INADEQUATE 13 C, 13 C-COSY

Größe: px
Ab Seite anzeigen:

Download "INADEQUATE 13 C, 13 C-COSY"

Transkript

1 INADEQUATE 13 C, 13 C-COSY Die bisher diskutierten Korrelationsmethoden beruhen auf Protonen. Da das eigentliche Skelett eines organischen Moleküls das Kohlenstoffgerüst ist, wäre es in einigen Fällen hilfreich, wenn man direkt Konnektivitäten von C-Atomen durch Korrelations-Spektroskopie ermitteln könnte. Diesem Ziel dient die INADEQUATE-Technik. INADEQUATE: Incredible Natural Abundance DoublE QUAntum Transfer Experiment Dieser Experimenttyp ist alles andere als inadequate (unangemessen). Er macht sich Doppelquantenübergänge zu Nutze (s. auch DEPT/HMQC). Die direkte Erzeugung von DQ ist quantenmechanisch verboten (Δm wäre 1). Dennoch können diese mit Hilfe geeigneter Pulsfolgen über quantenmechanisch erlaubte Einquantenübergänge dargestellt werden. Leider ist es nicht möglich, dies mit Hilfe der klassischen Vektoranalyse plausibel zu erklären. 1

2 Auch wenn die INADEQUATE-Technik grundsätzlich auf alle Spinsysteme und Kernsorten anwendbar ist, wollen wir sie hier im Zusammenhang mit der 13 C, 13 C- Korrelation diskutieren. β β E 1 X 1 A 1 βα E 2 E 3 α β A 2 X 2 α α Betrachten wir wieder ein Zweispinsystem, das ja die Minimalvoraussetzung für Korrelation ist. Wieder stellen die schwarzen Pfeile die Einquantenübergänge dar, die sich als NMR-Linien manifestieren. Es gibt aber auch einen Doppelquantenübergang (DQ; roter Pfeil), der direkt quantenmechanisch verboten ist (s.o.) und einer Frequenz ν A +ν X entspricht. E 4 2

3 13 C, 13 C-Korrelationen sind nur zwischen Kohlenstoffatomen möglich, die chemisch nicht äquivalent (ν A ν X ), beide 13 C und über chemische Bindungen miteinander verknüpft sind ( 1 J -> 13 C- 13 C, 2 J -> 13 C- 12 C- 13 C, 3 J -> 13 C- 12 C- 12 C- 13 C). Welche Möglichkeiten gibt es, wenn man bedenkt, dass das natürliche Vorkommen von 13 C nur 1.1% ist (der Rest ist 12 C)? 12 C- 12 C 12 C- 13 C / 13 C- 12 C 13 C- 13 C Signal - normales Spektrum 13 C-Satelliten %-Anteil ca. 98% ca. 2% ca % Spektrentyp - A (Singlett) AX/B (Dublett) DQ? Die 13 C-Satellitensignale sind gegenüber den (ohnehin wenig intensiven) normalen 13 C-Signalen nochmal um zwei Größenordnungen schwächer. Außerdem müssen die DQ-Signale (S 2 ) bei (störender) Anwesenheit der sehr viel größeren Hauptsignale (S 0 ) detektiert werden. 3

4 DQ-Kohärenzen haben ein Phasenverhalten, das sich von dem der S 0 -Signale unterscheidet. (Wir haben der Einfachheit halber bisher nie über das Phasenverhalten von NMR-Signalen gesprochen, auch wenn es für die Details der Pulsfolgen von großer Bedeutung ist. Stichworte: Phasenzyklen, Gradienten) Die INADEQUATE-Pulsfolge: (π/2) x (π) y (π/2) x (π/2) φ (φ ist variabel) Δ = 10 µs τ = 1/(4J) τ Δ t Es liegen wie gesagt, zwei verschiedene unabhängige Spinsysteme vor: 1.) Hauptsignale, S 0 (Spinsystem: A bzw. X; je ein Singulett) 2.) Nebensignale, S 2 (Spinsystem: AX; zwei Dubletts) Die Pulsfolge hat stark vereinfacht folgende Auswirkungen auf die Spinsysteme: 4

5 Vektordarstellung der INADEQUATE Pulsfolge: S 2,1 S 0 S 2,2 S 0 - wird rausgefiltert S 2,1 S 2,2 5

6 S 0 rotiert während der Zeit τ entsprechend der chemischen Verschiebung ν S (δ) in der x,y Ebene. Wogegen die beiden Magnetisierungen der Nebensignale (S 2 ) mit den Frequenzen ν S +1/2J CC und ν S 1/2J CC rotieren. Nach der Zeit τ = 1/(4J) bilden sie einen Winkel. Der aus der y -Richtung invertiert die Magnetisierungsvektoren und vertauscht die labels, da er auf beide 13 C Kerne wirkt. Er refokussiert auch Feldinhomogenitäten und Unterschiede in der chemischen Verschiebung; nach einem weiteren Zeitintervall τ stehen die beiden S 2 -Magnetisierungen antiparallel auf der x -Achse: Der zweite 90 Puls entlang x kippt S 0 in die -z-richtung. Der nach einer kurzen Schaltzeit ( 10 µs) erfolgende 90 Puls erzeugt aus der nicht detektierbaren DQ detektierbare Singlequantenmagnetisierung (SQ, vereinfacht: A x X y -> A x X z bzw. A y X x -> A z X x ), und erlaubt durch Variation der Pulsphase φ das Ausfiltern des S 0 - Signals. Das Variieren der Pulsphase bezeichnet man als Phasenzyklus. Entsprechend muss man mindestens zwei oder mehr Durchläufe machen und die entsprechenden Daten addieren oder subtrahieren, um Störsignale zu eliminieren: Stark vereinfacht: z.b. Experiment 1 φ = x (= 90 x ) & Experiment 2 φ = -x (90 -x ): S 0 einmal auf y und einmal auf +y -> einmal positives, einmal negatives Signal - wenn addiert = 0: 6

7 + = Die erzeugten S 2 -Signale haben antiparallele Phase, d.h. ihre Signale haben einen 180 -Phasenunterschied (z.b. positive und negative Absorption): Bei Bedarf können die Signale mit einer Refokussierungs-Pulsfolge wieder in Phase gebracht werden. Die obige Vektordarstellung der INADEQUATE Pulsfolge gibt eine Idee, wie das Experiment funktioniert, ist aber ungenügend zur genauen Beschreibung. Dazu muss man z.b. auf den Produktoperatorformalismus zurückgreifen. 7

8 1D INADEQUATE von Cyclooctanol: Antiphasen-Signale für jedes C-Atom, bei einigen (C-2, C-3 und C-4) sogar zwei. Dies liegt daran, dass jedes dieser Atome prinzipiell zwei verschiedene 13 C-Nachbarn haben kann, z.b. C-2 kann mit C-1, in einem anderen Molekül aber auch mit C-3 koppeln. (Ferner sind unterschiedliche J-Kopplungen & Isotopeneffekte auf die chemische Verschiebung möglich.) 13 C (ppm) 8

9 Ein anderes Beispiel (Cyclohexanon) mit refokussierten Dubletts: optimiert auf kleine Kopplungen, n J CC (n>1) optimiert auf große Kopplungen, 1 J CC normales { 1 H}-BB- 13 C-NMR-Spektrum 9

10 In einem 1D- 1 H-NMR-Spektrum kann man Kopplungspartner daran erkennen, dass sie die gleichen Kopplungskonstanten zeigen. Normalerweise sind J HH innerhalb eines Moleküls deutlich unterschiedlich; Kopplungspaare sind also voneinander unterscheidbar. Dies gilt bei den J CC aber oft nicht (siehe Beispiele). Wenn nicht an einem der Partner ein elektronegativer Substituent (z. B. O) hängt, sind die Kopplungskonstanten 1 J CC üblicherweise in einem Bereich von Hz. Dann wird es sehr schwierig, die einzelnen Kopplungspaare zu identifizieren. Da ist es einfacher wenn auch erheblich zeitaufwändiger wenn man ein 2D INADEQUATE Spektrum aufnimmt, dafür baut man zwischen die beiden letzten 90 Pulse eine Evolutionszeit t 1 ein, in welcher sich die DQ-Magnetisierung entsprechend ihrer chemischen Verschiebung (ν A +ν X!) entwickeln kann: 90 x - τ y - τ - 90 x - t 1-90 φ τ - sollte für 1D & 2D für die J CC, die man detektieren will eingestellt sein: τ = (2n + 1)/ (4J cc ) Allgemein verwendet man das 1D INADEQUATE zur Bestimmung der J cc und das 2D um zu sehen, welche C miteinander koppeln umso die Verknüpfung entlang Kohlenstoffkette bzw. ring zuzuordnen (mehr siehe auch Friebolin). 10

11 Schematische Darstellung 2D INADEQATE Pulssequenz und Spektrum: F1 ( 13 C-DQ = ν meas. ) ν meas. = ν A + ν X 2ν 1 ν 1 = Trägerfrequenz von Puls Von (auch Vektordarstellung & symmetrische Variante): mr/nmr/webcourse/inadequat.htm F2 ( 13 C, ppm) C1-C2-C3-C4-C5-C6-C7 11

12 Alternativ kann die Verknüpfung der C-Atome über ein symmetrisches, COSYähnliches 2D INADEQATE (2D 13 C- 13 C-COSY) bestimmt werden. diagonal-symmetrisches Spektrum wie COSY beide Achsen normale 13 C Verschiebung in ppm Auch hier ist die Größe der Kopplungskonstanten nur von untergeordneter Bedeutung (wenn sie nur die Größenordnung erreicht, für die das Experiment optimiert wurde). Die Information zur Identifizierung der Kopplungspartner kommt aus der Existenz von Kreuzsignalen (cross peaks). 12

13 Ausschnitt des 13 C, 13 C-COSY-Spektrums von Cyclooctanol: HO Ausgehend von Signal von C-1 (δ = 71) führt ein Konnektivitätsweg (gestrichelte Linie) in einer eindeutigen Art zu allen anderen C-Atomen. Die Signale in der Spur über dem 2D-Spektrum sind in- Phase, weil dieses 1D-Spektrum ein sog. Magnitude- Spektrum ist, d.h. die Speicherinhalte wurden quadriert, sodass die Phaseninformation verloren geht. 13

14 13 C, 13 C-COSY-Spektrum von Pregnenolon (Ausschnitt: Aliphatenteil) s. Alkenbereich Die punktierten Linien zeigen den Weg zur Identifizierung der Signale der drei aliphatischen Nachbarn von C-13 (C-12, C-14 und C-18). Es wurde das gesamte Spektrum gemessen einschließlich der Signale der olefinischen und des Carbonyl- C s. Für sämtliche C-C-Paare wurde ein Kreuzsignal gefunden außer für C(-16)=C(-17). Warum? 14

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 4 NMR-Spektroskopie 5.1 1 H-NMR-Spektroskopie Wasserstoffatome ( 1 H, natürliche Häufigkeit 99,985 %) mit

Mehr

Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil VIII. Peter Schmieder AG NMR

Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil VIII. Peter Schmieder AG NMR Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil VIII Das Programm 2/100 Beim letztes Mal Heteronukleare NMR an Peptiden Das Programm /100 Heute Methoden

Mehr

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 5.1 1 H-NMR-Spektroskopie NMR-Spektrum liefert folgende Informationen: Chemische Verschiebung d (in ppm):

Mehr

Kurs "Spektroskopische Methoden in der Anorganischen und Organischen Chemie" Kernresonanzspektroskopie - Übungen Lösung zu NMR-6 (Blatt 1)

Kurs Spektroskopische Methoden in der Anorganischen und Organischen Chemie Kernresonanzspektroskopie - Übungen Lösung zu NMR-6 (Blatt 1) Kernresonanzspektroskopie - Übungen Lösung zu NMR-6 (Blatt ) Zum Lösungsmittel: Das Kohlenstoffspektrum zeigt bei 77 ppm drei gleich große äquidistante Signale. Diese stammen von CDC 3. Chemische Verschiebungen

Mehr

Das NMR-Experiment in der Vektordarstellung

Das NMR-Experiment in der Vektordarstellung Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½

Mehr

Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil II. Peter Schmieder AG NMR

Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil II. Peter Schmieder AG NMR Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil II Programm 2/114 Was haben wir uns letztes Mal angeschaut: Wie kommt es zum Effekt der kernmagnetischen Resonanz Was ist das

Mehr

Digitalisierung und ihre Konsequenzen

Digitalisierung und ihre Konsequenzen Digitalisierung und ihre Konsequenzen Bisher haben wir im Zusammenhang mit dem FID und den daraus resultierenden frequenzabhängigen Spektren immer nur von stetigen Funktionen gesprochen. In Wirklichkeit

Mehr

NMR-Spektroskopie Teil 2

NMR-Spektroskopie Teil 2 BC 3.4 : Analytische Chemie I NMR Teil 2 NMR-Spektroskopie Teil 2 Stefanie Wolfram Stefanie.Wolfram.1@uni-jena.de Raum 228, TO Vom Spektrum zur Struktur 50000 40000 Peaks u. Integrale 30000 Chemische Verschiebung

Mehr

Das INEPT-Experiment

Das INEPT-Experiment Das INEPT-Experiment Das Prinzip des Polarisations-Transfers (PT) ist im Zusammenhang mit dem heteronuklearen ( 13 C, 1 H) Experiment Selective Population Inversion (SPI) beschrieben worden. Hierbei wird

Mehr

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec (1) Zwei Signale liegen im Protonenspektrum bei 1.45 und 4.57 ppm, das Spektrometer hat eine Frequenz von 400.13 MHz. Wieweit liegen die Signale in Hz bzw. in rad/sec auseinander? 4.57 ppm 1.45 ppm = 3.12

Mehr

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: IR Schwingung von Atomen kann im klassischen Bild als harmonische Schwingung (harmonischer

Mehr

WAS FEHLT? STATISCHE KORRELATION UND VOLLE KONFIGURATIONSWECHSELWIRKUNG

WAS FEHLT? STATISCHE KORRELATION UND VOLLE KONFIGURATIONSWECHSELWIRKUNG 31 besetzen als die β Elektronen. Wenn man dies in der Variation der Wellenfunktion zulässt, also den Satz der Orbitale verdoppelt und α und β Orbitale gleichzeitig optimiert, so ist i. A. die Energie

Mehr

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Rückblick Kerne haben magn. Moment, dass sich entlang der Magnetfeldlinien eines statischen

Mehr

1) Diskutieren Sie die Boltzmann-Verteilung und deren Bedeutung für die NMR- Spektroskopie

1) Diskutieren Sie die Boltzmann-Verteilung und deren Bedeutung für die NMR- Spektroskopie Fragenkatalog AC III NMR Teil 3 (Fröhlich) Die Boltzmann-Verteilung lautet: 1) Diskutieren Sie die Boltzmann-Verteilung und deren Bedeutung für die NMR- Spektroskopie bezeichnet die Anzahl der Teilchen

Mehr

NMR-Spektroskopie Teil 2

NMR-Spektroskopie Teil 2 BC 3.4 : Analytische Chemie I NMR Teil 2 NMR-Spektroskopie Teil 2 Stefanie Wolfram Stefanie.Wolfram.1@uni-jena.de Raum 228, TO Vom Spektrum zur Struktur 50000 40000 Peaks u. Integrale 30000 Chemische Verschiebung

Mehr

Teil 2: Spin-Spin Kopplung

Teil 2: Spin-Spin Kopplung NMR-Spektroskopie Teil 2: Spin-Spin Kopplung 1. Die skalare Spin-Spin Kopplung 2. Multiplizitaet und Intensitaetsverteilung 3. Geminale, vicinale und allylische Kopplungskonstanten 4. Anschauliche Beschreibung

Mehr

Übungsaufgaben NMR-Spektroskopie (1)

Übungsaufgaben NMR-Spektroskopie (1) Übungsaufgaben NMR-Spektroskopie (1) 1. Kerne haben drei wichtige Eigenschaften: Masse m, Ladung Q und Eigendrehimpuls p. Kernsorte Spin natürliche Häufigkeit Gyromagnet. Verhältnis γ [Tsec] 1 1 H 1/2

Mehr

Die chemische Verschiebung - 1

Die chemische Verschiebung - 1 Die chemische Verschiebung - 1 Die Messfrequenz ν einer Kernsorte, hier: 1 H (Protonen), hängt bei einem isolierten Kern ausschließlich vom äußeren Magnetfeld (B 0 ) und ihrem magnetogyrischen Verhältnis

Mehr

NMR Spektroskopie I = 0 : C, 16 O (sogenannte gg-kerne haben immer I=0!) I = 1/2: 1 H, 13 C, 15 N, 19 F, 31 P,... I = 1: 2. H=D, 6 Li, 14 N I = 3/2: 7

NMR Spektroskopie I = 0 : C, 16 O (sogenannte gg-kerne haben immer I=0!) I = 1/2: 1 H, 13 C, 15 N, 19 F, 31 P,... I = 1: 2. H=D, 6 Li, 14 N I = 3/2: 7 NMR Spektroskopie folie00 Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p=ħ I, der ganz oder halbzahlige Werte von ħ betragen kann. I bezeichnet die Kernspin-Quantenzahl.

Mehr

Einführung in die NMR-Spektroskopie. NMR-Spektroskopie. Teil 1: Einführung und Grundlagen der 1 H NMR. Das NMR Spektrometer

Einführung in die NMR-Spektroskopie. NMR-Spektroskopie. Teil 1: Einführung und Grundlagen der 1 H NMR. Das NMR Spektrometer NMR-Spektroskopie Einführung in die NMR-Spektroskopie m I = - /2 (β) Teil : Einführung und Grundlagen der NMR E E. Physikalische und apparative Grundlagen m I = + /2 (α).2 Das D NMR Experiment.3 Die chemische

Mehr

Spinsysteme und skalare Kopplung

Spinsysteme und skalare Kopplung Spinsysteme und skalare Kopplung Ein Spin-1/2-Kern X ( 1 oder 13 C) kann zwei Energieniveaus mit einem gegebenen Energieunterschied ΔE besetzen (Grundzustand 1/2 bzw. α und angeregter Zustand +1/2 bzw.

Mehr

Einführung in die NMR-Spektroskopie im Rahmen des Praktikums OC-II

Einführung in die NMR-Spektroskopie im Rahmen des Praktikums OC-II Einführung in die NMR-Spektroskopie im Rahmen des Praktikums O-II Till Opatz Kerne im statischen Magnetfeld Zeeman-Aufspaltung -1-3/2 Energie -1/2 +1/2 0 +1-1/2 +1/2-3/2 I = 1/2 I = 1 I = 3/2 Insgesamt

Mehr

Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil VI. Peter Schmieder AG NMR

Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil VI. Peter Schmieder AG NMR Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil VI Das Programm 2/105 Beim letztes Mal Heteronukleare NMR Ein Beispiel Das Programm 3/105 Heute Peptide

Mehr

1 1 H-NMR-Spektroskopie in metallorganischen Komplexen. 1.1 Allgemeines. 1.2 Chiralität in Metallkomplexen 1.3 Dynamische Prozesse

1 1 H-NMR-Spektroskopie in metallorganischen Komplexen. 1.1 Allgemeines. 1.2 Chiralität in Metallkomplexen 1.3 Dynamische Prozesse 1 1 H-NMR-Spektroskopie in metallorganischen Komplexen 1.1 Allgemeines Chemische Verschiebungen Beispiele für einfache Komplexe 1.2 Chiralität in Metallkomplexen 1.3 Dynamische Prozesse 1.4 Heteronukleare

Mehr

NMR-Lösungsmittel. 1 H-NMR. Bei der Verwendung der normalen, nichtdeuterierten Lösungsmittel. Spektroskopie in der Organischen Chemie

NMR-Lösungsmittel. 1 H-NMR. Bei der Verwendung der normalen, nichtdeuterierten Lösungsmittel. Spektroskopie in der Organischen Chemie NMR-Lösungsmittel In der werden i.a. deuterierte Lösungsmittel verwendet. ie Substitution der leichten durch die schweren Wasserstoffatome hat zwei Vorteile: - euterium als Spin-1-Kern hat ebenfalls ein

Mehr

Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil I. Peter Schmieder AG NMR

Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil I. Peter Schmieder AG NMR Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil I Die Vorlesung 2/116 1. Grundlagen der NMR-Spektroskopie NMR-Prinzip, FT-NMR, Signaldetektion 2. Mehrdimensionale NMR (2D) Vektormodell,

Mehr

III. Strukturbestimmung organischer Moleküle

III. Strukturbestimmung organischer Moleküle III. Strukturbestimmung organischer Moleküle Röntgenstrukturbestimmung g Spektroskopie UV-VIS IR NMR Massenspektrometrie (MS) Röntgenstruktur eines bakteriellen Kohlenhydrats O O O O O O O C3 Röntgenstruktur

Mehr

4.6 Strukturbestimmung in Proteinen

4.6 Strukturbestimmung in Proteinen - 54-4.6 Strukturbestimmung in Proteinen 4.6.1 Aminosäuren und Proteine Proteine gehören zu den wichtigsten Bestandteilen aller lebenden Organismen: sie spielen nicht nur für die Struktur eine wichtige

Mehr

D-(+)-Biotin (Vitamin H)

D-(+)-Biotin (Vitamin H) D-(+)-Biotin (Vitamin H) Benedikt Jacobi 28. Januar 2005 1 Inhaltsverzeichnis 1 Einleitung 1 1.1 Aufgabenstellung: Prüfung der Stabilität von Biotin (Vitamin H) unter alltäglichen Bedingungen (Kochen,

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektroskopie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie neue Produktlinie,

Mehr

Der Kern-Overhauser-Effekt (Nuclear Overhauser Effect, NOE)

Der Kern-Overhauser-Effekt (Nuclear Overhauser Effect, NOE) Der Kern-Overhauser-Effekt (Nuclear Overhauser Effect, NOE) B 2 S I Die Intensität eines 1 H-Signals kann durch ein Entkopplungsexperiment verändert werden. Wird der Übergang eines ausgewählten H-Kerns

Mehr

UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick

UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische hemie Prof. Dr. B. Dick PHYSIKALISH-HEMISHES PRAKTIKUM (Teil Ic) (Spektroskopie) Versuch NMR Protonenresonanz 0 http://www-dick.chemie.uni-regensburg.de/studium/praktikum1c.html

Mehr

Wo ist der magnetische Nordpol der Erde?

Wo ist der magnetische Nordpol der Erde? Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,

Mehr

AQ -1 = 1.2 Hz digitale Auflösung pro 1.2 Hz ein Datenpunkt

AQ -1 = 1.2 Hz digitale Auflösung pro 1.2 Hz ein Datenpunkt 6. Datenaufnahme mit dem FT-Spektrometer: Digitalisierung Anregung Detektion Auswertung RF-Pulse/ Delays Digitalisierung des im AD-Wandler Fouriertransformation, Fensterfunktion, Apodisierung... Der Analog-Digital-onverter

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Aufbau und Konformation von Polypeptiden

Aufbau und Konformation von Polypeptiden 1 Aufbau und Konformation von Polypeptiden Peter Güntert, Sommersemester 2009 Hierarchie von Proteinstrukturen Primärstruktur: Aminosäuresequenz Sekundärstruktur: Helices, Faltblätter, Turns, Loops Tertiärstruktur:

Mehr

NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio

NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio NMR Spektroskopie 1nm 10 10 2 10 3 10 4 10 5 10 6 10 7 Frequenz X-ray UV/VIS Infrared Microwave Radio Anregungsmodus electronic Vibration Rotation Nuclear Spektroskopie X-ray UV/VIS Infrared/Raman NMR

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung 2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57

Mehr

AB-Spinsystem (1) - Ein Spektrenbeispiel

AB-Spinsystem (1) - Ein Spektrenbeispiel AB-Spinsystem () - Ein Spektrenbeispiel (A) (B) l N N 60 Mz- -NMR-Spektrum von -hlor-6-ethoxy-pyridazin in l mit Integration; die aromatischen Protonen bilden ein AB-System (aus: orst Friebolin, Ein- und

Mehr

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Zusammenfassung Mit Hilfe von 1D 1 H- und 13 C-NMR-Spektren und gegebener Summenformel wird die Primärstruktur eines unbekannten

Mehr

Vorlesung. Analytik (für Biologen und Pharmazeuten) Einführung in spektroskopische Methoden der Strukturaufklärung organischer Verbindungen

Vorlesung. Analytik (für Biologen und Pharmazeuten) Einführung in spektroskopische Methoden der Strukturaufklärung organischer Verbindungen Vorlesung Analytik (für Biologen und Pharmazeuten) Einführung in spektroskopische Methoden der Strukturaufklärung organischer Verbindungen Zusammenfassung des Teils "Spektroskopie" für die Prüfung BSc

Mehr

Kernphysik I. Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin

Kernphysik I. Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin Kernphysik I Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin Kernphysik I Universität u Köln - Fachgruppe Physik Großes Physikalisches Kolloquium Dienstag, 0. Juni 008, 6:45 Uhr

Mehr

Teil 3: Spin-Spin Kopplung

Teil 3: Spin-Spin Kopplung NMR-Spektroskopie Teil 3: Spin-Spin Kopplung 1. Die skalare Spin-Spin Kopplung 2. Multiplizitaet und Intensitaetsverteilung 3. Geminale, vicinale und allylische Kopplungskonstanten 4. Anschauliche Beschreibung

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Kombinierte Übungen zur Spektroskopie Beispiele für die Bearbeitung

Kombinierte Übungen zur Spektroskopie Beispiele für die Bearbeitung Im folgenden soll gezeigt werden, daß es großen Spaß macht, spektroskopische Probleme zu lösen. Es gibt kein automatisches Lösungsschema, sondern höchstens Strategien, wie beim "Puzzle Lösen"; häufig hilft

Mehr

Strukturaufklärung in der Organischen Chemie

Strukturaufklärung in der Organischen Chemie Teil : Grundlagen. Apparatives Strukturaufklärung in der rganischen hemie NMR-Spektroskopie. Grundlagen - - Das in Abb. dargestellte -NMR-Spektrum von Mesitylen in D 3 wurde an einem 60 Mz NMR Gerät aufgenommen.

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

Versuchsprotokoll: Magnetische Kernresonanz (NMR)

Versuchsprotokoll: Magnetische Kernresonanz (NMR) Versuchsprotokoll: Magnetische Kernresonanz (NMR) Christian Buntin, Jingfan Ye Gruppe 221 Karlsruhe, 22. November 2010 Inhaltsverzeichnis 1 Theoretische Grundlagen 2 1.1 Kernspin und magnetisches Moment.............................

Mehr

Kernresonanzspektroskopie

Kernresonanzspektroskopie Gleich geht s los! Kernresonanzspektroskopie 1. Geschichtliche Entwicklung 2. Physikalische Grundlagen 3. Das NMR-Spektrometer 4. Anwendung der 1 H-NMR-Spektren zur Analyse der Konstitution von Molekülen

Mehr

NMR Spektroskopie. Aufgaben

NMR Spektroskopie. Aufgaben hemische Verschiebung 1. Zeichnen Sie zu den nachfolgend aufgeführten Stoffen die Strukturformeln! Unterscheiden Sie dann zwischen chemisch äquvalenten und nichtäquivalenten Kernen. Bezeichnen Sie die

Mehr

Magnetresonanztomographie (MRT) * =

Magnetresonanztomographie (MRT) * = γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)

Mehr

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Physikalische Grundlagen der Bildgebung Röntgen, CT Ultraschall Szintigraphie MR-Tomographie Absorption von Röntgenstrahlen Änderung der

Mehr

ESR vs. NMR NMR ESR. ESR - Messung. Kernmagneton. 2cm P. m p 1800 µ e = 1800 m p. m e. (Bohr Magneton)

ESR vs. NMR NMR ESR. ESR - Messung. Kernmagneton. 2cm P. m p 1800 µ e = 1800 m p. m e. (Bohr Magneton) M-Spektroskopie M ES vs. M M-Spektren von paramagnetischen Verbindungen? M µ e ist 0 3 mal grösser als das Kernmoment µ hν 0 = γ hb 0 µ = e h cm P Kernmagneton longitudinale elaxation wird zu stark (T

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

6. Carbonyl-Verbindungen

6. Carbonyl-Verbindungen 6. Carbonyl-Verbindungen Hierher gehören vor allem die Aldehyde und Ketone. (später: Die Carbonyl-Gruppe weisen auch die Carbonsäuren und ihre Derivate auf). Carbonylgruppe. Innerhalb der Sauerstoff-Kohlenstoff-Doppelbindung

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

Ultrakurze Lichtimpulse und THz Physik

Ultrakurze Lichtimpulse und THz Physik Ultrakurze Lichtimpulse und THz Physik 1. Einleitung 2. Darstellung ultrakurzer Lichtimpulse 2.1 Prinzip der Modenkopplung 2.2 Komplexe Darstellung ultrakurzer Lichtimpulse 2.2.1 Fourier Transformation

Mehr

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden Protokoll Kombinierte Anwendung verschiedener Spektroskopischer Methoden Zielstellung: Durch die Auswertung von IR-, Raman-, MR-, UV-VIS- und Massenspektren soll die Struktur einer unbekannten Substanz

Mehr

Molekülsymmetrie und Kristallographie

Molekülsymmetrie und Kristallographie Optische Aktivität Wie schon im Skriptum 5 erwähnt ist es nicht einfach, aus experimentellen Daten auf die Absolutkonfiguration einer chiralen Verbindung zu schließen. In den meisten Fällen verwendet man

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

3D NMR Experimente. Pulssequenz des 3D 15N-NOESY-HSQC

3D NMR Experimente. Pulssequenz des 3D 15N-NOESY-HSQC 3D NMR Experimente Pulssequenz des 3D 15N-NOESY-SQC 1) Zum Beispiel sinnvoll, wenn sich viele Signale in einem 2D Spektrum, z.b. einem 1-1 NOESY oder TOCSY überlagern. 2) Kombination mit einem anderen

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Symmetrische

Mehr

Edelgas-polarisierte. NMR- Spektroskopie. Jonas Möllmann Jan Mehlich. SoSe 2005

Edelgas-polarisierte. NMR- Spektroskopie. Jonas Möllmann Jan Mehlich. SoSe 2005 Edelgas-polarisierte NMR- Spektroskopie Jonas Möllmann Jan Mehlich SoSe 2005 NMR Prinzip Aufspaltung der Kernspins in verschiedene Niveaus durch angelegtes Magnetfeld Messung des Besetzungs- unterschiedes

Mehr

Standardmodell der Teilchenphysik

Standardmodell der Teilchenphysik Standardmodell der Teilchenphysik Eine Übersicht Bjoern Walk bwalk@students.uni-mainz.de 30. Oktober 2006 / Seminar des fortgeschrittenen Praktikums Gliederung Grundlagen Teilchen Früh entdeckte Teilchen

Mehr

Analytische Chemie III: Strukturaufklärung

Analytische Chemie III: Strukturaufklärung Analytische Chemie III: Strukturaufklärung Verbindung Struktur Sinnesorgan der Chemiker 1 Analytische Chemie III: Strukturaufklärung Inhalt - Strategien zur Stoffisolierungen / Probenvorbereitung - 13

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Hochauflösende NMR in Festkörpern

Hochauflösende NMR in Festkörpern Hochauflösende NMR in Festkörpern Strukturaufklärung in Phosphatgläsern Anne Wiemhöfer Agnes Wrobel Gliederung Auftretende Wechselwirkungen in der Festkörper NMR Flüssig- vs. Festkörper-NMR NMR Techniken

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

LMPG 2, ÜB21, Molekülbau & UV/VIS-Absorption LÖSUNG 1 von 11

LMPG 2, ÜB21, Molekülbau & UV/VIS-Absorption LÖSUNG 1 von 11 LMPG 2, ÜB21, Molekülbau & UV/VISAbsorption LÖSUG 1 von 11 Übung 1: Charakterisierung von Absorptionsbanden Veränderungen der Molekülstruktur können zu Verschiebungen der einzelnen Absorptionsbanden im

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 1)

Molekulare Biophysik. NMR-Spektroskopie (Teil 1) Molekulare Biophysik NMR-Spektroskopie (Teil 1) Das Vorlesungs-Programm 2/93 Vorlesung Molekulare Biophysik : NMR-Spektroskopie Tag 1 Theoretische Grundlagen der NMR-Spektroskopie (1) Tag 2 Theoretische

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Vorlesung Einführung in die NMR- und IR-Spektroskopie

Vorlesung Einführung in die NMR- und IR-Spektroskopie c) b) a) x 8 50 45 40 35 30 25 20 15 ppm Abb. 22: 75,5 MHz 13 C-NMR-Spektren von Cholesterylacetat in CDCl 3. a) ohne 1 H- Entkopplung; b) mit invers gepulster 1 H-Entkopplung; c) mit 1 H-Breitband- Entkopplung.

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Schreiben Sie Ihre ö AUSSCHLIEßLICH!!! auf. die leeren Seiten 5 8!

Schreiben Sie Ihre ö AUSSCHLIEßLICH!!! auf. die leeren Seiten 5 8! 1. Ermitteln Sie die Konstitution der Verbindung aus MQ, Protonen und protonenbreitbandentkoppeltem Kohlenstoffspektrum. a. Ermitteln Sie alle chemischen Verschiebungen ( 1 und 13 ) und Kopplungskonstanten

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Das Gummibärchen-Orakel [1]

Das Gummibärchen-Orakel [1] Das Gummibärchen-Orakel [1] 1. Allgemeines Lehrplanbezug: Klasse 10 bzw. 11, z.b. beim Wiederholen der kombinatorischen Formeln Zeitbedarf: 1 bis 4 Schulstunden je nach Vertiefungsgrad 2. Einstieg und

Mehr

Grundlagen der NMR-Spektroskopie

Grundlagen der NMR-Spektroskopie Westfälische Wilhelms-Universität Münster Institut für Pharmazeutische und Medizinische Chemie 8. Semester Übersicht: Einleitung Physikalische Grundlagen Magnetische Kerne Resonanz Spektrometer 1 Chem.

Mehr

Fortgeschrittenen-Praktikum Organische Chemie Wintersemester 2012/2013

Fortgeschrittenen-Praktikum Organische Chemie Wintersemester 2012/2013 Fortgeschrittenen-Praktikum Organische Chemie Wintersemester 2012/2013 Universität Leipzig Fakultät für Chemie und Mineralogie Wasserdampfdestillation von Anisöl aus Anissamen Anton Werwein, Richard Cybik

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER

AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER FREYA GNAM, TOBIAS FREY 1. EMITTERSCHALTUNG DES TRANSISTORS 1.1. Aufbau des einstufigen Transistorverstärkers. Wie im Bild 1 der Vorbereitungshilfe wurde

Mehr

Inhalt. a) Typische Wechselwirkungen im Festkörper. b) Spektrenform für Einkristalle und Pulver. c) Messung und Interpretation einfacher Systeme

Inhalt. a) Typische Wechselwirkungen im Festkörper. b) Spektrenform für Einkristalle und Pulver. c) Messung und Interpretation einfacher Systeme Inhalt. Grundlagen der FK-NMR-Spektroskopie a) Typische Wechselwirkungen im Festkörper b) Spektrenform für Einkristalle und Pulver c) Messung und Interpretation einfacher Systeme. Wichtige Techniken und

Mehr

Spektroskopie-Seminar SS Infrarot-Spektroskopie. Infrarot-Spektroskopie

Spektroskopie-Seminar SS Infrarot-Spektroskopie. Infrarot-Spektroskopie Infrarot-Spektroskopie 3.1 Schwingungsmodi Moleküle werden mit Licht im Infrarot-Bereich (400-4000 cm -1 ) bestrahlt Durch Absorption werden Schwingungen im Molekül angeregt Im IR-Spektrum werden die absorbierten

Mehr

Vorlesung Chemie für Biologen: Klausur 1 WS Sa

Vorlesung Chemie für Biologen: Klausur 1 WS Sa 1 Vorlesung Chemie für Biologen: Klausur 1 WS 02-03 Sa 07.12.02 Name:... Ihre Unterschrift:... Vorname:... Matrikel-Nr.:... Studienbeginn: SS: WS:...... Tutor der Übungen: (Dort Klausureinsicht.) Punkteschlüssel

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Optische Gitter. Vorlesung: Moderne Optik

Optische Gitter. Vorlesung: Moderne Optik Diese Zusammenstellung ist ausschließlich für die Studierenden der Vorlesung MODERNE OPTIK im Wintersemester 2009 / 2010 zur Nacharbeitung der Vorlesungsinhalte gedacht und darf weder vervielfältigt noch

Mehr

1.3 Mehrelektronensysteme

1.3 Mehrelektronensysteme .3 Mehrelektronensysteme.3. Helium Dies ist ein Drei-Teilchen-System. Hamilton-Operator: Näherung: unendlich schwerer Kern nicht relativistisch Ĥ = ˆ p m + ˆ p m e e + e 4πɛ 0 r 4πɛ 0 r }{{ 4πɛ } 0 r }{{

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

4.5 Multipuls NMR Dipolare Linienverbreiterung im Festkörper. Kopplungen zwischen Spins führen zu einer Aufspaltung von

4.5 Multipuls NMR Dipolare Linienverbreiterung im Festkörper. Kopplungen zwischen Spins führen zu einer Aufspaltung von - 47-4.5 Multipuls NMR 4.5. Dipolare Linienverbreiterung im Festkörper Kopplungen wischen Spins führen u einer Aufspaltung von Resonanlinien. Bei N Kopplungspartnern beträgt die Zahl der Resonanlinien

Mehr

2 Symmetrieoperationen und -elemente. 1.8 Klassen 2 SYMMETRIEOPERATIONEN UND -ELEMENTE 7

2 Symmetrieoperationen und -elemente. 1.8 Klassen 2 SYMMETRIEOPERATIONEN UND -ELEMENTE 7 SYMMETRIEOPERATIONEN UND -ELEMENTE 7.8 Klassen Zweck: Zusammenfassen zueinander ähnlicher (konjugierter) Elemente einer Gruppe. Durch Bestimmung aller Klassen ergibt sich eine eindeutige Zerlegung on G:

Mehr

Verbundstudium TBW Teil 1 Grundlagen 3. Semester

Verbundstudium TBW Teil 1 Grundlagen 3. Semester Verbundstudium TBW Teil 1 Grundlagen 3. Semester 1.1 Internationales Einheitensystem System (SI) Größe Symbol Einheit Zeichen Länge x Meter m Zeit t Sekunde s Masse m Kilogramm kg Elektr. Stromstärke I

Mehr

Magnetische Kernresonanz NMR

Magnetische Kernresonanz NMR Physikalisches Praktikum für Fortgeschrittene (P3) Magnetische Kernresonanz NMR Betreuer: Dirk Waibel Michael Lohse, Matthias Ernst Gruppe 11 Karlsruhe, 6.12.2010 Verbessertes Protokoll Inhaltsverzeichnis

Mehr

tgt HP 2008/09-5: Wagenheber

tgt HP 2008/09-5: Wagenheber tgt HP 2008/09-5: Wagenheber Das Eigengewicht des Wagenhebers ist im Vergleich zur Last F vernachlässigbar klein. l 1 500,mm I 2 220,mm I 3 200,mm I 4 50,mm F 15,kN α 1 10, α 2 55, β 90, 1 Bestimmen Sie

Mehr

Kernmagnetische Resonanz

Kernmagnetische Resonanz Strahlung Kernmagnetische Resonanz Die verschiedenen Arten der Spektroskopie nutzen die Adsorption, Emission oder Streuung von Strahlen an Atomen oder Molekülen. Die Kernresonanzspektroskopie im speziellen

Mehr

N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik

N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik II.4.4 b Kernspin und Parität angeregter Zustände Im Grundzustand besetzen die Nukleonen die niedrigsten Energieniveaus im Potentialtopf. Oberhalb liegen weitere Niveaus, auf welche die Nukleonen durch

Mehr

Anwendung neuerer spektroskopischer Techniken in der pharmazeutischen Chemie

Anwendung neuerer spektroskopischer Techniken in der pharmazeutischen Chemie Anwendung neuerer spektroskopischer Techniken in der pharmazeutischen Chemie (ausgewählte spektroskopische Methoden MR) Wolfgang Holzer Department für Arzneistoffsynthese Fakultät für Lebenswissenschaften,

Mehr

Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie

Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - WS0809 - Blatt 1 / 16 Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik Teil 1: Physikalische Chemie

Mehr