Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10"

Transkript

1 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz November 203

2 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei Jäger trifft sei Ziel mit eier Wahrscheilichkeit 40%. Mit welcher Wahrscheilichkeit erzielt er bei zeh Schüsse a) geau sechs Treffer b) mehr als sechs Treffer? Aufgabe 2: Bei eiem Automate gewit ma i 30% aller Spiele. Wie groß ist die Wahrscheilichkeit, dass ma a) bei 0 Spiele midestes eimal gewit? b) bei 20 Spiele achtmal gewit? Aufgabe 3: I eiem "Nachrichtekaal" wird ei Zeiche mit der Wahrscheilichkeit p = 0,9 richtig übertrage. Eie Nachricht besteht aus acht Zeiche. Mit welcher Wahrscheilichkeit werde höchstes zwei Zeiche falsch übertrage? Aufgabe 4: Ei fairer Würfel wird 36-mal geworfe. Bereche die Wahrscheilichkeit dafür, dass die Augezahl 6 i der erwartete Azahl eitritt. Aufgabe 5: Eie Firma produziert eie bestimmte Masseartikel mit eiem Ausschussateil vo 4%. Bereche die Wahrscheilichkeit, dass sich uter 00 zufällig ausgewählte Artikel midestes 2 ud höchstes 6 Ausschussartikel befide. Aufgabe 6: Die Musikgesellschaft "Harmoie" führt ihr Jubiläumskozert durch. I de Pause werde Tombola-Lose agebote. Die Gewiwahrscheilichkeit ist 0%. a) Fritz ist ei eifriger Loskäufer. 90 Lose hat er scho gekauft ud 0 Gewie erzielt. Wie groß ist die Wahrscheilichkeit, dass ma bei 90 Lose höchstes 0-mal gewit? b) Has hat scho 00 Lose gekauft ud dabei 6 Gewie eigestriche. Er behauptet, er habe ebe eie besoders begabte Had. Mit welcher Wahrscheilichkeit kommt ma ohe besodere Begabug auf midestes 6 Treffer? c) Die Besucher köe auch Säckche kaufe, die je 0 zufällig ausgewählte Lose ethalte. Der Verastalter verspricht midestes eie Gewi, asoste wird das Geld zurückerstattet. Wie groß ist das Risiko, dass der Verastalter zahle muss? Aufgabe 7: Wie oft muss ma eie ideale Würfel midestes werfe, we ma mit eier Wahrscheilichkeit vo a) mehr als 90% b) mehr als 99% midestes eie Sechs habe will? 2

3 Aufgabe 8: Die Zufallsvariable X ist biomialverteilt mit de Parameter = 30 ud p = 0,25. Bereche a) P(X = 0) b) P(X 0) c) P(X > 5) d) P(5 X 25) e) de Erwartugswert vo X f) Für welche Wert k wird P(X = k) maximal? g) Erstelle mit dem GTR mit Hilfe vo 2 Liste eie Wertetabelle für die Zuordug k P(X= k). Zeiche mit dem GTR ei Säulediagramm für diese Zuordug. Aufgabe 9: Ei Spielwürfel mit de Augezahle bis 6 wird 8-mal geworfe. Bereche die Wahrscheilichkeite der folgede Ereigisse. Gib die Ereigisse i Prozet a ud rude auf eie Dezimale. A: Es wird 6-mal eie Augezahl gewürfelt, die größer als 4 ist. B: Es wird mehr als 4-mal eie Augezahl gewürfelt, die größer al 4 ist. C: Es wird midestes 4-mal aber höchstes 7-mal eie Augezahl gewürfelt, die größer als 4 ist. Aufgabe 0: I eier Fabrik werde die hergestellte Teile vo eier Kotrolleuri überprüft, die jedes Teil mit eier Wahrscheilichkeit vo 97% richtig beurteilt. a) Ab welcher Azahl vo utersuchte Teile ist die Wahrscheilichkeit, dass die Kotrolleuri midestes eies davo falsch beurteilt, größer als 99,9%? b) Bei eier adere Kotrolleuri liegt die Wahrscheilichkeit, vo 00 utersuchte Teile midestes drei falsch zu beurteile, bei etwa 75%. Mit welcher Wahrscheilichkeit beurteilt diese Kotrolleuri ei vo ihr utersuchtes Teil falsch? (Ergebis i Prozet, auf eie Dezimale gerudet). Aufgabe : I eier Ure sid 400 schwarze ud 600 weiße Kugel. a) Aus dieser Ure werde acheiader 5 Kugel mit Zurücklege gezoge. Bestimme Sie die Wahrscheilichkeite der Ereigisse A: Die füf Kugel habe dieselbe Farbe. B: Es sid mehr schwarze als weiße Kugel. C: Die Kugel, die im vierte Zug gezoge wird, ist midestes die dritte weiße Kugel. b) Nu wird 00mal eie Kugel mit Zurücklege gezoge. Wie groß ist die Wahrscheilichkeit, dass die Zahl der gezogee schwarze Kugel um höchstes 5 vom Erwartugswert abweicht? 3

4 Lösuge Hiweis zu GTR-Befehle mit Texas-Istrumets: Die Wahrscheilichkeit P(X = k) wird mit dem Befehl biompdf(;p;k) berechet. Die Wahrscheilichkeit P(X k) wird mit dem Befehl biomcdf(;p;k) berechet. Hiweis zu GTR-Befehle mit Casio: Die Wahrscheilichkeit P(X = k) wird mit dem Befehl bpd(k;;p) berechet. Die Wahrscheilichkeit P(X k) wird mit dem Befehl bcd(k;;p) berechet. Aufgabe : Die Zufallsvariable X gibt die Azahl der Treffer a. X ist biomialverteilt mit = 0 ud p = 0,4. a) P(geau 6 Treffer) = P(X= 6) 0,5 =,5% b) P(mehr als 6 Treffer) = P(X> 6) = P(X 6) 0,945 = 0,055 = 5,5% Aufgabe 2: Die Zufallsvariable X gibt die Azahl der gewoe Spiele a. a) X ist biomialverteilt mit = 0 ud p = 0,3. P(midestes ei Gewi) = P(X ) = P(X= 0) 0,972= 97,2% b) X ist biomialverteilt mit = 20 ud p = 0,3. P(geau 8 Gewie) = P(X= 8) 0,4 =,4% Aufgabe 3: Die Zufallsvariable X ist die Azahl der falsch übertragee Zeiche. X ist biomialverteilt mit = 8 ud p = 0,. (Begrüdug: Die "Trefferwahrscheilichkeit" für ei falsch übertragees Zeiche beträgt - 0,9 = 0,) P(höchstes zwei Zeiche falsch) = P(X 2) 0,962= 96,2% Aufgabe 4: Die Zufallsvariable X ist die Azahl der gewürfelte Sechser. X ist biomialverteilt mit = 36 ud p=. 6 Die erwartete Azahl der Sechser beträgt E(X) = p= 36 = 6. 6 Bei 36 Würfe ist im Erwartugswert mit 6 Sechser zu reche. P(geau 6 Sechser) = P(X= 6) 0,76 = 7,6% 4

5 Aufgabe 5: Die Zufallsvariable X ist die Azahl der Ausschussartikel. X ist biomialverteilt mit = 00 ud p = 0,04. P(midestes 2 ud höchstes 6 Ausschussartikel) = P(2 X 6) = P(X 6) P(X ) 0,8936 0,0872= 0,8064 = 80,64% Aufgabe 6: a) Die Zufallsvariable X ist die Azahl der gezogee Gewie. X ist biomialverteilt mit = 90 ud p = 0,. P(höchstes 0 Gewie) P(X 0) 0,73 = 7,3% b) X ist biomialverteilt mit = 00 ud p = 0,. P(midestes 6 Treffer) = P(X 6) = P(X 5) 0,96 = 0,04 = 4% c) X ist biomialverteilt mit = 0 ud p = 0,. P(Verastalter muss zahle) = P(kei Gewi) = P(X = 0) 0,349 = 34,9% Aufgabe 7: Die Zufallsvariable X ist die Azahl der Sechser. X ist biomialverteilt mit ubekatem ud p= 6 a) Es soll gelte: P(X ) > 0,9 P(X= 0) > 0,9 P(X= 0) > 0, P(X= 0) < 0, (Im letzte Schritt dreht sich das Ugleichheitszeiche um, da durch eie egative Zahl dividiert wurde). 5 Es gilt P(X= 0) =, da P(X = 0) bedeutet, dass bei Versuche keie Sechs gewürfelt werde soll. 5 < 0, log 5 log < log(0,) 5 log < log(0,) log(0,) > log(5/6) :log(5/6) (Im letzte Schritt dreht sich das Ugleichheitszeiche um, da durch eie egative Zahl dividiert wurde). > 2,6 Ma muss midestes 3 mal würfel. 5

6 b) Es soll gelte: P(X ) > 0,99 P(X= 0) > 0,99 P(X= 0) > 0,0 P(X= 0) < 0,0 5 Es gilt P(X= 0) =, da P(X = 0) bedeutet, dass bei Versuche keie Sechs gewürfelt werde soll. log 5 5 < 0,0 log < log(0,0) :log(5/6) log(0,0) > > 25,3 log(5/6) 5 log < log(0,0) Ma muss midestes 26 mal würfel. Aufgabe 8: a) P(X= 0) 0,0909 b) P(X 0) 0,8943 c) P(X> 5) = P(X 5) 0,797 d) P(5 X 25) = P(X 25) P(X 4) 0,9973 = 0,0027 e) E(X) = p= 30 0,25 = 7,5 f) P(X= k) wird maximal für k = 7. Es gilt P(X= 7) 0,6624 g) Aufgabe 9: Ereigis A: Die Zufallsvariable X zählt die Azahl der Würfe, die größer als 4 sid. X ist biomialverteilt mit = 8 ud p=. 3 P(A) = P(X= 6) 0,96 Ereigis B: Die Zufallsvariable X zählt die Azahl der Würfe, die größer als 4 sid. X ist biomialverteilt mit = 8 ud p=. 3 P(B) = P(X> 4) = P(X 4) 0,769 6

7 Ereigis C: Die Zufallsvariable X zählt die Azahl der Würfe, die größer als 4 sid. X ist biomialverteilt mit = 8 ud p=. 3 P(C) = P(4 X 7) = P(X 7) P(X 3) 0,7767 0,07 = 0,675 Aufgabe 0: a) Die Zufallsvariable X ist die Azahl der Teile, die falsch beurteilt werde. X ist biomialverteilt mit ubekatem ud p = 0,03. Es soll gelte: P(X ) > 0,999 P(X= 0) > 0,999 P(X= 0) > 0,00 P(X= 0) < 0,00 (Im letzte Schritt dreht sich das Ugleichheitszeiche um, da durch eie egative Zahl dividiert wurde). Es gilt P(X= 0) = 0,97, da P(X = 0) bedeutet, dass bei Versuche kei Teil falsch beurteilt wird. 0,97 < 0,00 log log( 0,97) < log(0,00) log( 0,97) < log(0,00) :log0,97 log(0,00) > log(0,97) (Im letzte Schritt dreht sich das Ugleichheitszeiche um, da durch eie egative Zahl dividiert wurde). > 226,8 Die Kotrolleuri muss midestes 227 Teil beurteile. b) Die Zufallsvariable X ist die Azahl der Teile, die falsch beurteilt werde. X ist biomialverteilt mit = 00 ud ubekatem p. Es gilt P(X 3) 0,75. Daraus folgt P(X 2) 0,75. Mit dem GTR ka u p berechet werde: Es ist p = 0,0388. Die Kotrolleuri beurteilt ei vo ihr utersuchtes Teil mit eier Wahrscheilichkeit vo 3,9% falsch. 7

8 Aufgabe : a) Ereigisse A ud B: Die Zufallsvariable X ist die Azahl der gezogee weiße Kugel. X ist biomialverteilt mit = 5 ud p= 0,6. P(A) = P(X= 0) + P(X= 5) = 0, , ,088 P(B) = P(X 2) = 0,3744 Ereigis C: Damit das Ereigis C eitritt, müsse i de erste drei Züge midestes zwei weiße Kugel gezoge worde sei. Im vierte Zug muss eie weiße Kugel gezoge werde. Wahrscheilichkeit, dass i de erste drei Züge midestes zwei weiße Kugel gezoge werde: Die Zufallsvariable X ist die Azahl der gezogee weiße Kugel. X ist biomialverteilt mit = 3 ud p = 0,6. P(i drei Züge midestes zwei weiße Kugel) = P(X 2) = P(X ) = 0,648 P(C) = 0,648 0,6 = 0,3888 b) Die Zufallsvariable X ist die Azahl der gezogee schwarze Kugel. X ist biomialverteit mit = 00 ud p = 0,4. Der Erwartugswert vo X beträgt E(X) = p= 00 0,4 = 40. Gesucht ist die Wahrscheilichkeit, dass die Azahl der gezogee schwarze Kugel zwische 35 ud 45 liegt. P(35 X 45) = P(X 45) P(X 34) = 0,8689 0,303 = 0,7386 8

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Erfolg im Mathe-Abi 2013

Erfolg im Mathe-Abi 2013 Gruber I Neuma Erfolg im Mathe-Abi 2013 Vorabdruck Wahlteil Stochastik für das Abitur ab 2013 zum Übugsbuch für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Vorwort Vorwort Erfolg vo Afag a...ist das

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Übungsaufgaben II. Übungsaufgaben II. f) Wie groß ist die Wahrscheinlichkeit, dass er mindestens 1 richtige Antworten. ankreuzt?

Übungsaufgaben II. Übungsaufgaben II. f) Wie groß ist die Wahrscheinlichkeit, dass er mindestens 1 richtige Antworten. ankreuzt? Berufsolleg Marieschule Lippstadt Schuljahr /7 Kurs: Mathemati AHR. Berufsolleg Marieschule Lippstadt Schuljahr /7 Kurs: Mathemati AHR. Aufgabe Ei Multiple-Choise-Test besteht aus Frage für die jeweils

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Lösungen Mehrstufige Zufallsversuche I. Ausführliche Lösung

Lösungen Mehrstufige Zufallsversuche I. Ausführliche Lösung Lösuge Mehrstufige Zufallsversuche I e: A1 Aufgabe Eie Müze wird zweimal geworfe. Zeiche Sie das Baumdiagramm ud bestimme Sie die Wahrscheilichkeit für folgede Ereigisse: a) A: Geau eimal Wappe. b) B:

Mehr

Erfolg im Mathe-Abi 2015

Erfolg im Mathe-Abi 2015 Gruber I Neuma Erfolg im Mathe-Abi 2015 Übugsbuch für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Ihaltsverzeichis Ihaltsverzeichis Aalysis 1 Tuel... 2 Widkraftalage... 7 3 Testzug... 8 4 Abkühlug...

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Stochastik für Physiker: Aufgaben und Lösungsvorschläge

Stochastik für Physiker: Aufgaben und Lösungsvorschläge Stochastik für Physiker: Aufgabe ud Lösugsvorschläge Simo Stützer Stad: 4. Februar 9 Aufgabe : Vergleiche Sie die Wahrscheilichkeit, beim Spiel mit eiem Würfel i 4 Würfe midestes eimal 6 zu würfel, mit

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe II mit gymasialer Oberstufe ud Fachschule - staatlich aerkat - Kurslehrer: Lagebach Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Verteilungsfunktionen

Verteilungsfunktionen Verteilugsfuktioe Wie sid zufällige Fehler verteilt? Wie sid Messwerte verteilt? Fehler Messwerte Verteilugsfuktioe: Maxwell-Boltza Feri-Dirac Bose-Eistei Placksche Verteilug Frage ist stets, wie groß

Mehr

Demo für www.mathe-cd.de

Demo für www.mathe-cd.de Wahrscheilichkeitsrechug Hypergeometrische Verteilug Themeheft ud Traiigsheft Datei r. 4211 Stad 17. April 2010 Friedrich W. Buckel Demo für ITERETBIBLIOTHEK FÜR SCHULMATHEMATIK 4211 Hypergeometrische

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Die zu den Zufallswerten x gehörigen Wahrscheinlichkeiten fasst man in einer Tabelle zusammen:

Die zu den Zufallswerten x gehörigen Wahrscheinlichkeiten fasst man in einer Tabelle zusammen: 0 Statistik 0. Wahrscheilichkeitsfuktio ud optische Darstellug Bei der Auswertug vo Zufallsexperimete ist oft gar icht das eizele Ergebis vo Iteresse, soder vielmehr eie Zahlegröße (Zufallsgröße X), die

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

noch einfacher von der Ergebnismenge was mit Treffer (meist T) oder Niete (meist N) gemeint sein soll.

noch einfacher von der Ergebnismenge was mit Treffer (meist T) oder Niete (meist N) gemeint sein soll. 9 Beroulli-Kette 9 Beroulli-Kette 9.1 Beroulli-Exerimete I viele Fälle geügt es zur stochastische Modellierug, Exerimete zu betrachte, die ur zwei mögliche Ergebisse habe. Ei eifaches Beisiel hierfür ist

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung www.s.schule.de/~matheabi 1 Wahrscheilichkeitsrechug Eileitug Dieser Text ist etstade, um Schülerie ud Schüler der Jahrgagsstufe 12 die Wiederholug des Stoffs voragegageer Jahre zu erleichter. Nebe viele

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

8. Der Wahrscheinlichkeitsbegriff

8. Der Wahrscheinlichkeitsbegriff 8. Der Wahrscheilichkeitsbegriff M.5 Wahrscheilichkeitsbegriff (ca. 0 Std.) Die Etwicklug eies abstrakte Wahrscheilichkeitsbegriffs erlaubt es de Schüler, verschiedee bereits aus de vorhergehede Jahrgagsstufe

Mehr

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK ABITURPRÜFUNG 007 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 0 Miute Wörterbuch zur deutsche Rechtschreibug Tascherecher (icht programmierbar, icht grafikfähig) Tafelwerk Wähle Sie vo

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

A D A E B D D E D E D C C D E

A D A E B D D E D E D C C D E ie Kombiatori beschäftigt sich mit der Zusammestellug vo lemete eier Mege. s werde 2 Kugel ohe Zurüclege aus zwei Ure gezoge. ie erste Ure ethält 3 Kugel ; ; ud die zweite Ure 2 Kugel ;. ie erste Kugel

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung Wichtigste Verteiluge der Biostatisti Disrete Zur Erierug Klassifizierug der Verteiluge Kotiuierliche Disrete Gleichverteilug Kotiuierliche Gleichverteilug Biomialverteilug Normalverteilug Poisso Verteilug

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Der Additionssatz und der Multiplikationssatz für Wahrscheinlichkeiten

Der Additionssatz und der Multiplikationssatz für Wahrscheinlichkeiten Der Additiossatz ud der Multiplikatiossatz für Wahrscheilichkeite Die Wahrscheilichkeitsrechug befasst sich mit Ereigisse, die eitrete köe, aber icht eitrete müsse. Die Wahrscheilichkeit eies Ereigisses

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Aufgaben Reflexionsgesetz und Brechungsgesetz

Aufgaben Reflexionsgesetz und Brechungsgesetz Aufgabe Reflexiosgesetz ud Brechugsgesetz 24. Zeiche zwei Spiegel, die sekrecht zueiader stehe. Utersuche mit zwei verschiede eifallede Strahle, welche Eigeschafte die reflektierte Strahle habe, die acheiader

Mehr

Aufgabe 1: Funktionale Modellierungen

Aufgabe 1: Funktionale Modellierungen Didaktik des Sachreches (Sek. I) Übugsblatt 4 Dr. Astrid Brikma Name, Vorame: Matrikelummer: Doppelte Lösuge führe zum Verlust aller Pukte beider Persoe-Gruppe. Die Lösuge sid hadschriftlich abzugebe.

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 6. Grudlage der Wahrscheilichkeitsrechug 6.. Defiitioe ud Beispiele Spiele aus dem Alltagslebe: Würfel, Müze, Karte,... u.s.w. sid gut geeiget die Grudlage der Wahrscheilichkeitsrechug darzustelle. Wir

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE Defiitio ach DIN4004 Als Zuverlässigkeit ( reliability ) gilt die Fähigkeit eier Betrachtugseiheit ierhalb vorgegebeer Greze dejeige durch de Awedugszweck bedigte Aforderuge zu geüge, die a das Verhalte

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Dynamisches Programmieren Stand

Dynamisches Programmieren Stand Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem:

Mehr

provadis School of International Managemet & Technology

provadis School of International Managemet & Technology Testvorbereitug Mathematik, V9 Prof. Dr. L. Eicher provadis School of Iteratioal Maagemet & Techology Hiweis: Alle Aufgabe sid ohe Hilfsmittel zu löse.. Bereche Sie: a 7, b, c, d, e 7, f 4. Kürze Sie ud

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Gesetz der großen Zahlen

Gesetz der großen Zahlen KAPITEL 0 Gesetz der große Zahle 0.. Zwei Beispiele Beispiel 0... Wir betrachte ei Beroulli-Experimet, das uedlich oft wiederholt wird. Die Wahrscheilichkeit für eie Erfolg sei p. Die Zufallsvariable,

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Prof. S. Krauter Kombinatorik. WS Blatt07.doc. (Quelle: M. Aigner; Diskrete Mathematik. Vieweg 1993.)

Prof. S. Krauter Kombinatorik. WS Blatt07.doc. (Quelle: M. Aigner; Diskrete Mathematik. Vieweg 1993.) Prof. S. Krauter Kobiatorik. WS-05-06. Blatt07.doc (Quelle: M. Aiger; Diskrete Matheatik. Vieweg 1993.) 1. a) Bereche Sie i Pascal sche Zahledreieck die Sue der Bioialkoeffiziete lägs eier Diagoale, also

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Stochastik. Eine Vorlesung für das Lehramtsstudium. Franz Hofbauer

Stochastik. Eine Vorlesung für das Lehramtsstudium. Franz Hofbauer Stochastik Eie Vorlesug für das Lehramtsstudium Fraz Hofbauer SS 01 Vorwort Der Begriff Wahrscheilichkeit wird üblicherweise mit Häufigkeit assoziiert. Was oft eitritt, hat hohe Wahrscheilichkeit, was

Mehr

Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse!

Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse! ohe Hilfsmittel. Bereche! ) 0 Üugsufge BLF ) lg 0, 0 c) 0 d) 0, 0 e) f) 00% vo 0, 7. Löse! ) 0, ) lg c) ( ) 0 0. Wie groß ist die Fläche des Kreises? ), cm² ) 5, cm² c) 6,5. Gi Defiitios ud Werteereich!

Mehr

Beurteilende Statistik - Testen von Hypothesen Übungsaufgaben (1)

Beurteilende Statistik - Testen von Hypothesen Übungsaufgaben (1) Moika Kobel, MK 07052005 Hypothesetest_Ueb_1cd Beurteilede Statistik - Teste vo Hypothese Übugsaufgabe (1) (1) (2) (3) (4) (5) (6) (7) (8) (9) Eie Fira öchte bei eie Sigifikaztest das Fehlerrisiko bzw

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen.

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen. Schülerbuchseite 98 1 Lösuge vorläufig IV Beurteilede Statistik S. 98 p S. 1 p w a t Tabelle Tabelle dowloadbar im Iteretauftritt 1 Teste vo Hypothese 1 a) Erwartugswert μ = 5 ud Stadardabweichug σ = 1,6;

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Geometrische Wahrscheinlichkeit, Crofton s Formel und ihre Anwendungen

Geometrische Wahrscheinlichkeit, Crofton s Formel und ihre Anwendungen Istitut für Iformatik, Abteilug I Semiar Algorithmische Geometrie ud algorithmische Bewegugsplaug SS 004 Prof. Dr.Rolf Klei Dr. Elmar Lagetepe Geometrische Wahrscheilichkeit, Crofto s Formel ud ihre Aweduge

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken Semiar: Radomisierte Algorithme Routeplaug i Netzwerke Marie Gotthardt 3. Oktober 008 Ihaltsverzeichis 1 Routeplaug i Netzwerke 1.1 Laufzeit eies determiistische Algorithmus'................ 1. Radomisierter

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

P{k Fehlschläge vor dem ersten Erfolg} P(X=k) = p k = f(k) = p(1-p) k, k= 0, 1, 2,..., 0< p <1, F(k) = 1 - q k+1, q:=1-p, E(X) = q p, var(x) = q p 2

P{k Fehlschläge vor dem ersten Erfolg} P(X=k) = p k = f(k) = p(1-p) k, k= 0, 1, 2,..., 0< p <1, F(k) = 1 - q k+1, q:=1-p, E(X) = q p, var(x) = q p 2 GEOMETRIC geometrische Verteilug (Pascalverteilug mit r)/geometric distributio (df)/ la loi geometrique/distribució geométrica/distribuzioe geometrica P{k Fehlschläge vor dem erste Erfolg} P(Xk) k f(k)

Mehr

Für die Vorlesung von Prof. Schmitz

Für die Vorlesung von Prof. Schmitz Agewadte Mathematik Skript Für die Vorlesug vo Prof. Schmitz Vo Michael Barth www.little-thigs.de Dak a Patrick Bader 1 Table of Cotets 6. Graphe ud Bäume... 3 6.1 Graphe...3 6.1.1 Grudlegede e...3 6.1.2

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Beurteilende Statistik - Testen von Hypothesen Alternativtest

Beurteilende Statistik - Testen von Hypothesen Alternativtest Moika Kobel 26.03.2005 Hypothesetest_i.mcd Beurteilede Statistik - Teste vo Hypothese Alterativtest Bsp.: Eie Fabrik liefert Schachtel mit Schraube hoher Qualität ( 10% der Schraube sid fehlerhaft ) ud

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage Kofidezitervall_fuer_pi.doc Seite 1 vo 6 Kofidezitervall für de Ateilswert π am Beispiel eier Meiugsumfrage Nach eier Meiugsumfrage der Wochezeitug Bezirksblatt vom März 005, ei halbes Jahr vor de Ladtagswahle

Mehr

4. Übung Konfidenzintervalle für Anteile und Mittelwerte

4. Übung Konfidenzintervalle für Anteile und Mittelwerte Querschittsbereich 1: Epidemiologie, Mediziische Biometrie ud Mediziische Iformatik - Übugsmaterial - Erstellt vo Mitarbeiter des IMISE ud des ZKS Leipzig 4. Übug Kofidezitervalle für Ateile ud Mittelwerte

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

Übungsaufgaben. Häufige Fehler: Banale Rechenfehler. Unsaubere Arbeitsweise. Signifikante Stellen falsch. Einheiten vergessen.

Übungsaufgaben. Häufige Fehler: Banale Rechenfehler. Unsaubere Arbeitsweise. Signifikante Stellen falsch. Einheiten vergessen. Übugsaufgabe Häufige Fehler: Baale Rechefehler Sigifikate Stelle falsch Eiheite vergesse Usaubere Arbeitsweise Rudugsfehler Eiheite falsch ugerechet T. Kießlig: Auswertug vo Messuge ud Fehlerrechug - Verteilugsfuktioe

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr