Leitfaden zu den Indexkennzahlen der Deutschen Börse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Leitfaden zu den Indexkennzahlen der Deutschen Börse"

Transkript

1 Letfade zu de Idexkezahle der Deutsche Börse Verso.5

2 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete Idzes scherzustelle, wrd de Zusammestellug ud Berechug der Aktedzes auf Bass des vorlegede Letfades mt größtmöglcher Sorgfalt durchgeführt. De Deutsche Börse AG gewährlestet hgege cht de fehlerfree Berechug der Idzes sowe der sostge für de Zusammestellug ud Berechug der Idzes erforderlche Kezffer etspreched dem vorlegede Letfade. Se übermmt kee Haftug für drekte oder drekte Schäde, de aus eer fehlerhafte Berechug der Idzes oder der sostge Kezffer etstehe. Etscheduge über de Art ud Wese der Berechug sowe über de Zusammestellug hrer Aktedzes trfft de Deutsche Börse AG grudsätzlch Abstmmug mt dem Arbetskres Aktedzes ach bestem Wsse ud Gewsse. De Deutsche Börse AG haftet cht für Schäde de aus de vorgeate Etscheduge etstehe. De Aktedzes der Deutsche Börse AG sd kee Empfehlug zur Kaptalalage oder eem sostge Ivestmet. Isbesodere st mt der Zusammestellug ud Berechug der Idzes kee Empfehlug der Deutsche Börse AG zum Kauf oder Verkauf ezeler oder eem Idex zusammegefasster Wertpapere verbude.

3 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page 3 Ihaltsverzechs Eletug...4 Volatltät Korrelatoskoeffzet Beta-Faktor Der drekte Draht zur Deutsche Börse...0

4 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page 4 Eletug De Deutsche Börse ermttelt ud veröffetlcht täglch de Volatltät für de de Idzes, M, S ud Tec ethaltee Werte. Außerdem werde Korrelatoe ud Beta-Faktore zum jewelge Idex agegebe. Volatltäte ud Korrelatoe werde für ee Zetraum vo 30 ud 50 Börsetage, Beta-Faktore für ee Zetraum vo 50 Börsetage berechet. Im Folgede werde de Berechuge deser Kezahle beschrebe ud am Ede durch e ausführlches Bespel veraschaulcht. Zur Berechug der Kezahle werde beregte Kurse verwedet, de bespelswese Dvdede- Ausschüttuge ud Newert-Umstelluge berückschtge. Wrd bspw. der Newert eer Akte vo 50 auf 5 umgestellt, so werde de Kurse ab dem Tag deser Veräderug mt dem Faktor (c - Faktor) 0 multplzert. Für de Berechuge der Kezahle werde logarthmerte Tagesredte verwedet. Dese werde als Logarthmus des Quotete aus aktuellem Tages- ud Vortagswert der beregte Kurse ermttelt. Für de Idexschlussstäde werde jewels de zuletzt festgestellte Xetra -Prese verwedet. Für de Berechug der Kezahle Beta-Faktor ud Korrelatoskoeffzet werde ebe der Volatltät eer Akte auch och de Volatltät des Idex, sowe de Kovaraz zwsche Akte ud Idex beötgt (jewels aualserter Form). Herfür gelte folgede Formel: Akte Idex ( Akte Akte) ( Idex Idex) Cov Idex,Akte 50 ( Idex Idex) ( Akte Akte) Beschrebug der Varable: Azahl Tagesredte (basered auf +) Berechugszetpukt Idex,...,Idex Log. Idexredte (z. B.: Idex l ( / - )) Akte,...,Akte Log. Kursredte (z. B.: Akte l (Aktekurs / Aktekurs - )) Idex Mttelwert der logarthmerte Idexredte Idex,... Idex Akte Mttelwert der logarthmerte Kursredte Akte,... Akte, M, S, Tec ud Xetra sd egetragee Marke der Deutsche Börse AG.

5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page 5 Volatltät De Volatltät beschrebt de Schwakugstestät ees Aktekurses um see Mttelwert eem feste Zetraum. Se st damt geeget, das Gew- oder Verlustpotetal eer Akte abzuschätze, we uterstellt wrd, dass de vergagehetsbezogee Werte auch für küftge Etwckluge Gültgket habe. De Volatltät eer Akte wrd durch folgede Formel berechet: Akte 50 ( Akte Akte) Vo besoderer Bedeutug st de Kezahl Volatltät m Rahme der Bestmmug vo Optosprese. Als Maß für de Schwakugsbrete der Kurse brgt se zum Ausdruck, wefer zuküftg mt eer deutlche Veräderug ees Wertes zu reche st.

6 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page 6 3 Korrelatoskoeffzet Der Korrelatoskoeffzet st e Maß für de Stärke ud Rchtug des leare Zusammehags zwsche de Verläufe zweer Zetrehe. Auf de Wertpapersektor übertrage heßt des, dass der Zusammehag zwsche dem Kursverlauf eer Akte ud dem eer Bezugsrehe m Allgemee eem marktrepräsetatve Aktedex berechet wrd. De Deutsche Börse AG berechet de Korrelatoskoeffzete der Ttel aus, M, S ud Tec bezoge auf de jewelge Idex. De Formel für de Korrelatoskoeffzete r eer ezele Akte zum Idex m Zetraum vo Tage lautet: r Idex,Akte Cov Idex Idex,Akte Akte ( Idex Idex) ( Akte Akte) ( Idex Idex) ( Akte Akte) Der Korrelatoskoeffzet ka Werte zwsche ud + aehme. Hat ee Akte ee Korrelatoskoeffzete zum Idex vo +, so bedeutet das, dass de Zetrehe ee postv leare Zusammehag habe. Kokret heßt das: der Kurs der Akte verädert sch mmer um geau deselbe Prozetsatz we der Idex. Je kleer der Koeffzet st, desto schwächer st deser Zusammehag. Be eem Korrelatoskoeffzete vo 0 bewegt sch der Kurs der Akte vollkomme uabhägg vom Idex. Im seltee Fall ees egatve Koeffzete verläuft der Kurs der Akte etgegegesetzt zum Idex, womt ee Ivestto dese Akte de Möglchket des Rskoausglechs betet.

7 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page 7 4 Beta-Faktor Der Beta-Faktor st e Maß für de Kurssestvtät eer Akte gegeüber Idexveräderuge. Der Faktor beschrebt, welchem Ausmaß der Kurs der Akte de Wertetwcklug des Idex achvollzeht. Der Beta-Faktor eer ezele Akte zum Idex wrd durch folgede Formel berechet: β Idex,Akte Cov Idex,Akte Idex ( Idex Idex) ( Akte Akte) ( Idex Idex) Ist der Beta-Faktor größer (kleer) als es, so reagert de Akte m Utersuchugszetraum überproportoal (uterproportoal) auf Äderuge des Idex. Ist also z. B. der um 0 Prozet gestege, so gbt e Beta-Faktor vo. a, dass der Wert der Akte m selbe Zetraum um Prozet gestege st. Be eem Beta-Faktor vo 0.8 wäre de Akte ur um 8 Prozet gestege. Hohe Beta-Faktore gebe also a, welche Akte Zete ees stegede Idex überproportoale Gewchace bete. Deselbe Akte berge allerdgs Zete ees fallede Idex auch e höheres Rsko. Der Beta-Faktor sollte stets zusamme mt dem Korrelatoskoeffzete betrachtet werde.

8 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page 8 Bespel: Verglech vo Semes zum -Idex m Zetraum (30 Börsetage) Datum Kurs Semes (uberegt) c -Faktor Kurs Semes (beregt) ysemes y δ y Semes Semes y Semes δ y y δ Semes δ δ δ Semes ,95 6,95 49, ,60 6,60 490,50-0, ,0004-0, ,000 0,0000 0, , ,69 6,69 458,4-0,0464-0, ,0447-0,0083 0,000 0,000 0, ,7 6,7 4300,94 0, , , ,009 0, , , ,59 6,59 436,40 0,0053 0, , ,008 0,0000 0, , ,53 6, ,37-0, ,0009-0, ,0086 0, , , ,88 6,88 458,0-0,0045-0,053-0,007-0,09 0,0003 0,000 0, ,40 6,40 408,8-0, ,06-0,0076-0,038 0, , , ,08 6,08 4,4-0,0053 0, , ,0000 0, , , ,00 6,00 43,36-0,003 0, ,004 0,0040 0, , , ,58 6,58 445,5 0, ,0030 0, ,0034 0,0000 0, , ,98 6,98 450,7 0, ,00 0, , , , , ,95 6,95 445,55-0, ,00-0,0003-0,0098 0, , , ,58 6,58 40,43-0, , ,0058-0, , , , ,0 6,0 43,70-0,0094-0,0060-0, ,0036 0,0000 0, , , 6, 40,89 0,0064-0,008 0,008-0, ,0000 0, , ,85 6,85 433,95 0,087 0, ,005 0, , ,0005 0, ,80 6,80 44, -0,0008-0, , , , , , ,60 63,60 46,4 0,087 0, ,0889-0,000-0,0000 0, , ,40, ,63 40,8-0,0535-0, ,058-0,0043 0, ,0003 0, ,84, ,06 454,85-0,0096 0,054-0, ,078-0,000 0, , ,35, ,58 479,97 0, , ,0085 0,005 0, , , ,8, ,04 496,3-0, ,0038-0, , , , , ,6, ,8 48,64-0,000-0,0034-0,099-0,0049 0, , , ,8, , ,8 0,0095 0,0337 0, ,06 0,000 0, , ,70, ,9 4366,35 0, ,006 0, , , , , ,40, ,6 437,39-0, ,005-0, , , ,0000 0, ,54, , ,5 0,003-0,0048 0,0049-0, ,0000 0,0000 0, ,53, ,74 434,0-0,0007-0,0056 0,0000-0, , , , ,40, , ,80 0,047 0,0049 0,0445 0, ,0004 0,000 0,00009 Summe -0, ,08 0, , ,007 Mttelwert -0,0008 0,00076

9 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page 9 Vorgehe zur Ermttlug der Kezahle: De Spalte ud 4 ethalte de Zetrehe für Semes ud. Am gab es ee Dvdedezahlug für Semes, der daraus abgelete Korrekturfaktor wrd zur Ermttlug des beregte Kurses heragezoge (Spalte 3). Im ächste Schrtt werde u de täglche Veräderuge der Zetrehe ermttelt. Am Bespel des gescheht des durch folgede Berechug: y Semes l Alle täglche Veräderuge für Semes ud sd de Spalte 5 ud 6 ausgewese. Zudem ka dese Spalte der Mttelwert der Veräderuge etomme werde. Deser Mttelwert wrd m ächste Schrtt vo de Redte abgezoge (Spalte 7 ud 8). I de Spalte 9- werde ur de Produkte aus de Spalte 7 ud 8 gebldet. Aus dere Summe köe drekt de Kezahle abgeletet werde: Volatltäte: 50 Semes Für de Berechug des β-faktors ud der Korrelato wrd außerdem beötgt: Cov , Semes Korrelato: r , Semes Ierhalb deses Bespels wrd der β-faktor für ee Zetraum vo 30 Tage berechet. b-faktor: β , Semes 0.8 De Deutsche Börse berechet de β-faktore für ee Zetraum vo 50 Tage.

10 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page 0 5 Der drekte Draht zur Deutsche Börse Ausküfte zu Kurse ud adere Marktdate Market Data & Aalytcs Customer Servce Tel: Fax: E-Mal: Kurs- ud Idexlzeze Market Data & Aalytcs Tel: Fax: E-Mal: Publkatoe Publcato Hotle Tel: Fax: E-Mal: Iteret Postadresse Deutsche Börse AG Frakfurt / Ma

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Investmentfonds Kennzahlen- berechnung

Investmentfonds Kennzahlen- berechnung Ivestmetfods Kezahle- berechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 0.0.2007 Ivestmetfods - Kezahleberechug 2 Ivestmetfods - Kezahleberechug Ihalt erformace 4. Berechug der erformace

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Frequently Asked Questions FAQ. Stand: 1. Januar KGAST Immo-Index

Frequently Asked Questions FAQ. Stand: 1. Januar KGAST Immo-Index Stad: 1. Jauar 217 KGAST Immo-Idex KGAST Immo-Idex-Famle FREQUENTLY ASKED QUESTIONS Was behaltet der KGAST Immo-Idex? De KGAST Immo-Idex-Famle umfasst ee Hauptdex ud dre Subdzes. Der KGAST Immo- Idex als

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt?

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt? Klausur Wrtschaftsstatstk. [ Pukte] E Uterehme hat folgede Date ermttelt: Moat Gelestete Arbetsstude Lohkoste pro Arbetsstude Jauar 86.400 0,06 Februar 75.000 3,0 März 756.000 4,47 Aprl 768.000,53 Ma 638.400

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen. Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE)

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE) Stoffwerte vo Flüssgkete Oberflächespaug (PHYWE) Zel des Versuches st, de Platzbedarf ees Ethaol-Moleküls der Grezfläche zwsche Dapfphase ud Lösug aus der Kozetratosabhäggket der Oberflächespaug be wässrge

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Ermittlung der Höhe der Förderung für Einnahmen schaffende Projekte, deren Gesamtkosten 1 Million EUR übersteigen, die Nettoeinnahmen erzeugen

Ermittlung der Höhe der Förderung für Einnahmen schaffende Projekte, deren Gesamtkosten 1 Million EUR übersteigen, die Nettoeinnahmen erzeugen Ermttlug der Höhe der Förderug für Eahme schaffede Projekte, dere Gesamtkoste 1 Mllo EUR überstege, de Nettoeahme erzeuge 1. Erklärug des Verfahres Auf Grudlage der Ermttlug des sog. Fazerugsdefzt ud der

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Investition und Finanzierung Skript III

Investition und Finanzierung Skript III Ivestto ud Fazerug Skrpt III zuletzt geädert am: 05.05.03 Ivestto ud Fazerug Skrpt III Quelle: Vorlesug Ivestto ud Fazerug 6. Semester, FH Erfurt, Prof. Dr. Waldhelm Copyrght 2003 BSTM Sete Alle Agabe

Mehr

Fehlerrechnung im Praktikum

Fehlerrechnung im Praktikum Fehlerrechug m Pratum Pratum Phsalsche Cheme (A. Dael Boese) I chts zegt sch der Magel a mathematscher Bldug mehr, als eer überbertrebe geaue Rechug. Carl Fredrch Gauß, 777-855 Themegebete Utertelug vo

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern AMMO Berchte aus Forschug ud Techologetrasfer Etwcklug eer Dsatcherfukto zur Überrüfug vo Nomerugsmege der Betrebsführug vo Erdgassecher Prof. Dr. sc. tech. Dr. rer. at. R. Ueckerdt Dr.Ig. H.W. Schmdt

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Lösungen. Lösung zu d):

Lösungen. Lösung zu d): Löuge Löug zu a De Date chee ch äherugwee etlag eer Gerade potoert zu e. Da lät cho recht gut vermute, da e learer Zuammehag vorhade e köte. Löug zu b We e Ateg/ee Abahme der Deutche Bak Akte auch zu eem

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß Thema Zetrehe Statstk - Neff INHALT. Zetreheaalyse, Tred Leare Regressosaalyse mt eem Eflussfaktor X = "Zet" De tredberegte Sasoschwakuge e = s = y ŷ De mttlere Sasoschwakuge s j k k = = s De rreguläre

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

W D P. Sebastian Müller, Gerhard Müller. Sicherheits-orientiertes Portfoliomanagement. Heft 09 / 2005

W D P. Sebastian Müller, Gerhard Müller. Sicherheits-orientiertes Portfoliomanagement. Heft 09 / 2005 Fachberech Wrtschaft Faculty of Busess Sebasta Müller, Gerhard Müller Scherhets-oretertes Portfolomaagemet Heft 09 / 2005 W D P Wsmarer Dskussospapere / Wsmar Dscusso Papers Der Fachberech Wrtschaft der

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Peter Hager: Eine kleine mathematische Auffrischung

Peter Hager: Eine kleine mathematische Auffrischung Peter Hager: Ee klee mathematsche Auffrschug Überscht Überscht... 1 Formel ud Bespele... 1 Lteraturhwes... 2 1. Eführug... 2 2. Zseszsrechug... 2 2.1. Edwert... 2 2.2. Barwertermttlug... 3 2.3. Zssatzermttlug...

Mehr

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält.

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält. Parameterschätzuge Fachhochschule Jea Uversty of Appled Sceces Jea Oft st der Vertelugstyp eer Zufallsgröße X bekat, ur de Parameter sd ubekat. Da erfolgt hre Schätzug aus eer Stchprobe. Ma uterschedet

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Induktive Statistik. Statistik-Kurs

Induktive Statistik. Statistik-Kurs Idukve Sask Deskrve Sask Sask-Kurs Idukve Sask Im Allgemee dee Idexzahle dazu Aussage über Grue verschedeer aber ählcher Merkmale zu mache. I de Wrschafswsseschafe werde m Idexzahle Verhälsse zwsche eem

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Zusatz zur Betriebsanleitung

Zusatz zur Betriebsanleitung Atrebstechk \ Atrebsautomatserug \ Systemtegrato \ Servces Zusatz zur Betrebsaletug Getrebe Typerehe R..7, F..7, K..7, S..7, SIROLAN W Getrebe R..7, F..7, K..7 mt Flaschkupplug Ausgabe 10/2011 19318405

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Physikalisch-Technische Bundesanstalt, Braunschweig

Physikalisch-Technische Bundesanstalt, Braunschweig Üerscht üer essuscherhetserechuge vo der Darstellug der Ehet des Drehmometes üer de Wetergae s h zur Aedug ud Bespel eer Ope-ource-Aedug dafür Drk Röske Physkalsch-Techsche Budesastalt, Brauscheg Darstellug

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

1. Erklärung des Verfahrens

1. Erklärung des Verfahrens Ermttlug der Höhe der Förderug für Eahme schaffede Projekte, dere Gesamtkoste 1 Mllo EUR überstege ud dere Nettoeahme vorab festgelegt werde köe 1. Erklärug des Verfahres Auf Grudlage der Ermttlug der

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Eplzte Defto Reursve Defto 4. Gleder eer vorher deferte Folge bereche E Gled Mehrere Gleder 6 4 5 4.3 Ee Folge defere ud ege hrer

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alteratve Darstellug des -Stchprobetests für Atele DCF CF Total 111 11 3 Respose 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Respose No Respose Total absolut DCF 43 68 111 CF 6 86 11 69 154 3 Be Gültgket

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Statistische Kennzahlen für die Streuung

Statistische Kennzahlen für die Streuung Statstsche Kezahle für de Streuug Ordale Date,..., W X,,..., WX {(j) j,..., J} () < () < < (J) {(),...,(J)} (3) () 3 () Geordete Lste k X (k) () () 3 () Smpso s D ud H() sd awedbar, allerdgs wrd Iformato

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 0.00 Harry Zgel 99-006, EMal: HZgel@aol.com, Iteret:

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 145

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 145 Mahemer Mauskrpte zu Rskotheore, Portfolo Maagemet ud Verscherugswrtschaft Nr. 45 Methode der rskobaserte Kaptalallokato m Verscherugs- ud Fazwese vo Peter Albrecht ud Sve Korycorz Mahem 03/2003 Methode

Mehr

Klausur Betriebswirtschaftslehre PM/B

Klausur Betriebswirtschaftslehre PM/B Isttut für Fazwrtschaft, Bake ud Verscheruge, Karlsruher Isttut für Techologe Klausur Betrebswrtschaftslehre PM/B Achtug: Ihalte der Vorlesug köe Zukuft ggf. cht mehr kosstet mt de Ihalte deser Klausur

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr