Derivate und Bewertung

Größe: px
Ab Seite anzeigen:

Download "Derivate und Bewertung"

Transkript

1 . Dr. Daniel Sommer Marie-Curie-Str Frankfurt am Main Klausur Derivate und Bewertung Wintersemester 006/07

2 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien Betrachten Sie eine Aktie S. Diese Aktie zahle während der Laufzeit der in dieser Aufgabe betrachteten Optionen keine Dividende. a) Gegeben seien drei Europäische Call-Optionen auf S mit Ausübungspreisen K 1 < K < K. Außerdem sei K = 0,5*( K 1 + K ). Konstruieren Sie aus diesen drei Optionen einen Butterflyspread. Nehmen Sie dabei an, dass Sie eine Option mit Ausübungspreis K 1 kaufen. Geben Sie an, welche Positionen Sie dementsprechend in den anderen Optionen halten müssen, damit das Zahlungsprofil eines Butterflyspreads resultiert. Zeichnen Sie dieses Zahlungsprofil der Einzelkomponenten und des kompletten Butterflyspreads. Beschriften Sie die Graphen eindeutig. b) Nehmen Sie nun allgemeiner an, dass K = λ * K 1 + (1-λ) * K mit 0 < λ < 1 ist. Zeigen Sie durch ein No-Arbitrage-Argument, dass gilt λ ( 01, ); K + ( 1 λ )K λpvc( t;k,t,e ) + ( 1 λ )PVC( t; K 1 = ( λk 1 ),T,E ) PVC( t; K,T,E ) > 0 c) Betrachten Sie folgendes Koordinatensystem, in dem die Preise der Optionen mit den Ausübungspreisen K 1 und K eingetragen sind. Kennzeichnen Sie den Bereich, in dem der Preis für die Option mit Ausübungspreis K liegen muss, damit keine Arbitragemöglichkeiten entstehen. (Hinweis: Berücksichtigen Sie dabei auch das in Teilaufgabe b) gezeigte Resultat.) Optionspreis Ausübungspreis K 1 K K d) Ein Derivat zahle 1 EUR, falls zum Fälligkeitszeitpunkt des Derivats der Kurs der obigen Aktie S zwischen 99 und 101 liegt. Sonst betrage die Auszahlung des Derivats Null. Zeichnen

3 Sie das Auszahlungsprofil dieses Derivates. Wie groß ist die Fläche, die dieses Auszahlungsprofil mit der x-achse einschließt. Geben Sie diesen Wert an. e) Gegeben seien die folgenden Optionspreise für Call-Optionen auf S mit der gleichen Laufzeit wie das Derivat Ausübungspreis = Ausübungspreis = Ausübungspreis = 99 EUR 100 EUR 101 EUR Call Preis 6,8919 EUR 6,710 EUR 5,8784 EUR Konstruieren Sie einen Butterflyspread, der die Auszahlung des Derivates aproximiert. Wählen Sie den Butterflyspread so, dass die Fläche, die das Auszahlungsprofil des Butterflyspreads mit der x-achse einschließt gleich der unter d) ermittelten Fläche ist, die das Auszahlungsprofil des Derivates mit der x-achse einschließt. Geben Sie an, wie viele Optionen mit den unterschiedlichen Ausübungspreisen Sie jeweils kaufen oder verkaufen müssen, um dieses Portfolio zu erzeugen. Berechnen Sie den Preis des Portfolios. f) Alternativ zu den obigen Optionspreisen sind folgende Preise von Cash-or-Nothing Optionen gegeben: Auszahlung 1 EUR, falls Aktienkurs > 99 EUR Auszahlung 1 EUR, falls Aktienkurs > 101 EUR Cash-or-Nothing-Preis 0,5401 EUR 0,47880 EUR Berechnen Sie mit Hilfe dieser Optionen den exakten Preis für das in Teilaufgabe d) beschriebene Derivat. Vergleichen Sie diesen mit dem in Teilaufgabe e) ermittelten approximativen Preis. Inwiefern rechtfertigt dieses Ergebnis die Aussage, dass die Preise von Butterflyspreads Approximationen von Zustandspreisen, d.h. Preisen von Arrow-Debreu- Securities darstellen?

4 Aufgabe : Exotische Optionen, statische Portfoliostrategien, Sensitivitäten Betrachten Sie den dividendengeschützten Aktienindex I. Eine Bank emittiert eine Anleihe, deren Verzinsung von der Performance dieses Index abhängt. Die Ausstattungsmerkmale der Anleihe sind wie folgt: Nominal: 100 EUR Laufzeit: Jahre Rückzahlung: 100 EUR pro 100 EUR Nominal Coupon: Jahr 1: 0% vom Nominal; der Gläubiger muss festlegen, ob er am Ende des Jahres einen Coupon von C1 oder C erhalten möchte. Jahr : Je nach Entscheidung des Gläubigers in Jahr 1 wird entweder der Coupon C1 oder der Coupon C bezogen auf das Nominal gezahlt: C1 = max[i / I 0 1; 0] ; C = max[1 I / I 0 ; 0]. Dabei ist I 0 der Indexstand zum Zeitpunkt der Emission der Anleihe und I der Indexstand nach Ablauf von Jahren a) Zeichnen Sie den Graphen der Höhe der Couponzahlung C1 und C in EUR je 100 EUR Nominal nach Ablauf von Jahren in Abhängigkeit vom Indexstand. b) Beschreiben Sie KURZ verbal die Entscheidungssituation des Gläubigers am Ende von Jahr 1. Wie wird sich der Gläubiger entscheiden, wenn der Index am Ende des Jahres 1 deutlich über I 0 steht? Wie wird er sich entscheiden, wenn der Index im Laufe des ersten Jahres stark gefallen ist? Gehen Sie bei Ihrer Antwort davon aus, dass der Gläubiger den Wert des Coupons maximieren möchte. c) Durch welche exotische Option lässt sich die Couponzahlung dieser strukturierten Anleihe darstellen? Geben Sie den Namen dieser Option an. d) Wie lässt sich der Preis einer Calloption auf einen dividendengeschützten Index mit Hilfe der Put-Call-Parität durch den Preis einer Putoption auf den selben Index, mit dem selben Ausübungspreis und der selben Laufzeit ausdrücken? Geben Sie die entsprechende Formel an und begründen Sie diese durch ein No-Arbitrage-Argument. e) Erläutern Sie, dass sich die exotische Option aus Teilaufgabe c) als ein Portfolio aus einer Calloption auf I /I 0 mit Laufzeit Jahren und Ausübungspreis 1 sowie eine Putoption auf I /I 0 mit Laufzeit 1 Jahr und Ausübungspreis 1*B(1;) darstellen lässt. Dabei ist B(1;) der Preis am Ende des Jahres 1 der Nullcouponanleihe mit Fälligkeit am Ende des Jahres. (Hinweis: Schreiben Sie die Entscheidungsregel des Emittenten aus Teilaufgabe b) mit Hilfe der max- Funktion und benutzen Sie die Put-Call-Parität aus Aufgabe d)) f) Wie hängt der Preis der in Teilaufgabe c) gesuchten exotischen Option von der Volatilität des Index I ab? Wie reagiert der Preis auf steigende, wie auf fallende Volatilitäten? Ist dieser Effekt stärker oder weniger stark als bei Standardoptionen? 4

5 Aufgabe : Zinsen Gegeben seien die folgenden Preise von Nullkuponanleihen ( t,t ) = ; B( t,t ) = 0, ; B( t,t ) =?????; B( t, t ) 0, B 0 1 0, = für die Laufzeiten von einem, zwei und vier Jahren. Außerdem sei gegeben der Swapsatz für einen Zinsswap mit einer Laufzeit von 4 Jahren sw ( t,t ) 0, = a) Erläutern Sie, was ein Zinsswap ist. Gehen Sie dabei besonders auf die wesentlichen Parameter ein, die bei Abschluß eines Swaps vereinbart werden müssen, um die Höhe der Zahlungen aus dem Swap eindeutig zu bestimmen (Angaben zum Settlement der Zahlungen wie z.b. Kontoangaben brauchen nicht erwähnt zu werden). Was versteht man unter den Begriffen Payer- und Receiver-Swap? b) Welche Beziehung besteht zwischen dem Swapsatz und den Preisen von Nullkuponanleihen? Drücken Sie in einer allgemeinen Formel unter Benutzung der obigen Notation den Swapsatz mit einer Laufzeit von N Jahren durch die Preise von Nullkuponanleihen aus. c) Erläutern Sie, dass die Zahlungsströme eines Receiver-Swaps am Abschlussstichtag durch eine Longposition in einem Fixed-Couponbond mit einem Coupon in Höhe des Swapsatzes und durch eine Shortposition in einer variabel verzinslichen Anleihe mit gleicher Laufzeit dargestellt werden können. d) Erläutern Sie durch ein No-Arbitrage-Argument basierend auf dem Ergebnis aus Teilaufgabe c), dass ausschließlich die in Teilaufgabe b) angegebene Formel für den Swapsatz mit einem Preis von Null für den Swap am Abschlusstag vereinbar ist. (Abweichungen zwischen Abschlusstag und Effective Day können unberücksichtigt bleiben.) e) Bestimmen Sie unter Benutzung der Formel aus Teilaufgabe b) auf Basis der oben angegebenen Daten zunächst den Wert der Nullcouponanleihe B(t 0,t ) und sodann des Swapsatz sw(t 0,t ) für einen Swap mit einer Laufzeit von Jahren. 5

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 30 60439 Franfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 2008/09 Klausur Derivate und Bewertung Wintersemester 2008/09 Aufgabe 1: Zinsurven,

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 7. Februar

Mehr

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik Aktienanleihe Konstruktion, Kursverhalten und Produktvarianten 18.02.2015 Christopher Pawlik 2 Agenda 1. Strukturierung der Aktienanleihe 04 2. Ausstattungsmerkmale der Aktienanleihen 08 3. Verhalten im

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007

Zinssätze. Georg Wehowar. 4. Dezember 2007 4. Dezember 2007 Grundlagen der Zinsrechnung Verschiedene Anleihen Forward Rate Agreement Forward Zinsen Allgemeines Allgemeine Grundlagen K 0... Anfangskapital K t... Kapital nach einer Zeitspanne t Z

Mehr

Optionen, Futures und andere Derivate

Optionen, Futures und andere Derivate John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 8., aktualisierte Auflage Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Higher Education München

Mehr

Bonus Zertifikate Geldanlage für Skeptiker

Bonus Zertifikate Geldanlage für Skeptiker Bonus Zertifikate Geldanlage für Skeptiker 4.12.2014 Martin Szymkowiak Eigenschaften von Bonus Zertifikaten Bonus Zertifikate 2 Für seitwärts tendierende, moderat steigende oder fallende Märkte Besitzen

Mehr

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte : Derivative und strukturierte Finanzprodukte Institut für Finanzmathematik Johannes Kepler Universität Linz 10. Jänner 2008 Wesentliche Fragen Was sind Derivate? Was sind strukturierte Finanzprodukte

Mehr

DAXplus Covered Call Der Covered Call-Strategieindex

DAXplus Covered Call Der Covered Call-Strategieindex DAXplus Covered Call Der Covered Call-Strategieindex Investment mit Puffer In Zeiten, in denen Gewinne aus reinen Aktienportfolios unsicher sind, bevorzugen Anleger Produkte mit einer höheren Rendite bei

Mehr

Aktienanleihen und Discount- Zertifikate. Heinrich Karasek Leiter Structured Products & Equites Bank Sal. Oppenheim jr. & Cie.

Aktienanleihen und Discount- Zertifikate. Heinrich Karasek Leiter Structured Products & Equites Bank Sal. Oppenheim jr. & Cie. Aktienanleihen und Discount- Zertifikate Heinrich Karasek Leiter Structured Products & Equites Bank Sal. Oppenheim jr. & Cie. (Österreich) AG 1 Aktienanleihen 2 Markterwartung und Anlagestrategie: Wann

Mehr

WGZ Discount-Zertifikate

WGZ Discount-Zertifikate ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN WGZ Discount-Zertifikate ZERTIFIKATE AUF AKTIEN ODER INDIZES Werbemitteilung! Bitte lesen Sie den Hinweis am Ende des Dokuments! Produktbeschreibung Das WGZ Discount-Zertifikat

Mehr

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (48 Punkte)

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (48 Punkte) Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (48 Punkte) Herr Smith ist bei einer Anlageberatungs-Gesellschaft für anlagen verantwortlich. Um eine Tabelle mit Marktrenditen (Tabelle

Mehr

Ein Cap ist eine vertragliche Vereinbarung, bei der der kaufenden Partei gegen Zahlung einer Prämie eine Zinsobergrenze garantiert wird.

Ein Cap ist eine vertragliche Vereinbarung, bei der der kaufenden Partei gegen Zahlung einer Prämie eine Zinsobergrenze garantiert wird. Zinsoptionen Eine Option ist eine Vereinbarung zwischen zwei Vertragsparteien, bei der die kaufende Partei das Recht hat, ein bestimmtes Produkt während eines definierten Zeitraums zu einem vorher bestimmten

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

USD 5 JAHRES 100% KAPITALSCHUTZ-ZERTIFIKAT MIT 40% PARTIZIPATION AUF DEN BLACKROCK GLOBAL ALLOCATION FUND

USD 5 JAHRES 100% KAPITALSCHUTZ-ZERTIFIKAT MIT 40% PARTIZIPATION AUF DEN BLACKROCK GLOBAL ALLOCATION FUND USD 5 JAHRES 100% KAPITALSCHUTZ-ZERTIFIKAT MIT 40% PARTIZIPATION AUF DEN BLACKROCK GLOBAL ALLOCATION FUND Julius Baer Structured Products Tailored Solutions Group 28. Januar 2015 BLACKROCK GLOBAL ALLOCATION

Mehr

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Praktische Fragestellungen

Mehr

Derivate. Risikomanagement mit Optionen. Falk Everding

Derivate. Risikomanagement mit Optionen. Falk Everding Derivate Risikomanagement mit Optionen Falk Everding Inhalt Einführung Kassa- und Termingeschäfte Basisgüter bei Optionen Handelsplätze von Optionen Optionsarten Funktionsweisen von Optionen Ausstattungsmerkmale

Mehr

Test 1 (zu den Kapiteln 1 bis 6)

Test 1 (zu den Kapiteln 1 bis 6) Test 1 1 Test 1 (zu den Kapiteln 1 bis 6) Bearbeitungszeit: 90 Minuten Aufgabe T1.1: Bekanntmachung EUR 1.000.000.000,- Anleihe mit variablem Zinssatz der Fix AG von 2003/2013, Serie 111 Zinsperiode: 12.10.2006

Mehr

Bewertung von Finanzinstrumenten

Bewertung von Finanzinstrumenten Prof. Dr. Arnd Wiedemann Bewertung von Finanzinstrumenten Wintersemester 2013/2014 Financial Engineering Bewertung von Finanzinstrumenten Financial Engineering ist die Kunst der zielgerichteten Konstruktion

Mehr

Entspricht der Basiswert einem Aktienindex, so spricht man von einer Indexanleihe (oder auch Reverse- Convertible-Bond).

Entspricht der Basiswert einem Aktienindex, so spricht man von einer Indexanleihe (oder auch Reverse- Convertible-Bond). ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN WGZ ZERTIFIKATE AUF INDIZES Werbemitteilung! Bitte lesen Sie den Hinweis am Ende des Dokuments! Produktbeschreibung Entspricht der Basiswert einem Aktienindex, so spricht

Mehr

Devisenoptionsgeschäfte

Devisenoptionsgeschäfte Devisenoptionsgeschäfte Die kaufende Partei einer Option erwirbt durch Zahlung der Prämie von der verkaufenden Partei das Recht, jedoch keine Verpflichtung, einen bestimmten Währungsbetrag zu einem vorher

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Bonus- und Teilschutz-Zertifikate. Bank Sal. Oppenheim jr. & Cie. (Österreich) AG ERSTE Bank der oesterr. Sparkassen 1

Bonus- und Teilschutz-Zertifikate. Bank Sal. Oppenheim jr. & Cie. (Österreich) AG ERSTE Bank der oesterr. Sparkassen 1 Bonus- und Teilschutz-Zertifikate Heinrich Karasek Ronald Nemec Leiter Equities & Structured Products Leiter Equities and Derivatives Trading Bank Sal. Oppenheim jr. & Cie. (Österreich) AG ERSTE Bank der

Mehr

Frage 1: Analyse und Bewertung von festverzinslichen Anlagen (41 Punkte)

Frage 1: Analyse und Bewertung von festverzinslichen Anlagen (41 Punkte) Frage 1: Analyse und Bewertung von festverzinslichen Anlagen (41 Punkte) Sie haben gerade als Analyst im Bereich festverzinsliche Anlagen zu arbeiten begonnen. An Ihrem ersten Arbeitstag werden Sie mit

Mehr

Transparentes Reporting von strukturierten Produkten. Zürich, 2. Oktober 2008 Rolf Burgermeister

Transparentes Reporting von strukturierten Produkten. Zürich, 2. Oktober 2008 Rolf Burgermeister Transparentes Reporting von strukturierten Produkten Zürich, 2. Oktober 2008 Rolf Burgermeister Agenda 1. Einführung 2. Konzept: effektives Exposure 3. Umsetzung bei Wegelin & Co. 4. Zusammenfassung und

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 6. Februar

Mehr

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (50 Punkte)

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (50 Punkte) Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (50 Punkte) Sie sind bei einer Versicherungsgesellschaft in Land Z Analyst in der Abteilung, die für Obligationenanlagen verantwortlich

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Zur Bewertung von Derivaten Eine Einführung

Zur Bewertung von Derivaten Eine Einführung Zur Bewertung von Derivaten Eine Einführung Dr. Volkert Paulsen 17. September 2009 Im wesentlichen unternimmt man auf Finanzmärkten eine Zweiteilung in Basis- und derivative Finanzgüter. Ein Anteil an

Mehr

Gegeben sind folgende Kassazinssätze für 3 bzw. 4 Jahre: i3 = 3% und i4 = 4%. Wie hoch ist der Terminzinssatz zum Zeitpunkt 3 für ein Jahr

Gegeben sind folgende Kassazinssätze für 3 bzw. 4 Jahre: i3 = 3% und i4 = 4%. Wie hoch ist der Terminzinssatz zum Zeitpunkt 3 für ein Jahr Übung 1 (Terminzins) Gegeben sind folgende Kassazinssätze für 3 bzw. 4 Jahre: i3 = 3% und i4 = 4%. Wie hoch ist der Terminzinssatz zum Zeitpunkt 3 für ein Jahr a. 7,0%; b. 6,02%; c. 3,5%; d. 2,01% Übung

Mehr

Lösungshinweise zum Aufgabenteil aus Kapitel 6

Lösungshinweise zum Aufgabenteil aus Kapitel 6 Lösungshinweise zum Aufgabenteil aus Kapitel 6 Aufgabe 6.A Zu 1. Ein Export nach Europa ist dann von Vorteil, wenn der US$- -Wechselkurs größer als Eins ist, d. h. wenn man für einen Euro mehr als einen

Mehr

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (56 Punkte)

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (56 Punkte) Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (56 Punkte) Sie sind neu verantwortlich für das Risikomanagement einer Pensionskasse. Die Kasse hat bisher nur in fest verzinsliche Wertpapiere

Mehr

Abschlussklausur am 24. März 2005

Abschlussklausur am 24. März 2005 Aufgabe 1 2 3 4 Punkte Institut für Geld- und Kapitalverkehr Vorlesung Nr. 03.511 der Universität Hamburg Finanzmanagement (Finanzierung) Prof. Dr. Hartmut Schmidt Wintersemester 2004/2005 Abschlussklausur

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Kapitle 3: Swaps und Forward Swaps

Kapitle 3: Swaps und Forward Swaps Kapitle 3: Swaps und Forward Swaps Stefan Ehrenfried Institut für Finanzmathematik Universität Ulm 13.12.2011 Inhaltsverzeichnis 1 Grundlagen 2 Zinsswaps 3 Bewertung 1-jähriger Forward-Swaps Fixed for

Mehr

Minimale Preisbewegung: 1 Punkt, entsprechend einem Wert von 10 Franken März, Juni, September, Dezember

Minimale Preisbewegung: 1 Punkt, entsprechend einem Wert von 10 Franken März, Juni, September, Dezember Exkurs 5 Derivate Logistik Exkurs Anlage in Derivaten Derivate (lat. derivare = ableiten) sind entwickelt worden, um Risiken an den Waren- und Finanzmärkten kalkulierbar und übertragbar zu machen. Es sind

Mehr

Financial Engineering....eine Einführung

Financial Engineering....eine Einführung Financial Engineering...eine Einführung Aufgabe 1: Lösung Überlegen Sie sich, wie man eine Floating Rate Note, die EURIBOR + 37 bp zahlt in einen Bond und einen Standard-Swap (der EURIBOR zahlt) zerlegen

Mehr

So wähle ich die EINE richtige Option aus

So wähle ich die EINE richtige Option aus So wähle ich die EINE richtige Option aus Rainer Heißmann, Dresden, 16.01.2016 Experten. Sicherheit. Kompetenz. So wähle ich die EINE richtige Option aus Seite 2 von 18 Geld machen Voltaire (französischer

Mehr

Aufgabe 1: Bewertung von Derivaten

Aufgabe 1: Bewertung von Derivaten Aufgabe 1: Bewertung von Derivaten Teil I: Allgemeine Bewertungstheorie Am arbitragefreien Kapitalmarkt werden europäische und amerikanische Kauf- und Verkaufsoptionen mit einer Restlaufzeit von jeweils

Mehr

4592 Kapitalmarkt und Risikomanagement, WS 2001/02. Übung 2

4592 Kapitalmarkt und Risikomanagement, WS 2001/02. Übung 2 4592 Kapitalmarkt und Risikomanagement, WS 2001/02 Übung 2 Abgabe bis spätestens 29.1.2002 Assistenz: christian.buhl@unibas.ch Die Übung gilt bei Erreichen von mindestens 60 Punkten als bestanden (maximal

Mehr

Anlage in Finanzderivaten / Strukturierten Wertpapieren

Anlage in Finanzderivaten / Strukturierten Wertpapieren Anlage in Finanzderivaten / Strukturierten Wertpapieren Prof. Dr. Martin Schmidt Friedberg, 24.10.2012 UNIVERSITY OF APPLIED SCIENCES Seite 1 Übersicht 1. Wovon reden wir eigentlich? 2. Wie bekommt man

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Basiselemente strukturierter Finanzprodukte

Basiselemente strukturierter Finanzprodukte Basiselemente strukturierter Finanzprodukte Basiselemente Kassageschäfte Termingeschäfte Optionsgeschäfte Festgeschäfte Zinstitel -Nullkuponanleihen -Kuponanleihen Aktientitel -Aktien -Indizes -Baskets

Mehr

Inspiriert investieren GESAMMELTE WERTE. Spitzenreiter-Zertifikate. Unsere gemeinsame Inspiration - rückwirkend optimieren!

Inspiriert investieren GESAMMELTE WERTE. Spitzenreiter-Zertifikate. Unsere gemeinsame Inspiration - rückwirkend optimieren! GESAMMELTE WERTE Spitzenreiter-Zertifikate Unsere gemeinsame Inspiration - rückwirkend optimieren! Spitzenreiter-Zertifikate Mit Spitzenreiter-Zertifikaten müssen Sie sich nicht für eine bestimmte Anlageklasse

Mehr

ACI Diploma (009) Musterfragen

ACI Diploma (009) Musterfragen ACI Diploma (009) Musterfragen Setting the benchmark in certifying the financial industry globally 8 Rue du Mail, 75002 Paris - France T: +33 1 42975115 - F: +33 1 42975116 - www.aciforex.org The ACI Diploma

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten Anlagestrategien mit Hebelprodukten Hebelprodukte sind Derivate, die wie der Name schon beinhaltet gehebelt, also überproportional auf Veränderungen des zugrunde liegenden Wertes reagieren. Mit Hebelprodukten

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

Musterlösung Übung 2

Musterlösung Übung 2 Musterlösung Übung 2 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Formelsammlung. K N = K 0 (1 + i) N. Aufzinsen (exp., jährl. Verzinsung) + i nom. Aufzinsen (exp., unterj. Verzinsung) K N = K 0 e i nom N

Formelsammlung. K N = K 0 (1 + i) N. Aufzinsen (exp., jährl. Verzinsung) + i nom. Aufzinsen (exp., unterj. Verzinsung) K N = K 0 e i nom N Formelsammlung Aufzinsen (exp., jährl. Verzinsung) Aufzinsen (exp., unterj. Verzinsung) Aufzinsen (exp., stetige Verzinsung) K N = K 0 (1 + i) N K N = K 0 (1 + i nom m K N = K 0 e i nom N ) m N konformer

Mehr

Trader-Ausbildung. Teil 1 Einleitender Teil

Trader-Ausbildung. Teil 1 Einleitender Teil Trader-Ausbildung Teil 1 Einleitender Teil Teil 1 - Einleitender Teil - Was ist "die Börse" (und wozu brauche ich das)? - Was kann ich an der Börse handeln? (Aktien, Zertifikate, Optionsscheine, CFDs)

Mehr

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr.

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Optionen, Futures und andere Derivate 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner 11 Eigenschaften von Aktienoptionen

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

VDAX-NEW. Der neue Volatilitätsindex der Deutschen Börse

VDAX-NEW. Der neue Volatilitätsindex der Deutschen Börse VDAX-NEW Der neue Volatilitätsindex der Deutschen Börse Volatilität handeln Die Wertentwicklung eines Investments wird neben der Rendite auch vom Risiko bestimmt, mit dem die erwartete Rendite verknüpft

Mehr

15 Jahre Discount-Zertifikate Geschichte, Hintergründe, Einsatzbereiche

15 Jahre Discount-Zertifikate Geschichte, Hintergründe, Einsatzbereiche 15 Jahre Discount-Zertifikate Geschichte, Hintergründe, Einsatzbereiche Derivate Roundtable Frankfurt, 28. Juli 2010 Prof. Dr. Lutz Johanning Chair of Empirical Capital Market Research WHU Otto Beisheim

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Übungsblatt 13 - Probeklausur

Übungsblatt 13 - Probeklausur Aufgaben 1. Der Kapitalnehmer im Kapitalmarktmodell a. erhält in der Zukunft einen Zahlungsstrom. b. erhält heute eine Einzahlung. c. zahlt heute den Preis für einen zukünftigen Zahlungsstrom. d. bekommt

Mehr

Beginn der Verzinsung. Vorlaufzeit (meist maximal 6 Monate) Gesamtlaufzeit (selten über 24 Monate) Vergleich von Referenzzinssatz und Forward Rate

Beginn der Verzinsung. Vorlaufzeit (meist maximal 6 Monate) Gesamtlaufzeit (selten über 24 Monate) Vergleich von Referenzzinssatz und Forward Rate 2.6.2.1 Forward Rate Agreement (FRA) EinForward-Kontrakt istdie Vereinbarung zwischen zwei Kontraktparteien über die Lieferung und Zahlung eines bestimmten Gutes zu einem späteren Zeitpunkt (Termingeschäft).

Mehr

Frage 1: Bewertung und Analyse von festverzinslichen Anlagen (43 Punkte)

Frage 1: Bewertung und Analyse von festverzinslichen Anlagen (43 Punkte) Frage 1: Bewertung und Analyse von festverzinslichen Anlagen (43 Punkte) Sie sind verantwortlich für die Emissionsabteilung einer europäischen Bank, welche vor 10 Jahren folgende ewig laufende, nachrangige

Mehr

B.A. Seminar Derivate: Märkte & Produkte

B.A. Seminar Derivate: Märkte & Produkte B.A. Seminar Derivate: Märkte & Produkte B. Nyarko S. Opitz Lehrstuhl für Derivate Sommersemester 2014 B. Nyarko S. Opitz (UHH) B.A. Seminar Derivate: Märkte & Produkte Sommersemester 2014 1 / 23 Organisatorisches

Mehr

Target Volatility & Risk Control Indizes. Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz)

Target Volatility & Risk Control Indizes. Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz) Target Volatility & Risk Control Indizes Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz) Agenda Einleitung/Motivation Der Risk Control Mechanismus Exkurs: Varianz- und Volatilitätsschätzer

Mehr

Zertifikate - eine Alternative zur Aktie

Zertifikate - eine Alternative zur Aktie Zertifikate - eine Alternative zur Aktie 04.11.2014 Christopher Pawlik Börse Frankfurt Zertifikate AG, November 2014 2 Inhaltsverzeichnis 1. Börse Frankfurt Zertifikate AG - Unternehmensprofil 2. Was sind

Mehr

Dossier Anlage in Derivaten

Dossier Anlage in Derivaten Dossier Anlage in Derivaten Derivate (lat. derivare = ableiten) sind entwickelt worden, um Risiken an den Waren- und Finanzmärkten kalkulierbar und übertragbar zu machen. Es sind Instrumente, die sich

Mehr

Private Banking. Region Ost. Risikomanagement und Ertragsverbesserung durch Termingeschäfte

Private Banking. Region Ost. Risikomanagement und Ertragsverbesserung durch Termingeschäfte Private Banking Region Ost Risikomanagement und Ertragsverbesserung durch Termingeschäfte Ihre Ansprechpartner Deutsche Bank AG Betreuungscenter Derivate Region Ost Vermögensverwaltung Unter den Linden

Mehr

WGZ Sprint-Zertifikate

WGZ Sprint-Zertifikate ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN Stand: Dezember 2010 WGZ Sprint-Zertifikate ZERTIFIKATE AUF AKTIEN ODER INDIZES Werbemitteilung! Bitte lesen Sie den Hinweis am Ende des Dokuments! Produktbeschreibung

Mehr

institut für banken und finanzplanung institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch

institut für banken und finanzplanung institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch Weiterbildungsseminar vom Freitag, 27. März 2009 in Nuolen im Auftrag von Volkswirtschaftsdepartement, Kanton Schwyz

Mehr

Klausur zur Vorlesung Finanz- und Bankmanagement

Klausur zur Vorlesung Finanz- und Bankmanagement Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft [Aufkleber] Klausur zur Vorlesung Finanz- und Bankmanagement Prof. Dr. Marco Wilkens 06. Februar 2012

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 27. April 2015 Diskontfaktoren: Legt man heute (in t) 1 Einheit bis T an, und erhält dafür in T insgesamt x zurück (mit Zinseszins,

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Die beste Investment-Erfahrung Ihres Lebens: Optionen

Die beste Investment-Erfahrung Ihres Lebens: Optionen Die beste Investment-Erfahrung Ihres Lebens: Optionen Rainer Heißmann, Frankfurt, 27.03.2015 Experten. Sicherheit. Kompetenz. Die beste Investment-Erfahrung Ihres Lebens Optionen (nicht Optionsscheine)

Mehr

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53 zu Aufgabe 3b) Binomialmodell: C 0 S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 S 0 0,909 65,8 6,53 Frage: Wie setzt sich das Duplikationsportfolio des Calls (anteiliger Aktienkauf teilweise kreditfinanziert)

Mehr

Volatilitätsstrategie mit Optionen

Volatilitätsstrategie mit Optionen MT AG MANAGING TECHNOLOGY IMPROVING BUSINESS PERFORMANCE Volatilitätsstrategie mit Optionen Referent: Guido Neander, Senior-Berater, MT AG, Ratingen Agenda Begriffsdefinitionen Optionen Volatilität Preisbestimmungsfaktoren

Mehr

Finance: Übungsserie I

Finance: Übungsserie I Thema Dokumentart Finance: Übungsserie I Lösungen Theorie im Buch "Integrale Betriebswirtschaftslehre" Teil: D1 Finanzmanagement Finance: Übungsserie I Aufgabe 1 1.1 Erklären Sie, welche zwei Arten von

Mehr

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

ERSTER TEIL: Multiple Choice Fragen

ERSTER TEIL: Multiple Choice Fragen ERSTER TEIL: Multiple Choice Fragen (48 Punkte) Nachfolgend müssen Sie 13 Multiple Choice Fragen beantworten. Kreuzen Sie bitte die richtige Antwort in den dafür vorgesehenen Feldern an. Nur eine Antwort

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Finanzierungsmöglichkeiten für Gemeinden

Finanzierungsmöglichkeiten für Gemeinden Herzlich Willkommen Klagenfurt Schloss Krastowitz, 8.Feb.2005 Mag. Johannes Fries Finanzierungsmöglichkeiten für Gemeinden 1 Kommunalkredit Austria AG (KA) Bilanzsumme (31.12.2004): EUR 14.186 Mio. MitarbeiterInnen:

Mehr

Forward Rate Agreements sind OTC-Produkte, werden meist telefonisch vereinbart.

Forward Rate Agreements sind OTC-Produkte, werden meist telefonisch vereinbart. 3.6 Derivate Finanzinstrumente / 3.6.2 Forward Rate Agreement EinForward-Kontrakt ist die Vereinbarung zwischen zwei Kontraktparteien über die Lieferung und Zahlung eines bestimmten Gutes zu einem späteren

Mehr

Inspiriert investieren

Inspiriert investieren EXTRACHANCEN NUTZEN Siemens Twin-Win-Zertifikate Performance steigern, Risiken minimieren! Twin-Win-Zertifikate Mit Siemens Twin-Win-Zertifikaten profitieren Sie sowohl von einem steigenden als auch leicht

Mehr

Risikomanagement mit Option, Futures und Swaps.

Risikomanagement mit Option, Futures und Swaps. Risikomanagement mit Option, Futures und Swaps. Warum existieren Derivate? Ilya Barbashin Das Grundprinzip eines jeden Derivats ist, dass Leistung und Gegenleistung nicht wie bei Kassageschäft Zug-um-

Mehr

Das neue BIZ-EZB-IWF Handbuch zur Wertpapierstatistik

Das neue BIZ-EZB-IWF Handbuch zur Wertpapierstatistik 8. Berliner VGR-Kollouium 18. und 19. Juni 2015 Das neue BIZ-EZB-IWF Handbuch zur Wertpapierstatistik Dr. Reimund Mink vormals Europäische Zentralbank Übersicht Gemeinsame Veröffentlichung des Handbuchs

Mehr

Sicherheit und Mehr. Strukturierte Anleihen

Sicherheit und Mehr. Strukturierte Anleihen Sicherheit und Mehr Strukturierte Anleihen Frankfurt am Main, 11. Mai 2005 Suche nach Sicherheit Kapitalgarantie und Performance-Kick gesucht Umfeld ist bestimmt durch niedriges Zinsniveau und Reservation

Mehr

Investition und Finanzierung

Investition und Finanzierung Tutorium Investition und Finanzierung Sommersemester 2014 Investition und Finanzierung Tutorium Folie 1 Inhaltliche Gliederung des 3. Tutorium Investition und Finanzierung Tutorium Folie 2 Aufgabe 1: Zwischenform

Mehr

Frage 1: Bewertung und Analyse von festverzinslichen Wertpapieren (50 Punkte)

Frage 1: Bewertung und Analyse von festverzinslichen Wertpapieren (50 Punkte) Frage 1: Bewertung und Analyse von festverzinslichen Wertpapieren (50 Punkte) Sie arbeiten bei einer international tätigen Bank als Portfolio Manager. Eine Kundin zeigt Ihnen ihre gegenwärtigen Anlagen,

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 LIBOR-Raten: Forwardrate: L(t, T ) = 1 P (t, T ) δ(t, T ) P (t, T ) = 1 δ(t, T ) 1 P (t, T ) = 1 + L(t, T ) δ(t, T ). f(t;

Mehr

Internationale Finanzierung 8. Forwards, Futures und Swaps

Internationale Finanzierung 8. Forwards, Futures und Swaps Übersicht Kapitel 8: 8.1. Einführung 8.2. Preisbildung für Forwards und Futures 8.3. Ein Preismodell für Forwards und Futures 8.4. Hedging mit Financial Futures und Forwards 8.5. Der optimale Hedge-Ratio

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

Aufgabe 1: Bewertung von Optionen (48 Punkte)

Aufgabe 1: Bewertung von Optionen (48 Punkte) Aufgabe 1: Bewertung von Optionen (48 Punkte) Am arbitragefreien Kapitalmarkt werden europäische und amerikanische nicht dividendengeschützte Verkaufsoptionen auf eine Aktie mit einer Restlaufzeit von

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner Optionsstrategien Die wichtigsten marktorientierte Strategien Jennifer Wießner Yetkin Uslu 12.05.2014 Gliederung Grundlagen Definition einer Option Begriffsbestimmungen Optionen Put Option Call Option

Mehr

Mitteilung der Offenlegungsstelle vom 3. Dezember 2013 II/13. Offenlegung von Finanzinstrumenten. Zusammenfassung: Finanzinstrumente mit Realerfüllung

Mitteilung der Offenlegungsstelle vom 3. Dezember 2013 II/13. Offenlegung von Finanzinstrumenten. Zusammenfassung: Finanzinstrumente mit Realerfüllung Mitteilung der Offenlegungsstelle vom 3. Dezember 2013 II/13 Offenlegung von Finanzinstrumenten Zusammenfassung: Finanzinstrumente mit Realerfüllung Meldepflichtig sind gemäss Art. 15 Abs. 1 Bst. a und

Mehr

Umsetzung von Aktieninvestments mit Strukturierten Produkten September 2014

Umsetzung von Aktieninvestments mit Strukturierten Produkten September 2014 Umsetzung von Aktieninvestments mit Strukturierten Produkten September 2014 2014 Swiss Structured Products Association www.ssps-association.ch Agenda 1. Kapitalschutz Kapitalschutz-Produkt mit Partizipation

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Michaela Baumann Universität Bayreuth Dornbirn, 12. März 2015 Motivation Ein Kunde möchte bei einer Bank

Mehr