitworth Gallery, Großbritannien

5 Es gibt allerlei geformte Museen Guggenheim Museum, Bilbao, Spanien

6 Manch ein Museum ist recht verwinkelt Weisman Museum, Minneapolis, Minnesota, USA

7 Wächter und Kameras überwachen die Kunst Aber wie sollte man diese positionieren?

8 Fragestellung Wie viele Wächter (bzw. Überwachungskameras) braucht man, um ein Museum vollständig zu überwachen; unter der Voraussetzung, dass die Wächter an ihrer Position bleiben, aber sich um jeden Winkel drehen können? Stellen wir die Frage gleich noch mal auf eine mathematische Weise

9 Problem der Museumswächter Gestellt von Victor Klee ( ) im Jahr 1973: Gegeben sei eine polygonale Fläche mit Rand, interpretiert als Grundriss eines Museums. Wähle nun möglichst wenige Punkte 1, 2, n (Wächter) im Inneren des Polygons, sodass jeder Punkt im Inneren des Polygons durch eine Gerade, die ganz in einschließlich Rand liegt, mit einem Wächter verbunden werden kann.

10 Polygonale Fläche? Eine polygonale Kurve Eine überschlagene polygonale Fläche Eine einfache Polygonale Fläche

11 Wir arbeiten mit einfachen Polygonen in der Ebene

12 Zur Definition eines Polygons Ein Polygon ist eine ebene geometrische Figur, die durch einen geschlossenen Streckenzug gebildet und/oder begrenzt wird. Schneiden (berühren) sich die Kanten nicht nur in den Eckpunkten, bezeichnet man das Polygon als überschlagen. Liegt keine Selbstüberschneidung vor, bezeichnet man das Polygon als einfach. Nicht überschlagene Vielecke können konvex (alle Innenwinkel sind kleiner als 180 ) oder konkav (mindestens ein Innenwinkel ist größer als 180 ) sein. Man unterscheidet in der Ebene liegende (planare, ebene) und im Raum liegende (nicht-planare) Polygone.

13 Zur Definition eines Polygons Ein Polygon ist eine ebene geometrische Figur, die durch einen geschlossenen Streckenzug gebildet und/oder begrenzt wird. Schneiden (berühren) sich die Kanten nicht nur in den Eckpunkten, bezeichnet man das Polygon als überschlagen. Liegt keine Selbstüberschneidung vor, bezeichnet man das Polygon als einfach. Nicht überschlagene Vielecke können konvex (alle Innenwinkel sind kleiner als 180 ) oder konkav (mindestens ein Innenwinkel ist größer als 180 ) sein. Man unterscheidet in der Ebene liegende (planare) und im Raum liegende (nicht-planare) Polygone.

14 Zur Definition eines Polygons Ein Polygon ist eine ebene geometrische Figur, die durch einen geschlossenen Streckenzug gebildet und/oder begrenzt wird. Schneiden (berühren) sich die Kanten nicht nur in den Eckpunkten, bezeichnet man das Polygon als überschlagen. Liegt keine Selbstüberschneidung vor, bezeichnet man das Polygon als einfach. Nicht überschlagene Vielecke können konvex (alle Innenwinkel sind kleiner als 180 ) oder konkav (mindestens ein Innenwinkel ist größer als 180 ) sein. Man unterscheidet in der Ebene liegende (planare) und im Raum liegende (nicht-planare) Polygone.

15 Konvex vs. konkav Konvex Konkav Jeder Innenwinkel <180 Einer oder mehrere der Innenwinkel >180

16 Konvex vs. konkav Genügt ein Wächter immer für konvexe Polygone?...für konkave Polygone? Konvex Konkav Jeder Innenwinkel <180 Einer oder mehrere der Innenwinkel >180

17 Konvex vs. konkav Konvex Konkav Ein Wächter genügt immer Ein Wächter genügt nicht immer...aber wann?

18 1. Aufgabe Bestimme für welche Eckenanzahl ein konkaves Polygon immer von einem Wächter komplett überwacht werden kann.

19 1. Aufgabe umformuliert Bestimme für welche Eckenanzahl ein konkaves Polygon immer von einem Wächter komplett überwacht werden kann. Es hilft, einfache Beispiele zur Aufgabe sich anzuschauen und die Aufgabe in kleinere, einfacher machbare Aufgaben aufzuteilen. Zeichne den Grundriss eines konkaven Museums mit n = 4 Ecken. Wie viele Wächter brauchst du im schlimmsten Fall? Was wenn n = 5, n = 6 oder n = 7?

20 Wann gilt ein Ort als überwacht? Ein Wächter an Stelle x überwacht den Ort y wenn das Segment xy nirgendwo die Fläche außerhalb des Polygons durchläuft. Wir möchten die kleinstmögliche Anzahl an Kameras entscheiden, damit das ganze Polygon überwacht ist.

21 Museumsgrundrisse Einfache planare Polygone Konvexe Polygone Konkave Polygone

22 Museumsgrundrisse Einfache planare Polygone Konvexe Polygone ein Wächter reicht Konkave Polygone

23 Museumsgrundrisse Einfache planare Polygone Konvexe Polygone ein Wächter reicht Konkave Polygone wie viele könnten wir da gebrauchen?

24 Aufgaben 4 und 5 a) Entwerfe ein Grundriss eines Museums als Aufgabe für dein Sitznachbar. b) Bestimme die minimale Anzahl an Wächter (bzw. Kameras), die für das Museum, das dein Sitznachbar für dich entworfen hat, benötigt wird.

25 Also einen Grundriss entwerfen...

26 Also einen Grundriss entwerfen in Am besten GeoGebra benutzen (ein Polygon zeichnen), aber natürlich können die ersten Entwürfe mit Bleistift und Papier gemacht werden!

27 ...und das Museum sicher machen mit In GeoGebra kann man z.b. mit Geraden, Schnittpunkten und weiteren Polygonen, die Aufsichtsbereiche jeden Wächters bestimmen.

28 Arbeitsphase I. Ideen entwickeln Aufgaben 1-5 Falls es mit nicht klappt, dann mit der Hand zeichnen (bitte dann aber Lineal oder ähnliches benutzen, damit die Strecken gerade sind).

29 Museum-Grundrisse Einfache planare Polygone Konvexe Polygone ein Wächter reicht n Konkave Polygone 一 3 Wächter reichen für ein Museum mit n Ecken

30 Obere Grenze, aber... Dieses Museum hat 18 Ecken. Die obere Grenze liegt bei 18/3 = 6 Wächter Aber hier genügen immerhin 3 Wächter.

31 Im schlimmsten Fall... Dieses Museum hat 18 Ecken. Die obere Grenze liegt bei 18/3 = 6 Wächter, Und hier ist die Kondition tatsächlich scharf!

32 Satz von Chvátal: eine obere Abschätzung Václav (Vašek) Chvátal hat bewiesen, dass die obere Grenze der Anzahl an n Wächter für ein Polygon mit n Ecken 一 ist. 3

33 Chvátal s Beweis war kompliziert Václav (Vašek) Chvátal hat bewiesen, dass die obere Grenze der Anzahl an n Wächter für ein Polygon mit n Ecken 一 ist. 3 Steve Fisk hat seinen Beweis vereinfacht

34 Das Buch der Beweise Václav (Vašek) Chvátal hat bewiesen, dass die obere Grenze der Anzahl an n Wächter für ein Polygon mit n Ecken 一 ist. 3 Steve Fisk hat seinen Beweis vereinfacht und zwar so schön, dass er im Buch der Beweise erscheint.

35 Paul Erdős Václav (Vašek) Chvátal hat bewiesen, dass die obere Grenze der Anzahl an n Wächter für ein Polygon mit n Ecken 一 ist. 3 Steve Fisk hat seinen Beweis vereinfacht und zwar so schön, dass er im Buch der Beweise erscheint. Ronald Graham USA Paul Erdős Ungarn Fan Chung Taiwan

36 Zum Beweis von Steve Fisk Erster Schritt: Das einfachst-mögliche Museum hat drei Ecken.

37 Zum Beweis von Steve Fisk Erster Schritt: Das einfachst-mögliche Museum hat drei Ecken......und braucht nur einen Wächter in der Nähe eines der drei Ecken

38 Zum Beweis von Steve Fisk Nächster Schritt: Ein Polygon kann trianguliert werden Hier zum Beispiel: Zwei Museen, je trianguliert auf zwei verschiedene Weise

39 Zum Beweis von Steve Fisk Nächster Schritt: Ist das sicher? Jedes Polygon kann trianguliert werden Zwei Museen, je trianguliert auf zwei verschiedene Weise

40 Zum Beweis von Steve Fisk Nächster Schritt: Ist das sicher? Jedes Polygon kann trianguliert werden Das beweisen wir in Aufgabe 23 Zwei Museen, je trianguliert auf zwei verschiedene Weise

41 Zum Beweis von Steve Fisk Wir haben ein trianguliertes Polygon. Die Ecken des Polygons können gefärbt werden sodass jedes Eck eine von drei Farben nimmt und je zwei benachbarte Ecken stets unterschiedliche Farbe haben.

42 Zum Beweis von Steve Fisk Ein Polygon mit n Ecken... Schritt 1...ist triangulierbar......und 3-färbbar Schritt 2

43 Zum Beweis von Steve Fisk Ein Polygon mit n Ecken......ist triangulierbar... Schritt 1...und 3-färbbar Schritt 2 Beweis in Aufgabe 23 Beweis in Aufgabe 24

44 Zum Beweis von Steve Fisk Ein Polygon mit n Ecken... Schritt 1...ist triangulierbar......und 3-färbbar Schritt 2 Setze die Wächter nah zu den Ecken in der Farbe, die am seltensten vorkommt. n Die Anzahl dieser Ecken wird kleiner oder gleich 一 3 sein.

45 Zum Beweis von Steve Fisk Ein Polygon mit n Ecken... Schritt 1...ist triangulierbar......und 3-färbbar Schritt 2 Setze die Wächter bei den Ecken in der Farbe, die am seltensten vorkommt. n Die Anzahl dieser Ecken wird kleiner oder gleich 一 3 sein. Beweis in Aufgabe 18

46 Funktioniert das in konvexen Polygonen? Gut, besser, am Besten

47 Aufwärmung und Gruppenarbeit Teil II. um Ideen zu stabilisieren Teil III. um neue Ideen zu entwickeln Hier bitte unbedingt, die Aufgabe 18. machen Teil IV. erhält weitere Herausforderungen, die teilweise in Gruppenarbeit gemacht werden sollten.

48 Definitionen und ein Satz zum Teil IV. Definition. Sei P ein einfaches Polygon. Eine Diagonale ist ein offenes Liniensegment, das zwei Eckpunkte von P verbindet und vollständig in P liegt. Definition. Sei P ein einfaches Polygon. Eine Zerlegung von P in Dreiecke durch Diagonalen heißt Triangulierung von P. Da wir Triangulierungen bestimmen wollen, ist es günstig ihre Existenz zu zeigen und zu berechnen aus wievielen Dreiecken sie besteht. Satz. Jedes einfache Polygon gestattet eine Triangulierung und jede Triangulierung eines einfachen Polygons mit n Ecken besteht aus genau n 2 Dreiecken.

49 Allgemeine (starke) Induktion Es sei eine Aussage A zu beweisen, die von der natürlichen Zahl n abhängt, also A(n). 1. Induktionsverankerung/Induktionsanfang: Zu zeigen ist, dass A(n0) gilt. 2. Induktionsschritt: Wir nehmen an, dass die Aussage A(k) für alle k {n0,..., n} gilt. Zu zeigen ist, dass auch A(n + 1) richtig ist.

50 Hier gibt es viel mehr zu beachten als nur die ganze Fläche mit Licht zu fluten. Illustrationen: Herbert Bernstädt Bühnenbeleuchtung

51 Staubsaugerroboter Bedeckungsproblem Ameisenalgorithmus (bug algorithm) In der einfachsten Form wurde das Problem schon von Bauern gelöst: Bedeckende Spannbaum-Algorithmen (spanning tree covering) Evolutionäre Algorithmen (stochastische metaheuristische Optimierungsverfahren) Künstliche Intelligenz

52 Überwachungstechniken in Museen Vibrationssensoren Inventarnummer Haken zum Aufhängen Glaskasten Umwelt-Sensoren Riegelzäune Bewegungssensoren mit Alarm Bewegungssensoren ohne Alarm Überwachungskameras Brandmeldeanlage und Temperaturmessgeräte Alarmfenster Museumswächter

53 Neue Ideen Was wenn das Polygon Löcher hat? Was wenn es sich um ein Gefängnis handelt und wir es von außen beobachten müssen? Was wenn jeder Wächter sich stets entlang einer Wand bewegt und dabei von jedem Punkt der Wand aus sich umschauen kann? Was passiert in drei Dimensionen?

54 Vielen Dank für die Zusammenarbeit! TAKK!

55 Literatur Aigner & Ziegler (2010). Das Buch der Beweise. Springer Verlag. Burger & Starbird (2010). The Heart of Mathematics: An invitation to effective thinking. Wiley & Sons. Seminarmanuskripte (im Internet abrufbar) zum Thema Art Gallery Problem bzw. Museumswächter von Washington University, Universität Münster, TU München und HU Berlin.

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen Tobias Kyrion Inhaltsverzeichnis 1.1 Die Problemstellung....................... 1 2.1 Ein naiver Algorithmus...................... 2 3.1 Zerlegung in monotone Teilpolygone..............

Mehr

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie I Sebastian Redinger 01.07.2015 Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen CCW Polygone Picks Theorem Konvexe Hülle - Graham Scan - Jarvis March 2 Gliederung

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

Vier-Farben-Vermutung (1)

Vier-Farben-Vermutung (1) Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede

Mehr

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Mathematisches Institut II.06.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 3: Elementare Beweismethoden: Direkter Beweis,

Mehr

Geometrie der Polygone Diagonalen und Verbindungslinien Markus Wurster 1

Geometrie der Polygone Diagonalen und Verbindungslinien Markus Wurster 1 Geometrie der Polygone Teil 2 Diagonalen und Verbindungslinien Geometrie der Polygone Diagonalen und Verbindungslinien Markus Wurster 1 Die Diagonalen im Polygon Alle Diagonalen des Polygons Diagonalen

Mehr

Mathematische Theorien im kulturellen Kontext. Fläche eines Parabelsegments nach Archimedes

Mathematische Theorien im kulturellen Kontext. Fläche eines Parabelsegments nach Archimedes Seminar: Mathematische Theorien im kulturellen Kontext Thema: Fläche eines Parabelsegments nach Archimedes von: Zehra Betül Koyutürk Studiengang Angewandte Mathematik 27.01.2016 ARCHIMEDES Über das Leben

Mehr

Polygone - Bausteine der Computergrafik

Polygone - Bausteine der Computergrafik Polygone - Bausteine der Computergrafik Schülerseminar Florian Buchegger Johannes Kepler Universität Linz Dez 12, 2014 Wo werden Polygone verwendet? Welche wichtige Algorithmen gibt es? Outline Wo werden

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

6. Triangulation von Polygonen

6. Triangulation von Polygonen 1 6. Triangulation von Polygonen 2 Problemstellung 3 Problemstellung 4 Problemstellung 5 Problemstellung 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der

Mehr

Am kleinsten, größten, schnellsten - Extreme in der Mathematik

Am kleinsten, größten, schnellsten - Extreme in der Mathematik Am kleinsten, größten, schnellsten - Extreme in der Mathematik Tag der Mathematik Carl von Ossietzky Universität Oldenburg Daniel Grieser 21. November 2012 Überblick Extrema in der Natur Extremalprobleme

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23 Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

Die Mittelsenkrechte im deduktiven Aufbau

Die Mittelsenkrechte im deduktiven Aufbau Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

DOWNLOAD. Freiarbeit: Günther Koch. Materialien für die 7. Klasse in zwei Differenzierungsstufen. Downloadauszug aus dem Originaltitel: AOL-Verlag

DOWNLOAD. Freiarbeit: Günther Koch. Materialien für die 7. Klasse in zwei Differenzierungsstufen. Downloadauszug aus dem Originaltitel: AOL-Verlag DOWNLOAD Günther Koch Freiarbeit: Materialien für die 7. Klasse in zwei Differenzierungsstufen Downloadauszug aus dem Originaltitel: 1 Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

Rechtwinklige Dreiecke

Rechtwinklige Dreiecke Rechtwinklige Dreiecke 1. a) Verschiebe die Ecke C 1, bis du den grünen Winkel bei C 1 auf 90 schätzt. b) Verschiebe die Ecken C 2 bis C 9 ebenso, bis du die Winkel auf 90 schätzt. c) Kontrolliere deine

Mehr

Das Problem der dreizehn Kugeln

Das Problem der dreizehn Kugeln Clemens Hauser Das Problem der dreizehn Kugeln Vortrag im Seminar für Didaktik der Mathematik an der Universität Freiburg 1.12.2009 Kepler (1611): Dichteste Kugelpackung (?) Kepler (1611): Dichteste Kugelpackung

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

(Max Bill) . Gilt A 0 A 4 A 2

(Max Bill) . Gilt A 0 A 4 A 2 19 3. Reguläre Polygone (Max Bill) Definitionen: 1. Ein Polygon ist ein Streckenzug. Dieser kann geschlossen oder offen sein. (Wir betrachten nur ebene Polygone.) Die Ecken werden aufeinander folgend nummeriert:

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?)

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) 12.10.2009, Oliver Seif nach einer Vorlage von H.Hischer/A. Lambert 1 Das Werkzeug Computer (dynamische Geometriesoftware,

Mehr

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier 4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.

Mehr

Computer-Graphik I Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik I Verallgemeinerte Baryzentrische Koordinaten lausthal omputer-raphik I Verallgemeinerte Baryzentrische Koordinaten. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Verallgemeinerungen der baryzentr. Koord. 1. Was macht man im 2D bei

Mehr

PROJEKT / SEMINAR DIGITALE FABRIKATION DI

PROJEKT / SEMINAR DIGITALE FABRIKATION DI CONTOURLINES Applikation zur digitalen Fabrikation von Höhenschicht-Modellen PROJEKT / SEMINAR DIGITALE FABRIKATION DI Martin Emmerer Matr.Nr.95 30 952 1 Zielsetzung Höhenlinien, auch Isohypsen, Niveaulinien

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Geometrie, Einführung

Geometrie, Einführung Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Aufgaben Klassenstufe 5

Aufgaben Klassenstufe 5 Aufgaben Klassenstufe 5 Oma Streifstrumpf strickt für Peppi neue Socken. Peppi hat drei Lieblingsfarben und zwar rot, gelb und blau, die alle in den drei Streifen vorkommen sollen. a) Die Oma hat Wolle

Mehr

DOWNLOAD. Geometrisches Zeichnen: Grundlagen und Beziehungen. Erstes Zeichnen mit Geräten: parallele, senkrechte und sich schneidende Linien

DOWNLOAD. Geometrisches Zeichnen: Grundlagen und Beziehungen. Erstes Zeichnen mit Geräten: parallele, senkrechte und sich schneidende Linien DOWNLOAD Ralph Birkholz Geometrisches Zeichnen: Grundlagen und Beziehungen Erstes Zeichnen mit Geräten: parallele, senkrechte und sich schneidende Linien Downloadauszug aus dem Originaltitel: Das Werk

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Polygone, Kaputzen und Dreiecke

Polygone, Kaputzen und Dreiecke Einleitung zur Aufgabe Polygone, Kaputzen und Dreiecke Wiskunde B-Tag 23 November 2007 Der Wiskunde B-Tag wird unterstützt durch Einleitung Innen und Außen als Beispiel Ihr spaziert aus dem Haus und kommt

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Peripheriewinkelsatz (auch Umfangswinkelsatz)

Peripheriewinkelsatz (auch Umfangswinkelsatz) Peripheriewinkelsatz (auch Umfangswinkelsatz) Für die Einführung des Peripheriewinkelsatzes (auch Umfangwinkelsatz) machen wir uns mit dem Satz des Thales vertraut. Der Satz des Thales besagt, dass Dreiecke,

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013 Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 7, 8 12 Aufgabe 1 (5+++5+2 Punkte). Meister Hora hat eine kuriose Uhr: Bei dieser springt der Stundenzeiger nicht wie üblich jede

Mehr

Lernbereiche (Stunden) Inhalt Seite Inhalt Seite. Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen. Kapitel 1: Gebrochene Zahlen

Lernbereiche (Stunden) Inhalt Seite Inhalt Seite. Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen. Kapitel 1: Gebrochene Zahlen Lehrplan Mittelschule Mathematik heute (ISBN 978-3-507-81009-9) Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen 6 Lernbereich 1: Gebrochene Zahlen (35) Kapitel 1: Gebrochene Zahlen 8 Kapitel

Mehr

Kompositionsgeometrie in Renaissance-Gemälden

Kompositionsgeometrie in Renaissance-Gemälden Maler und Malerinnen überlassen nicht viel dem Zufall. Sie machen sich Gedanken über den Aufbau ihrer Bilder. Sie machen sich Gedanken über formale und farbliche Elemente. Das nennt man Komposition. In

Mehr

Beispiellösungen zu Blatt 114 (Klasse 5 8)

Beispiellösungen zu Blatt 114 (Klasse 5 8) µ κ Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 114 (Klasse 5 8) Indem wir ein Blatt Papier zweimal falten, können wir eine seiner Seiten vierteln. Um

Mehr

Wie viele Geraden werden von n Punkten aufgespannt?

Wie viele Geraden werden von n Punkten aufgespannt? Fakultät für Mathematik und Informatik Lehrgebiet Diskrete Mathematik und Optimierung Prof. Dr. Winfried Hochstättler Sommersemester 009 Seminar zur Diskreten Mathematik Ausarbeitung der Fragestellung:

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel: Download Sandra Sommer/Markus Sommer Selbstkontrollaufgaben Mathematik für die 3.-4. Klasse Geometrie Selbstkontrollaufgaben Mathe 3. /4. Klasse Grundschule Sandra Sommer Markus Sommer 65 lehrplanrelevante

Mehr

Leica 3D Disto CAD-Werkzeuge

Leica 3D Disto CAD-Werkzeuge Leica 3D Disto CAD-Werkzeuge Wann werden sie benötigt? um Fenster, Türen und andere Wanddetails zu messen um verdeckte Punkte zu messen 90 um Ecken von genau 90.000 zu erzeugen 45 um Sollmaße zu erzeugen

Mehr

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht.

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht. MATERIAL 2 Blatt farbiges Papier (ideal Silber oder Weiß) Schere Lineal Stift Kleber Für das Einhorn benötigst du etwa 16 Minuten. SCHRITT 1, TEIL 1 Nimm ein einfarbiges, quadratisches Stück Papier. Bei

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Tafelbild zum Einstieg

Tafelbild zum Einstieg Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung

Mehr

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Hans Walser, [ a] Polygone im Raum Anregung: Chr. W., B.

Hans Walser, [ a] Polygone im Raum Anregung: Chr. W., B. Hans Walser, [20080316a] Polygone im Raum Anregung: Chr. W., B. 1 Worum es geht Wir untersuchen die Winkelsumme von geschlossenen räumlichen Polygonen. Diese Winkelsumme ist kleiner oder gleich der Winkelsumme

Mehr

Einfache Parkettierungen

Einfache Parkettierungen Einfache Definitionen: Unter einer Parkettierung (auch Pflasterung oder Parkett genannt) verstehen wir eine überlappungsfreie Überdeckung der Ebene durch Polygone. Ein Polygon (auch Vieleck oder n-eck

Mehr

Mathematik Grundlagenfach. Lukas Fischer 180 Minuten

Mathematik Grundlagenfach. Lukas Fischer 180 Minuten Schriftliche Maturitätsprüfung 015 Kantonsschule Alpenquai Luzern Fach Mathematik Grundlagenfach Prüfende Lehrperson Lukas Fischer (lukas.fischer@edulu.ch) Klasse 6Wa Prüfungsdatum 6. Mai 015 Prüfungsdauer

Mehr

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 -

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 - Mathematik B-Tag 2015 Freitag, 20. November, 8:00 15:00 Uhr Um die Ecke Mathematik B-Tag 2015 - Seite 1 von 9 - Erkundung 1 (Klavier) Ein Klavier soll durch einen 1 m breiten Gang um die Ecke (rechter

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Vorlesungen vom 5.Januar 2005

Vorlesungen vom 5.Januar 2005 Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Konvexe Mengen mit konstanter Breite

Konvexe Mengen mit konstanter Breite PROSEMINAR KONVEXE MENGEN Konvexe Mengen mit konstanter Breite Christoph Buck Vortrag vom 11.05.2005 ProseminarWS 2004/2005 bei Prof. Dr. E. Oeljeklaus Universität Bremen 1 Dieser Vortrag im Rahmen des

Mehr

Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Schnittpunkt 9 Klettbuch

Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Schnittpunkt 9 Klettbuch Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Klettbuch 978-3-12-742591-8 Stoffverteilungsplan Schnittpunkt Band 9 Schule: 978-3-12-742591-8 Lehrer: - vergleichen Vorgehensweisen

Mehr

Färbungsbeweise. 1 Aufgaben

Färbungsbeweise. 1 Aufgaben Schweizer Mathematik-Olympiade smo osm Färbungsbeweise Aktualisiert: 1. Dezember 2015 vers. 1.0.0 1 Aufgaben Einstieg 1.1 Kann man überlappungsfrei und ohne Löcher die Figuren auf den Bildern unten mit

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) Der fünfstelligen Zahl F = 3ab1 sind die Zehner- und die Tausenderstelle abhanden gekommen Alles, was man von a, b {0, 1,, 9} weiß, sind die beiden folgenden unabhängigen Bedingungen:

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

Darstellende Geometrie mit CAD Dreidimensionales Konstruieren

Darstellende Geometrie mit CAD Dreidimensionales Konstruieren Darstellende Geometrie mit CAD Dreidimensionales Konstruieren Klaus Holländer FH Giessen-Friedberg Zu den klassischen Werkzeugen der Darstellenden Geometrie, dem Zirkel und Lineal, ist vor etwa zwanzig

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Maurits Cornelis Escher ( ) Unmögliche Figuren. Parkettierungen. Kurzbiographie. Lehrerfortbildung: Geschichte(n) der Mathematik

Maurits Cornelis Escher ( ) Unmögliche Figuren. Parkettierungen. Kurzbiographie. Lehrerfortbildung: Geschichte(n) der Mathematik Maurits Cornelis Escher (1898-1972) Kurzbiographie Schon früh an Kunst interessiert Studium der dekorativen Künste Lebensmittelpunkt im Süden Europa Lehrerfortbildung: Geschichte(n) der Mathematik Inspiration

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014 Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen Rauter Bianca (101038) Graz, am 10. Dezember 014 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungen von Zahlen - Beweise durch Muster

Mehr

Hallo Welt für Fortgeschrittene. Geometrie I. Lukas Batz. Informatik 2 Programmiersysteme Martensstraße Erlangen

Hallo Welt für Fortgeschrittene. Geometrie I. Lukas Batz. Informatik 2 Programmiersysteme Martensstraße Erlangen Hallo Welt für Fortgeschrittene Geometrie I Lukas Batz Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Vektoren Geradengleichungen Skalar- und Kreuzprodukt Abstand

Mehr

SFZ Mathe. Info für Mathereferendare. W.Seyboldt SFZ 14/15

SFZ Mathe. Info für Mathereferendare. W.Seyboldt SFZ 14/15 SFZ Mathe Info für Mathereferendare 1 Ziele Mathegruppe SFZ NICHT: Mathe-Plus, d.h. mehr Algorithmen, SONDERN: Mathematisches Denken, Zusammenhänge entdecken, Verbindungen herstellen. Teilnahme an Wettbewerben

Mehr

Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.

Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt. Fachbereich Mathematik Tag der Mathematik 0. Oktober 00 Klassenstufen 7, 8 Aufgabe (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.

Mehr

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen

Mehr

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner.

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner. Marco Bettner Erik Dinges Mathe an Stationen 3 Achsensymmetrie Handlungsorientierte Materialien für Klasse 3 Downloadauszug aus dem Originaltitel: Grundschule u Marco Bettner Erik Dinges Mathe an Stationen

Mehr

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Zusammenfassung Verallgemeinerungen VD Segmente/Pledge Algorithmus

Zusammenfassung Verallgemeinerungen VD Segmente/Pledge Algorithmus Zusammenfassung Verallgemeinerungen VD Segmente/Pledge Algorithmus Elmar Langetepe University of Bonn Algorithmische Geometrie VD Segmente/Pledge 29.06.11 c Elmar Langetepe SS 11 1 Voronoi Diagramm von

Mehr

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr