Kunde. Kontobewegung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kunde. Kontobewegung"

Transkript

1 Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig Abbildug E/R ach relatioal - Beispiel: Kotoführug Kategorie Bezeichug Klassifikatioskriterium 1 hat Kude Vorame Name Gebdat besitzt m 1 Koto Gebühr Kotor Betrag 1 1 hat erstellt Datum Betrag Bewegugsart listet m Kotobewegug Kotoauszug Erstelldat Startdat Gesamt Aufgabe 1: Umsetze eies E/R-Diagramms i ei relatioales Schema Setze Sie das obe agegebee E/R-Schema i ei relatioales Modell um. Beachte Sie dabei, dass zu jeder relatioale Tabelle ei Schlüssel ud zu jedem Attribut ei Typ gehört. Gehe Sie dabei i folgede Teilschritte vor: 1. Setze Sie alle starke Etitäte um. 2. Setze sie alle schwache Etities um. Welcher Uterschied ergibt sich zu 1.? 3. Setze sie alle Beziehuge um. 4. Köe i dem so etstadee Relatioeschema Tabelle zusammegefaßt werde? 5. Bestimme Sie für alle Tabelle die Fremdschlüssel. Auf welche Tabelle verweise sie? 1.1. Starke Etitäte: Kategorie: (Bezeichug:strig, Klassifikatioskriterium:strig) Kude: (Vorame:strig, Name:strig, Gebdat:date) Koto: (Kotor: iteger, Betrag:umeric, Gebühr:umeric) 1.2. Schwache Etitäte: Kotobewegug: (Datum:date, Vorame:strig, Name:strig, Gebdat:date, Kotor:iteger, Betrag: umeric, Bewegugsart: strig) Kotoauszug: (Erstelldat:date, Kotor:iteger, Startdat:date, Gesamt:umeric) -1-

2 1.3. Beziehuge: hatkateg: (Vorame:strig, Name:strig, Gebdat:date, Bezeichug:strig) besitzt: (Vorame:strig, Name:strig, Gebdat:date, Kotor:iteger) listet: (Erstelldat:date, Kotor:iteger, Datum:date, Vorame:strig, Name:strig, Gebdat:date) Für hatkotobewegug ud erstellt werde keie Tabelle agelegt, da sie die jeweils starke mit de zugehörige schwache Etitäte verbide Zusammefasse Zusammefasse ka ma Tabelle i der Regel da, es sich um eie 1: bzw. 1:1 Beziehug hadelt ud die Tabelle gleiche Schlüssel aufweise. I userem Beispiel ist dies bei de Tabelle Kude ud hatkateg der Fall: Kude: (Vorame:strig, Name:strig, Gebdat:date) hatkateg: (Vorame:strig, Name:strig, Gebdat:date, Bezeichug:strig) wird zu Kude: (Vorame:strig, Name:strig, Gebdat:date, Bezeichug:strig) 1.5. Fremdschlüssel Kude:Bezeichug verweist auf Kategorie:Bezeichug Kotobewegug:Vorame, Name, Gebdat verweist auf Kude:Vorame, Name, Gebdat Kotobewegug:Kotor verweist auf Koto:Kotor besitzt:vorame, Name, Gebdat verweist auf Kude:Vorame, Name, Gebdat besitzt:kotor verweist auf Koto:Kotor listet:erstelldat, Kotor verweist auf Kotoauszug:Erstelldat, Kotor listet:datum, Kotor verweist auf Kotobewegug:Datum, Kotor listet:vorame, Name, Gebdat verweist auf Kude:Vorame, Name, Gebdat -2-

3 Aufgabe 2: Alterative Schlüsselumsetzug Nebe der klassische Darstellug vo Primärschlüssel als Werte aus der Attributmege gibt es och die Möglichkeit, de Elemete küstlich erzeugte eideutige Idetifikatore zuzuweise, z.b. eie fortlaufede Nummer. Wa dies i eiem relatioale Schema sivoll sei ka, zeigt diese Aufgabe: 1. Betrachte Sie dazu die Etität Kude ud seie Beziehuge. Erstelle Sie eie Umsetzug, die eie küstlich erzeugte eideutige Kudeummer verwedet. 2. Schätze Sie u ab, wie viel Speicherplatz sowohl i der Modellierug aus Aufgabe 1 als auch i der eue Modellierug beötigt wird. Es gelte folgede Abschätzuge: Azahl der Kude: Azahl der Kote: Azahl der Kotobeweguge: (im Jahr) Kotobeweguge pro Kotoauszug: 5 Für de Kudeame etc. köe sie eie durchschittliche Speicherbedarf vo 15 Byte aehme. Zur Darstellug vo Zahletype sollte immer der ächstgrößere Stadardtyp verwedet werde, also 16, 32, 64, 128 bit (Datum als 16bit-Zahl, Betrag als 48bit Zahl (Datetyp Numeric)) Umsetzug mit eier küstlich erzeugte eideutige Kudeummer: Kude: (Kuder:iteger, Vorame:strig, Name:strig, Gebdat:date, Bezeichug:strig) Kotobewegug: (Datum:date, Kuder:iteger, Kotor:iteger, Betrag: umeric, Bewegugsart: strig) besitzt: (Kuder:iteger, Kotor:iteger) listet: (Erstelldat:date, Kotor:iteger, Datum:date, Kuder:iteger) 2.2. Speicherbedarf pro Tupel i Bytes (i gleicher Attributreihefolge wie i 2.1.). Kude klassisch: = 47 Kude ID: = 51 Kotobewegug klassisch: = 59 Kotobewegug ID: = 31 besitzt klassisch: = 36 besitzt ID: 4+4 = 8 listet klassisch: = 40 listet ID: = 12 Tabelle /Platz Pro Eitrag Pro Eitrag ID Gesamt Gesamt ID klassisch klassisch Kude * *10 8 Kotobewegug * *10 8 besitzt * *10 8 listet * *10 8 Gesamt 7.1 GB 3.3 GB -3-

4 Aufgabe 3: Modellierugsalterative für Geeralisieruge Girokoto Dispolimit Telebakig Festgeldkoto F ä llig ke it Zissatz Is-a Is-a Koto Gebühr Kotor. Guthabe Es verschiedee Alterative zur Darstellug der Geeralisierug: Tabelle pro Etitiy, bei der für jede Etity des Diagramms auch eie eigee Tabelle erstellt wird. Pushdow, bei der alle Geeralisierugsattribute i der Spezialisierugstabelle platziert werde. Pullup, bei der alle Spezialisierugsattribute i eie eizige Geeralisierugstabelle heraufgezoge werde. Die Vor- ud Nachteile der eizele Strategie solle am Beispiel deutlich werde. 1. Bilde Sie für jede dieser Asätze das obige E/R-Schema auf ei relatioales Schema ab. Welche Date werde i de Tabelle abgelegt? Tabelle pro Etity: Koto: (Kotor, Guthabe, Gebühr) Festgeldkoto: (Kotor, Fälligkeit, Zissatz) Girokoto: (Kotor, Dispolimit, Telebakig) Pushdow: Festgeldkoto: (Kotor, Guthabe, Gebühr, Fälligkeit, Zissatz) Girokoto: (Kotor, Guthabe, Gebühr, Dispolimit, Telebakig) Zusatzüberlegug: Gibt es Elemete i der Geeralisierug, die icht Elemete eier Spezialisierug etspreche, z.b. Kote, die weder Girokote och Festgeldkote sid? We ja, da muss auch eie Tabelle Koto agelegt werde, die diese (ud ur diese) aufimmt. Koto: (Kotor, Guthabe, Gebühr) Pullup: Koto: (Kotor, Typ, Guthabe, Gebühr, Fälligkeit, Zissatz, Dispolimit, Telebakig) Alle für eie bestimmte Ausprägug icht otwedige Attribute werde leer gelasse, bzw. mit NULL belegt (Vorgriff auf SQL). Nebe de Attribute aller Klasse muss och ei Typidetifikator hizugefügt werde, der es ermöglicht, de Etitytyp für eie Eitrag zu erkee. Eie Überprüfug a Had vo leere ud belegte Felder ka diese ur da ersetze, we sichergestellt ist, dass die idetifizierede Felder immer belegt sid, z.b. Dispolimit bei Girokoto. Eie solche Überprüfug ist jedoch relativ schwierig. -4-

5 2. Überlege Sie (mit Hilfe relatioaler Algebra), welche Schritte otwedig sid, um auf die vollstädige Date aller Girokote zuzugreife. Tabelle pro Etity: Koto Girokoto Pushdow: Girokoto Pullup: π Kotor, Guthabe, Gebühr, Dispolimit, Telebakig (σ Typ= Girokoto (Koto)) 3. Überlege Sie, welche Schritte otwedig sid, um Kotoummer, Guthabe ud Gebühre für alle Kote zu ermittel. Tabelle pro Etity: Koto Pushdow: π Kotor,Guthabe,Gebühr (Girokoto) π Kotor,Guthabe,Gebühr (Festgeldkoto) bzw. falls es Kote gibt, die weder Giro- och Festgeldkote sid: π Kotor,Guthabe,Gebühr (Girokoto) π Kotor,Guthabe,Gebühr (Festgeldkoto) π Kotor,Guthabe,Gebühr (Koto) Pullup: π Kotor,Guthabe,Gebühr (Koto) 4. Welche Strategie ist empfehleswert? (Grüde) Die Etscheidug für eies der Verfahre fällt aufgrud des Afragemusters. Falls sich viele Afrage auf Spezialisieruge beziehe (z.b. Girokote), so ist das Pushdow-Verfahre vorteilhaft, da hier lediglich diese Tabelle gelese werde muss. Im Tabelle-pro-Etity -Verfahre muss ei Joi zwische Koto ud Girokoto durchgeführt werde, um alle Attribute zu erhalte. Falls sich die Afrage hauptsächlich auf die Geeralisierug beziehe (z.b. Guthabe), ist das Verfahre Tabelle-pro- Etity besser, da hier ur eie eizige Tabelle betrachtet werde muss. Beim Pushdow -Verfahre müsse dagege alle Spezialisierugstabelle betrachtet werde, ud die Ergebisse da kombiiert werde. Das Pullup-Verfahre hat zwar de Vorteil, dass alle Afrage mit Zugriffe auf eie eizige Tabelle erfüllt werde köe. Diese ethält jedoch eie sehr große Mege a leere Felder, wodurch sehr viel Platz verschwedet wird. -5-

6 Aufgabe 4: Aggregatio Uter Aggregatio versteht ma die Zusammefassug vo mehrere Eizelteile zu eiem komplexere Gaze. Zur Modellierug wird die sogeate -Beziehug (1: bzw. 1:1) verwedet. Das Beispiel beschreibt also, aus welche Teile ei Fahrrad besteht. Da das Kozept der Aggregatio weder voll mit dem E/R- och mit dem relatioale Modell verträglich ist, muß die Umsetzug E/R ach relatioal direkt aus der jeweilige Aufgabestellug abgeleitet werde. Erarbeite Sie ei relatioales Schema für folgedes Beispiel ud überlege Sie, ob es Optimierugsmöglichkeite gibt. Fahrrad F-ID Marke Besitzer Rad Größe Breite Rahme Rahm er Material Speiche Stärke Läge Felge Typ Fahrrad: (F-ID, Marke, Besitzer) Rad: (Größe, Breite) Rahme: (Rahmer, Material) Speiche: (Stärke, Läge) Felge: (Typ) PartofRad: (Größe, Breite, F-ID) PartofRahme: (Rahmer, F-ID) PartofSpeiche: (Stärke, Läge, Größe, Breite) PartofFelge: (Typ, Größe, Breite) Zusammegefasst: Fahrrad: (F-ID, Marke, Besitzer) Rad: (Größe, Breite, F-ID) Rahme: (Rahmer, Material, F-ID) Speiche: (Stärke, Läge, Größe, Breite) Felge: (Typ, Größe, Breite) Eie begrezte Verbesserug dieser Modellierug hisichtlich der Tupelazahl würde die Agabe der Azahl i de Relatioe Rad ud Speiche mit sich brige. Vergibt ma für alle Bauteile eie Idetifikator, köe alle -Beziehuge i eier eizige (rekursive) Relatio gespeichert werde: Fahrrad: (F-ID, Marke, Besitzer) Rad: (R-ID, Größe, Breite) Rahme: (Rahmer, Material) Speiche: (S-ID, Stärke, Läge) Felge: (F-ID, Typ) Partof: (Teil-ID, Eibauteil-ID) -6-

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücke, 2.05.205 Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma (buchma@cs.ui-saarlad.de) Foto: M. Strauch Aus de Videos wisse Sie......welche

Mehr

Lösungsvorschläge zu den Aufgaben der Lernsituation 20 (S. 64, 65)

Lösungsvorschläge zu den Aufgaben der Lernsituation 20 (S. 64, 65) Lösugsvorschläge zu de Aufgabe der Lersituatio 20 (S. 64, 65) Aufgabe : a ERM für die Vermittlug vo Fahrradreise Kudeummer Vorame Nachame Straße ud Hausr. Telefoummer IBAN (FS) Buchugsummer Kudeummer (FS)

Mehr

Klausur in 13.1 Thema: Datenbanken (Bearbeitungszeit: 90 Minuten)

Klausur in 13.1 Thema: Datenbanken (Bearbeitungszeit: 90 Minuten) Klausur i 13.1 Thema: Datebake (Bearbeitugszeit: 90 Miute) Iformatik 13 Name: Nachame, Vorame Hiweis: Speicher Sie regelmäßig Ihre Arbeit i eier Word-Datei mit dem Name klausur1_nachame.doc aber icht auf

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Das Digitale Archiv des Bundesarchivs

Das Digitale Archiv des Bundesarchivs Das Digitale Archiv des Budesarchivs 2 3 Ihaltsverzeichis Das Digitale Archiv des Budesarchivs 4 Techische Ifrastruktur 5 Hilfsmittel zur Archivierug 5 Archivierugsformate 6 Abgabe vo elektroische Akte

Mehr

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen:

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen: - 2 - - 22-2. Datebaketwurf mittels Etity-Relatioship - Modell (ERM) Ursprug: Che 976, heute viele Variate Bedeutug: grafisches Hilfsmittel zur sematische Modellierug der Diskurswelt (Awedugsgebiet) (d.h.

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Entwurf von Datenbanken (Normalisierung)

Entwurf von Datenbanken (Normalisierung) Grudlage MS-Access97 Exkurs Datebake-Theorie 1/6 Etwurf vo Datebake (Normalisierug) Bevor ma mit der Implemetierug eier Datebak i eiem real existierede Datebaksystem begit, ist es otwedig, die Datebak

Mehr

SQL. Grundlagen und Datenbankdesign. Elmar Fuchs. 2. Ausgabe, April 2012 SQL

SQL. Grundlagen und Datenbankdesign. Elmar Fuchs. 2. Ausgabe, April 2012 SQL SQL Elmar Fuchs 2. Ausgabe, April 202 Grudlage ud Datebakdesig SQL 3 SQL - Grudlage ud Datebakdesig 3 Der Datebaketwurf I diesem Kapitel erfahre Sie wie sich der Datebak-Lebeszyklus vollzieht welche Etwurfsphase

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Datenbanksysteme 1 Herbst-/Wintersemester Oktober 2014

Datenbanksysteme 1 Herbst-/Wintersemester Oktober 2014 Lehrstuhl für Praktische Iformatik III Prof. Dr. Guido Moerkotte Email: moer@db.iformatik.ui-maheim.de Marius Eich Email: marius.eich@ui-maheim.de Fisik Kastrati Email: kastrati@iformatik.ui-maheim.de

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten:

Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten: md cloud Syc / FAQ Häufig gestellte Frage Allgemeie Date zur Eirichtug Die allgemeie Date zur Eirichtug vo md cloud Syc auf Ihrem Smartphoe laute: Kototyp: Microsoft Exchage / ActiveSyc Server/Domai: mailsyc.freeet.de

Mehr

Die Forschungsdatenbank zu Inschriften/Scans/Bildern im. Institut für Urchristentum und Antike

Die Forschungsdatenbank zu Inschriften/Scans/Bildern im. Institut für Urchristentum und Antike Gebhard Dettmar Istitut für Urchristetum ud Atike www2.hu-berli.de/ura Die Forschugsdatebak zu Ischrifte/Scas/Bilder im Istitut für Urchristetum ud Atike Eie Etwurfsdokumetatio zum Datebaketwurf ach dem

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Einleitung. Aufgabe 1a/1b. Übung IV

Einleitung. Aufgabe 1a/1b. Übung IV Übug IV Eileitug Etity-Relatioship-Modell: Modellierug zu Aalyse- ud Etwurfszwecke (Phase 2 i Wasserfallodell). "diet dazu, de projektierte Awedugsbereich zu strukturiere." [Keper/Eickler: Datebaksystee]

Mehr

1 Informationsmodellierung mit dem Entity-Relationship-Modell

1 Informationsmodellierung mit dem Entity-Relationship-Modell Iformatiosmodellierug mit dem Etity-Relatioship-Modell McAcid's beötigt ei eues Burgastisches Kassesystem, bei dem eie relatioale Datebak verwedet werde soll. [5 P.] Erfasse Sie die im Folgede beschriebee

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

1 Informationsmodellierung mit dem Entity-Relationship-Modell

1 Informationsmodellierung mit dem Entity-Relationship-Modell Aufgabezettel 2 (Lösugsvorschläge) Gesamtpuktzahl 40 Iformatiosmodellierug mit dem Etity-Relatioship-Modell Ei ahegelegeer Tierpark möchte ei eues System zur Verwaltug der Tierpopulatioe eiführe, bei dem

Mehr

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen Kombiatori Alexader (Axel Straschil 8. Dezember 2006 Diese urze Zusammefassug über Permutatioe, Variatioe, Kombiatioe ud de Biomische Lehrsatz etstad im laufe meies Iformatistudiums a der Techische Uiversität

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Projektmanagement Solarkraftwerke

Projektmanagement Solarkraftwerke Projektmaagemet Solarkraftwerke Solar Forum - St. Veit 2013 Mauel Uterweger 1 Ihalt des Impulsvortrages eie Überblick über Projektmaagemet bei Solarkraftwerke zu gebe gewoee Erfahruge aufgrud eies reale

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

FH Bingen 1 EnDa SS 2003

FH Bingen 1 EnDa SS 2003 FH Bige 1 EDa SS 2003 1.Grudkozepte für die Architektur vo Datebaksysteme (DaBa) 1.1Ausgagssituatio Frühere Awedugssysteme sid gekezeichet, dass zusammegehörige Programme auf viele Dateie operiere. : Verwalte

Mehr

Datenbanken Entity-Relationship-Modell. Aufgabe 3:

Datenbanken Entity-Relationship-Modell. Aufgabe 3: Aufgabe 3: Datebake Etity-Relatioship-Modell a) Gebe sie die Komplexität der folgede Situatioe a. Erstelle Sie jeweils ei ER- Diagramm. Formuliere Sie sivolle Geschäftsregel.. Eie Ladekette möchte Iformatioe

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

FIBU Offene-Posten- Buchführung

FIBU Offene-Posten- Buchführung FIBU Offee-Poste- Buchführug Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Rechugsprüfug i der Buchugserfassug... 4 2.2 Sammelbuchug... 5 2.3 Zahlugslauf aus offee Poste eilese... 6

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

In der Industrie zählt Zuverlässigkeit und Schnelligkeit. Mit MM1018 werden Toleranzen vor Ort und in einem Arbeitsschritt ausgeglichen.

In der Industrie zählt Zuverlässigkeit und Schnelligkeit. Mit MM1018 werden Toleranzen vor Ort und in einem Arbeitsschritt ausgeglichen. I der Idustrie zählt Zuverlässigkeit ud Schelligkeit. Mit MM1018 werde Toleraze vor Ort ud i eiem Arbeitsschritt ausgegliche." Verbudbrücke Megyeri, Budapest Brücke zähle zu de fasziieredste Bauwerke

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukture Prof. Dr. J. Esparza Lehrstuhl für Grudlage der Softwarezuverlässigkeit ud theoretische Iforatik Fakultät für Iforatik Techische Uiversität Müche http://www7.i.tu.de/u/courses/ds/ws0910

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

III. Grundlagen der Lebensversicherungsmathematik III.2. Grundlagen der Zinsrechnung

III. Grundlagen der Lebensversicherungsmathematik III.2. Grundlagen der Zinsrechnung III. Grudlage der Lebesversicherugsmathematik III.2. Grudlage der Zisrechug Uiversität Basel Herbstsemester 2015 Dr. Ruprecht Witzel ruprecht.witzel@aktuariat-witzel.ch www.aktuariat-witzel.ch III.2. Grudlage

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

FIBU Kontoauszugs- Manager

FIBU Kontoauszugs- Manager FIBU Kotoauszugs- Maager Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Buchugsvorschläge i der Buchugserfassug... 4 2.2 Vergleichstexterstellug zur automatische Vorkotierug... 5 2.3

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

1 EINFÜHRUNG 1 2 DATENBANKARCHITEKTUR 5 3 DATENMODELLIERUNG 10

1 EINFÜHRUNG 1 2 DATENBANKARCHITEKTUR 5 3 DATENMODELLIERUNG 10 Datebak Ihaltsverzeichis EINFÜHRUNG. Beispiel eier Datebak, Teil I.2 Itegrierte Iformatiosverarbeitug 2.3 Ziele der Dateorgaisatio 3.4 Dateisysteme ud Datebaksysteme 4 2 DATENBANKARCHITEKTUR 5 2. Das Kozept

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

K O M B I N A T O R I K

K O M B I N A T O R I K Tel: 0650/673 34 34 0699/1981 01 14 K O M B I N A T O R I K Permutatio, Variatio, Kombiatio Weitere Übugsuterlage fidest du auf www.bosphorus-educatio.at/beispiele-mathematik V15.1.2017 1. PERMUTATION

Mehr

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering Basisfall Vergleichsbasiertes Sortiere Programmieraufgabe Algorithm Egieerig Deis Felsig 013-0-07 1 Eileitug I dieser Programmieraufgabe sollte Basisfälle für vergleichsbasiertes Sortiere utersucht werde.

Mehr

Engineering von Entwicklungsprojekten mit unsicheren Aktivitätszusammenhängen in der verfahrenstechnischen Industrie

Engineering von Entwicklungsprojekten mit unsicheren Aktivitätszusammenhängen in der verfahrenstechnischen Industrie Egieerig vo Etwicklugsprojekte mit usichere Aktivitätszusammehäge i der verfahrestechische Idustrie Christopher M. Schlick Berhard Kausch Sve Tackeberg 5. Symposium Iformatiostechologie für Etwicklug ud

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen 2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.

Mehr

beck-shop.de 2. Online-Marketing

beck-shop.de 2. Online-Marketing beck-shop.de 2. Olie-Marketig aa) Dateschutzrechtliche Eiwilligug immer erforderlich Ohe Eiwilligug des Nutzers ist eie Erhebug persoebezogeer Date icht zulässig. Eie derartige Eiwilligug ka auch icht

Mehr

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012 Techische Uiversität Wie Istitut für Computergraphik ud Algorithme Arbeitsbereich für Algorithme ud Datestrukture 186.813 Algorithme ud Datestrukture 1 VU 6.0 1. Übugstest SS 2012 26. April 2012 Mache

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

APPENDX 3 MPS Umfragebögen

APPENDX 3 MPS Umfragebögen APPENDX 3 MPS Umfrageböge Iformatio zur Mitarbeiterbefragug Liebe Mitarbeiteri, lieber Mitarbeiter, die Etwicklug eies eiheitliche Produktiossystems für Mercedes-Bez ist abgeschlosse ud seit Jauar 2000

Mehr

Heute Kapitalanlage morgen ein Zuhause

Heute Kapitalanlage morgen ein Zuhause Immobilie Heute Kapitalalage morge ei Zuhause Courtage: Kaufpreis: Preis auf Afrage 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

ER Modell Relationenmodell

ER Modell Relationenmodell ER Modell Relatioemodell II Orgaisatio Orgaisatioseiheite Date Steuerug Fuktio ` Iformatiosobjekte Itegratio Aufgabe 0.06.006 Das Etity-Relatioship-Modell (ERM) Erster Schritt zum Aufbau eies datebakbasierede

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Skriptum zur ANALYSIS 1

Skriptum zur ANALYSIS 1 Skriptum zur ANALYSIS 1 Güter Lettl WS 2017/2018 1. Grudbegriffe der Megelehre ud der Logik 1.1 Naive Megelehre [Sch-St 4.1] Defiitio eier Mege ach Georg Cator (1845 1918):,,Eie Mege M ist eie Zusammefassug

Mehr

Wenig Zeit für viel Arbeit? Reibungsloser Wechsel zu iskv_21c

Wenig Zeit für viel Arbeit? Reibungsloser Wechsel zu iskv_21c Click it Weig Zeit für viel Arbeit? Reibugsloser Wechsel zu iskv_21c Zeit zu wechsel Seit dem Jahr 2006 ist klar: Das ISKV-Basissystem wird i absehbarer Zeit ausgediet habe. Mit der Neuetwicklug iskv_21c

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Die Instrumente des Personalmanagements

Die Instrumente des Personalmanagements 15 2 Die Istrumete des Persoalmaagemets Zur Lerorietierug Sie solle i der Lage sei:! die Ziele, Asätze ud Grüde eier systematische Persoalplaug darzulege;! die Istrumete der Persoalplaug zu differeziere;!

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Reengineering mit Sniffalyzer

Reengineering mit Sniffalyzer Reegieerig mit Siffalyzer Dr. Walter Bischofberger Wid River Ic. wbischofberger@acm.org http://www.widriver.com/siff 30.10.01 2001 Wid River Systems, Ic. 1 Das Siffgate Projekt Motivatio Schaffe eier Plattform

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Schätzung der Kovarianzmatrix

Schätzung der Kovarianzmatrix Schätzug der Kovariazmatrix Aus eiem Esemble vo Beobachtuge {x i } ka die Kovariazmatrix (Zetralmomete) geschätzt werde: C = E{( x µ )( x µ ) } = R µ µ xx x x xx x x ˆ 1 C ˆ ˆ xx = xk µ x xk µ x k = 1

Mehr

UNSER WISSEN FÜR IHRE IMMOBILIE

UNSER WISSEN FÜR IHRE IMMOBILIE i Hamburg-Schelse i Hamburg-Niedorf UNSER WISSEN FÜR IHRE IMMOBILIE 2 Werer Eisele Haus- ud Grudstücksmakler GmbH Wir kee us seit über 45 Jahre mit Immobilie aus Seit über 45 Jahre ist die Werer Eisele

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Einführung in die Computerlinguistik Merkmalsstrukturen (Feature Structures)

Einführung in die Computerlinguistik Merkmalsstrukturen (Feature Structures) Eiführug i die Computerliguistik Merkmalsstrukture (Feature Structures) Laura Heirich-Heie-Uiversität Düsseldorf Sommersemester 2013 Eileitug (1) Die i CFGs verwedete Nichttermiale sid i der Regel icht

Mehr

2 Organisationseinheiten und -strukturen

2 Organisationseinheiten und -strukturen 2 Orgaisatioseiheite ud -strukture 2. Eiführug Verkaufsorgaisatio (SD) Vertriebsweg (SD) Sparte (LO) Verkaufsbüro (SD) Verkäufergruppe (SD) Madat Buchugskreis (FI) Kreditkotrollbereich (FI) Werk (LO) Versadstelle

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr